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Increasing immunological knowledge and advances in techniques lay the ground for 
more efficient and broader application of immunotherapies. gamma delta (γδ) T-cells 
possess multiple favorable anti-tumor characteristics, making them promising candidates 
to be used in cellular and combination therapies of cancer. They recognize malignant 
cells, infiltrate tumors, and depict strong cytotoxic and pro-inflammatory activity. Here, 
we focus on human Vγ9Vδ2 T-cells, the most abundant γδ T-cell subpopulation in the 
blood, which are able to inhibit cancer progression in various models in vitro and in vivo. 
For therapeutic use they can be cultured and manipulated ex vivo and in the following 
adoptively transferred to patients, as well as directly stimulated to propagate in vivo. In 
clinical studies, Vγ9Vδ2 T-cells repeatedly demonstrated a low toxicity profile but hitherto 
only the modest therapeutic efficacy. This review provides a comprehensive summary 
of established and newer strategies for the enhancement of Vγ9Vδ2 T-cell anti-tumor 
functions. We discuss data of studies exploring methods for the sensitization of malig-
nant cells, the improvement of recognition mechanisms and cytotoxic activity of Vγ9Vδ2 
T-cells. Main aspects are the tumor cell metabolism, antibody-dependent cell-mediated 
cytotoxicity, antibody constructs, as well as activating and inhibitory receptors like 
NKG2D and immune checkpoint molecules. Several concepts show promising results 
in vitro, now awaiting translation to in vivo models and clinical studies. Given the array 
of research and encouraging findings in this area, this review aims at optimizing future 
investigations, specifically targeting the unanswered questions.

Keywords: gamma delta T-cell, cancer immunotherapy, tumor metabolism, ADCC, NKG2D, immune checkpoints, 
programmed cell death protein 1, vascular endothelial growth factor

iNTRODUCTiON

Following the discovery in the 1980s, gamma delta (γδ) T-cells have become increasingly recognized 
as important players in natural host defense against infections and malignancies. Early evidence 
of an anti-tumor functionality of γδ T-cells came from the experiments in mice (1) and it is now 
well established (2). In humans, γδ T-cells can be found in various cancer tissue samples [e.g., 
melanoma (3, 4) and epithelial tumors (5–11)]. More recently, analysis of microarray data also 
described patterns of γδ T-cells in a large collection of malignancies (12) and a prior extensive 
gene expression study demonstrated that γδ T-cell infiltration into tumors represents a positive 
prognostic marker in many types of cancer (13). Offering some hints for a functional role in tumor 
rejection, γδ T-cell infiltration in melanoma, colorectal cancer, and lung tumors were found to be 
associated with lower stage and lack in metastasis. Additionally, γδ T-cells extracted from such 
cancer tissues were able to kill malignant cells in vitro (4, 14, 15). In cancer patients, γδ T-cells were 
also repeatedly found reduced or defective and depicted a diminished proliferative capacity (16–18) 
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and exhaustion (19–23). Patients with higher γδ T-cell count fol-
lowing allogenic stem cell transplantation for acute leukemia had 
a significant survival advantage (24). In connection with their 
suspected function in natural tumor defense, the utilization of 
γδ T-cells has become a promising concept in the field of cancer 
immunotherapy.

Definition
γδ T-cells express variables Vγ and Vδ chains (25, 26) as part of 
a T-cell receptor (TCR) complex that is structurally and func-
tionally distinctive from the major histocompatibility complex 
(MHC) binding TCR of αβ T-cells (27). In humans, it is feasible 
to further divide γδ T-cells into “Vδ2” and “non-Vδ2 cells,” the 
latter consisting of mostly Vδ1- and rarely Vδ3- or Vδ5-chain 
expressing cells. Despite unrestricted and the theoretically high 
combinatory diversity (28), the Vδ2 chain is found preferentially 
paired with the Vγ9 chain (29). These Vγ9Vδ2 T-cells account for 
approximately 5% of peripheral blood T-cells, representing the 
dominant γδ T-cell subpopulation in this compartment in healthy 
human adults (30). Interestingly, the preferential appearance of 
Vγ9- and Vδ2-chains develops in the fetus (31), but the overall 
clonal repertoire of blood γδ T-cells is further contracting after 
birth (32). The latter is probably a response to a uniform stimulus, 
like a ubiquitous pathogen or conserved stress molecule (33).

Functional Aspects
Genetic and functional studies indicate that γδ T-cells have 
developed and act as an intermediate between the innate and the 
adaptive immune system. Features representative of an innate 
phenotype is their ability to mediate antibody-dependent cell-
mediated cytotoxicity (ADCC) and phagocytosis and to rapidly 
react toward pathogen-specific antigens without prior differentia-
tion or expansion (28). Notably, the gene expression signature of 
Vγ9Vδ2 T-cells was characterized as a hybrid of αβ and NK-cells 
(34). Typical characteristics of the adaptive immune system, found 
in γδ T-cells, are their capabilities for somatic recombination of 
receptor genes, memory formation (35), and professional antigen 
presentation (36). Unlike αβ T-cells, γδ T-cells respond directly 
to proteins and non-peptide antigens (37) and are therefore not 
MHC restricted (38). At least some γδ T-cell specific antigens 
display evolutionary conserved molecular patterns, found in 
microbial pathogens and “induced self-antigens,” which become 
upregulated by cellular stress, infections, and transformation 
(28). Following the observation on stimulatory effects of certain 
non-peptide mycobacterial components on Vγ9Vδ2 T-cells (39, 
40), the responsible substances could be isolated and character-
ized and are commonly termed as phosphoantigens (PAgs) 
(41). We consider PAgs the primary trigger of Vγ9Vδ2 γδ T-cell 
acti vation and discuss them in greater detail in the following. 
However, Vγ9Vδ2 γδ T-cells may also respond to other antigens 
and ligands via TCR and (co-)receptors (42).

vγ9vδ2 T-Cells in Cancer immunotherapy
Subsets of Vγ9Vδ2 T-cells can be defined analyzing the expres-
sion of surface markers (e.g., CD27, CD45RA, CCR7, and 
CD16) or regarding their dominant cytokine production and 
correlate with functional differences like proliferative capacity 

or cytotoxic potential (43, 44). It has been extensively demon-
strated in  vitro (45–55) and using in  vivo models (22, 56–68) 
that γδ T-cells are able to recognize various tumor cells and 
exert strong anti-tumor effects. Tumor growth is inhibited via 
different mechanisms including the release of pro-inflammatory 
cytokines, granzymes and perforin, and the engagement of 
apoptosis inducing receptors (69).

Several drugs and treatment concepts might improve the 
activity of Vγ9Vδ2 T-cells against cancer. Most candidates are 
still at a pre-clinical stage, some were tested in animal models, 
and very few went into clinical tests so far. Although Vδ1+ cells 
shown promising results pre clinically (70), all previous clinical 
trials focused on the usage of Vγ9Vδ2 T-cells. Reasons for the 
earlier therapeutic employment of Vγ9Vδ2 T-cells include their 
relatively high abundance in the peripheral blood and the pos-
sibility to efficiently culture them ex vivo or to stimulate and 
expand them in  vivo using amino-bisphosphonates (N-BP) or 
synthetic PAgs (45), as discussed later.

Here, we divide the existing clinical studies according to the 
used strategy into two main groups: (1) in vivo activation (17, 18,  
23, 71–74) and (2) adoptive cell transfer strategies (75–84).  
In the latter case, the adoptively transferred cells originally were 
extracted, activated, and cultured autologous blood cells. Varieties 
include the transfer of processed haploidentical cell prepara-
tions with subsequent in  vivo stimulation (82), as well as local 
administration of cultured cells into the tumor or the peritoneal 
cavity (85, 86). Well organized and comprehensive analyses of 
the performed clinical studies involving γδ T-cells have recently 
been published by others (45, 87, 88) and an overview is given 
in Table 1.

Outline
Much has been learned by studying γδ T-cells from animals, 
especially those from mice. However, there are major distribu-
tional, structural, and functional differences between the species, 
especially the lack of Vγ9Vδ2 T-cells or functional homologs 
in mice (91, 92). In this review, we focus on human γδ T-cells, 
their anti-tumor capabilities, and strategies for improving the 
effectiveness of Vγ9Vδ2 T-cells in cancer immunotherapy. 
Current publications contain additional information on the top-
ics not covered here, especially the biology of non-Vδ2 cells (93) 
and their role in cancer and cancer therapy (2). We also refer to 
more detailed literature regarding the differences of rodent and 
human γδ T-cells (28), γδ T-cells acting as professional antigen-
presenting cells (36), concerning B-cell help (94) and potential 
use as a vaccine (95), cell ontogeny (33), phylogenetic aspects 
(28, 42), genetically modified γδ T-cells (e.g., CARs) (96, 97), as 
well as molecular details of receptor signaling (98, 99). We discuss 
approaches especially that aim to sensitize target cells and the 
local interaction of tumor and effector cells in connection with 
the underlying mechanisms.

TARGeTiNG THe CeLLULAR 
MeTABOLiSM

Survival and growth of cancer cells are connected to specific 
metabolic alterations which have been considered a distinctive 
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TABLe 1 | Clinical studies.

Reference Year Disease N Reported outcome Systemic therapy/comments

In vivo stimulation
Wilhelm et al. (18) 2003 MM, indolent, lymphomas 19 16% PR, 16% SD +PAM +IL-2/response correlates  

with in vitro expansion
Dieli et al. (23) 2007 HRPC 18 16% PR, 27% SD +ZOL +IL-2
Bennouna et al. (73) 2010 RCC, GYN-, GI-cancers 28 42% SD +BrHPP +IL-2
Laurent et al. (89) abstract only 2010 Follicular lymhoma 45 26% CR, 18% PR +BrHPP +IL-2 +RTX
Meraviglia et al. (71) 2010 Breast cancer 10 10% PR, 20% SD +ZOL +IL-2/response correlates  

with in vivo expansion
Lang et al. (74) 2011 RCC 12 16% SD +ZOL +IL-2
Kunzmann et al. (72) 2012 RCC, melanoma, AML 21 16–42% SD +ZOL +IL-2

AML: 25% PR
Pressey et al. (17) 2016 Neuroblastoma 4 25% SD, 75% PD +ZOL +IL-2

Adoptive transfer
Kobayashi et al. (78) 2007 RCC 7 Delayed tumor doubling  

times in 4/7 patients
–

Bennouna et al. (75) 2008 RCC 10 60% SD –
Abe et al. (80) 2009 MM 6 66% SD –
Nakajima et al. (81) 2010 Lung cancer 10 30% SD –
Kobayashi (79) 2011 RCC 11 9% CR, 45% SD +ZOL +IL-2
Nicol et al. (84) 2011 Solid tumors 18 16% SD, 16% PR and CR +ZOL +other tumor-specific treatments
Noguchi et al. (77) 2011 Solid tumors 25 12% SD, 12% PR +other tumor-specific treatments
Sakamoto et al. (76) 2011 Lung cancer 15 40% SD –
Cui et al. (86) 2014 HCC 62 Longer PFS and OS –/in addition to radiofrequency ablation
Wilhelm et al. (82) 2014 Hematological malignancies 4 75% CR +ZOL +IL-2 +Chemo/in vivo stimulation 

following transfer of haploidentical cells
Wada et al. (85) 2014 Gastric cancer 7 Reduction in ascites in 2/7 patients –/intraperitoneal administration of γδ T-cells 
Aoki et al. (90) 2017 Pancreatic cancer—adjuvant 28 Higher recurrence free survival in 

patients with sustained higher γδ  
T-cell numbers

+Chemo

AML, acute myeloid leukemia; BrHPP, bromohydrin pyrophosphate; Chemo, chemotherapy; CR, complete remission, GI, gastrointestinal; GYN, gynecological; HCC, hepatocellular 
carcinoma; HRPC, hormone refractory prostate cancer; MM, multiple myeloma; N, number of patients; OS, overall survival; PAM, pamidronic acid; PD, progressive disease; PFS, 
progression free survival; PR, partial remission; RCC, renal cell carcinoma; RTX, rituximab; SD, stable disease; ZOL, zoledronic acid.
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“hallmark of cancer” (100). Most prominent example of such 
adaptation is the “Warburg effect,” the preferential utiliza-
tion of aerobic glycolysis by various tumor cells, described by 
Warburg in 1924 (101). Obvious elements of this phenotype are 
the inhibition of oxidative phosphorylation despite sufficient 
oxygenation, an elevated glucose consumption, and an increased 
production of lactic acid (LA). Changes in the tumor metabolism 
can be complex and beside glucose metabolism also affect lipid 
and amino acid pathways (102). Correspondingly, our idea of 
Vγ9Vδ2 T-cell natural anti-tumor functions is based on their 
ability to distinguish normal and transformed cells due to their 
metabolic phenotype. In particular, they might recognize an 
intrinsic overproduction of PAgs arising from isoprenoid bio-
synthesis in tumor cells.

Many PAgs are naturally occurring prenyl-pyrophosphates 
(41) originating from isopentenyl pyrophosphate (IPP) of the 
eukaryotic mevalonate pathway as well as those generated in 
the microbial non-mevalonate (also termed as MEP or DOX-P) 
pathway (103). A dysregulated mevalonate pathway, conjoined 
with a higher abundance of mevalonate pathway products was 
described in certain malignant cell types (104, 105) and may 
indeed be important to support the survival of malignant cells 
(106). PAg accumulation has been explained by increased buildup, 
especially of IPP due to upregulation of the gate-keeping enzyme 
3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (107) and 

other mevalonate pathway enzymes (104). We currently lack 
sufficient information to decide if a dysregulated mevalonate 
pathway associated with increased PAgs is indeed a “general 
hallmark of tumorigenesis” rather than an outlier. In any case, 
several therapeutic concepts focus on Vγ9Vδ2 T-cells’ metabolic 
sensor and potent effector mechanisms.

N-BPs and PAgs
Activation of Vγ9Vδ2 T-cells with PAgs and N-BPs is the most 
commonly used strategy for in  vitro research and both in  vivo 
stimulation as well as application of adoptive cell therapy. The 
potency of the individual PAg molecule to elicit response from 
Vγ9Vδ2 T-cells differs (108) and is especially high for microbial 
(E)-4-hydroxy-3-methyl-butenyl pyrophosphate (HMBPP), 
certain synthetic compounds like bromohydrin pyrophosphate 
(BrHPP) (109) or nucleotides derived from HMBPP (110). 
However, so far only BrHPP and N-BPs have been used clini-
cally. N-BPs were found to trigger activation and expansion of 
Vγ9Vδ2 T-cells as well as their interferon-γ (IFN-γ) release (46, 
111) and were later recognized as indirect acting PAgs (112). 
This class of substances is structurally related to direct PAgs, but 
acts by inhibition of farnesyl diphosphate synthase and the accu-
mulation of upstream metabolites like the direct PAg IPP (113). 
In immunotherapy N-BPs serve a double purpose. First, they 
sensitize target cells, rendering many primarily resistant tumor 
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cells vulnerable to γδ T-cell mediated attack (114). Second, they 
induce expansion of γδ T-cells in vivo and in vitro. The degree 
of inhibition of farnesyl diphosphate synthase thereby correlates 
well with important anti-tumor functions of Vγ9Vδ2 T-cells over 
various tumor cell lines (115). Apart from sensitization of tumor 
cells, N-BPs exert additional direct anti-neoplastic effects, like an 
increased production of toxic mevalonate pathway products and 
a decrease of essential downstream metabolites (113, 116).

Ex Vivo Culture and In Vivo Models
Potent natural and synthetic PAgs, like the patented drug BrHPP 
(termed as IPH1101 or Phosphostim®) can be used for effective 
in vitro (117) and in vivo (22, 75) expansion of Vγ9Vδ2 T-cells.

Protocols for ex vivo culture of human Vγ9Vδ2 T-cells vary 
regarding the culturing conditions, timing and dosage of used 
N-BPs or PAgs, and added co-stimulators like IL-2 (88, 118) and 
may result in different phenotypes and effector cell character-
istics. Zoledronic acid (ZOL) is a potent N-BP and commonly 
used about 1  µM in  vitro, a concentration also in the range of 
the peak plasma level following a single standard dose of 4 mg 
intravenously (88). Repetitive administration of exogenous IL-2 
is commonly used as it drives proliferation of PAg stimulated 
Vγ9Vδ2 T-cells resulting in an increased yield (63, 67). Results 
of in vitro expansion are highly donor dependent and may also 
predict the respective in  vivo expansion efficacy, which can be 
additionally restricted in cancer patients (18). Currently, an opti-
mal dose of ZOL as well IL-2 has not been determined in vivo (88) 
and a recent study indicated that the efficacy of ZOL stimulation 
depends on drug concentration and duration of exposure with an 
individual optimum (67).

The ability to recognize the PAgs is linked to germline-
encoded regions of the γδ TCR (119) and so far functionally only 
described in primates (120). Even though homologs sequences of 
human Vγ9 and Vδ2 genes were recently described in other spe-
cies, such as alpaca and armadillo (121, 122). As wild type mice 
lack PAg-responding γδ T-cells the in vivo expansion of human 
Vγ9Vδ2 T-cells has been studied using xenograft mice (57, 123) 
or cynomolgus monkeys (59). Results from such models show 
that sensitizing tumor cells with N-BPs, combined with adoptive 
transfer of ex vivo expanded human Vγ9Vδ2 T-cells with or 
without exogenous IL-2 administration is feasible and induces 
moderate anti-tumor responses (58, 65, 66, 68, 124). The role for 
additional systemic application of N-BPs in context with adop-
tive cell transfer strategies remains uncertain. On one side it has 
been reported to promote engraftment of ex vivo stimulated and 
adoptively transferred human cells in mice (124), on the other 
side there are indications that repetitive application of these drugs 
in vivo induces Vγ9Vδ2 T-cells exhaustion (23, 71, 74).

Clinical Experience
One may speculate that the observed anti-tumor effects of 
N-BPs or high-dose IL-2 monotherapy as well as allogenic 
stem cell transplantation are influenced by γδ T-cells without 
being recognized as such (125–127). Implementation of clinical 
Vγ9Vδ2 T-cell studies benefited from the fact that side effects 
and pharmacological profiles of N-BPs and IL-2 monotherapy 
were already known. IL-2 is established as an effective treatment 

for several types of cancer for about 30 years (128) and N-BPs 
are widely used for osteoporosis, hypercalcemia, and the 
treatment of bone metastasis (125). The first prospective trial 
focusing on the in vivo stimulation of anti-tumor functions by 
γδ T-cells used the N-BP pamidronic acid (18), later studies the 
more potent ZOL (17, 23, 71, 72, 74) in combination with IL-2. 
These N-BPs have also been used to stimulate Vγ9Vδ2 T-cells  
ex vivo for adoptive cell therapy (76, 77, 80, 81, 83). Additionally, 
a few studies applying adoptive cell transfer included the sys-
temic administration of ZOL with (79, 82) or without additional 
IL-2 (84). Taken together the clinical studies involving the use 
of N-BPs to increase the anti-tumor effects of Vγ9Vδ2 T-cells 
in different types of malignancies depicted a tolerable toxicity 
but revealed inconsistent responses and overall only a modest 
efficacy (compare Table 1).

Similarly, BrHPP was tested in early clinical studies with small 
success, for both ex vivo stimulation and consecutive adoptive 
transfer of cells in combination with IL-2 in metastatic renal 
cell carcinoma (75) and for in  vivo stimulation targeting solid 
tumors (73). A strategy combining BrHPP stimulation and the 
tumor targeting antibodies rituximab (RTX) (89) is discussed 
separately.

Current Obstacles
Several reasons might explain the limited therapeutic effective-
ness of both N-BPs and synthetic PAgs in  vivo. Maybe most 
importantly N-BPs and synthetic PAgs lack cancer specificity 
regarding uptake or molecular targeting and also affect other 
cells. Also, N-BPs and BrHPP both have short plasma half-
life periods (22, 67). BrHPP is quickly degraded by plasma 
phosphatases and common N-BPs cannot passively cross the 
plasma membrane, and is preferentially rooted to the bone 
due to their calcium binding characteristics (112). Cancer 
cells in other compartments are those that lack adequate 
active transport mechanisms might therefore not be affected. 
It is established that monocytes/macrophage type cells take up 
N-BPs via fluid endocytosis and induce activation of Vγ9Vδ2 
T-cells (129, 130). Unfortunately ZOL also induces killing of 
human macrophages (131) and, additionally, uptake of N-BP 
by neutrophils impairs γδ T-cell proliferation via production 
of reactive oxygen species (132). Indeed treatment with N-BP 
can decrease circulating γδ T-cell count (133) and repetitive 
stimulation with BrHPP lead to progressive exhaustion of γδ 
T-cell activation and expansion in vivo (22). A new strategy to 
stimulate Vγ9Vδ2 T-cells and avoid exhaustion might be the 
application of an attenuated, live vaccine with genetically engi-
neered metabolic profile that overproduces HMBPP. Adapting 
traits of a bacterial infection with Salmonella enterica indeed 
elicited a prolonged Vγ9Vδ2 T-cell immunity in monkeys 
(134). A different concept to increase N-BP concentration in 
the tumor tissue is to administer drugs (and ex vivo stimulated 
cells) locally (135). Nevertheless, this is not a working concept 
for systemic diseases. It also has to be taken into account that 
although commonly well tolerated, N-BPs and exogenous 
IL-2 have considerable and dose limiting toxicities, including 
inflammatory and cytokine reactions, osteonecrosis of the 
bone, and hypocalcemia (128, 136).
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Modified PAgs and N-BPs
The development of new direct and indirect PAgs may overcome 
pharmacodynamic restrictions and improve clinical efficacy 
(112). Newly designed PAgs (137) and bisphosphonate prodrugs 
(138, 139) have chemically masked phosphate groups, allow-
ing these compounds to enter cells without the need for active 
transmembrane transport (140) and should not accumulate in 
the bone. Following intracellular uptake they are converted 
to their active forms, which are potent stimulators of Vγ9Vδ2 
T-cells and sensitize different tumor cell lines toward γδ T-cell 
anti-tumor effects in vitro (138–140). Bisphosphonate prodrugs 
already depicted some effect in combination with adoptive cell 
transfer in an animal model of bladder carcinoma and human 
fibrosarcoma (138, 139).

Nano-technology based carriers for N-BP delivery (141) as well 
as lipophilic bisphosphonate (60, 142, 143) and synthetic nucleo-
tide pyrophosphates (110) are additional pharmacotherapeutic 
strategies that may improve Vγ9Vδ2 T-cell immunotherapy in 
the future.

Butyrophilin 3A (BTN3A)
More recently, Butyrophilin 3A (BTN3A, CD277) was described 
as essential for γδ T-cell activation by direct PAgs (144, 145). 
BTN3A belongs to the important B7 family of co-stimulatory 
molecules (146) and consists of three isoforms: BTN3A1, 
BTN3A2, and BTN3A3. BTN3A2 differs as it lacks an intracel-
lular B30.2 domain that is needed for PAg recognition. However, 
when using the mouse anti-human-CD277 antibody clone 20.1 
directed against an extracellular domain, all BTN3A isoforms 
support Vγ9Vδ2 T-cell activation (144). The molecular details 
of signal transduction are a current research topic and matter of 
debate, especially regarding two different models: originally, the 
“antigen presenting model” by Vavassori et al. (145) assuming 
that CD277 and the TCR interact directly following PAg bind-
ing to an extracellular CD277 domain. Recent experimental 
evidence rather supports a second, so called “allosteric model” 
by Harly et al., postulating that PAgs interact with the intracel-
lular B30.2 domain of CD277 (147) either directly (148) or 
indirectly (149, 150) and induce a conformational change that 
is transferred to the extracellular parts of the CD277 molecule 
(147, 151). PAg sensing may additionally involve molecules 
like Rho-GTPase (152) or Periplakin and is modulated by 
mechanisms enabling transmembranous PAg transport or via 
hydrolyzation of PAgs by ecto-ATPase CD39 (106, 153).

Development of mouse anti-human-CD277 antibodies has 
been very useful in deciphering the activation processes of 
Vγ9Vδ2 T-cells (144, 154) and also holds therapeutic poten-
tial. The mode of action of these antibodies was proven to be 
downstream and independent of IPP (144, 149). Furthermore, 
activating anti-CD277 clone 20.1 has similar but not identi-
cal stimulatory capabilities compared with PAg stimulation 
(155) and might be restricted to certain Vγ9Vδ2 T-cells with 
specific complementarity-determining region sequences of 
the TCR (156). Still, anti-CD277 antibodies might outperform 
N-BPs or other metabolic sensitizers in target cells that fail to 
internalize drugs or which have decreased mevalonate pathway 
activity. It was shown that anti-CD277 antibodies enhance 

anti-tumor functions of Vγ9Vδ2 T-cells in vitro (144) and in a 
xenotransplant mouse model of human acute myeloid leukemia 
(AML) (157). We also observed that primary chronic lymphatic 
leukemia (CLL) cells are hardly affected by ZOL sensitization 
become lysed by Vγ9Vδ2 T-cells following their incubation with 
activating anti-CD277 antibody (158). Unfortunately, antibodies 
with a murine background seem inappropriate for clinical use 
and development of a humanized version or a human homolog 
of the clone 20.1 antibody has not been reported. A further 
drawback is the widespread expression of the CD277 molecule 
in human tissues (146, 159), which is why additional strategies 
for enhancement of selectivity might be required. One solution 
could be the development of antibody constructs combining 
both CD277 activating and tumor-antigen specificity.

Other Agents
Therapeutic specificity might also be achieved by targeting 
tumor cell specific metabolic alterations. Therefore, we tested 
whether the pyruvate dehydrogenase activator dichloroacetate 
(DCA) might improve Vγ9Vδ2 T-cell anti-tumor functions 
in vitro. DCA inhibits aerobic glycolysis, malignant cell prolif-
eration and indirectly facilitates mitochondrial oxidative decar-
boxylation of pyruvate to acetyl-coenzyme A (160). Indeed, 
we found that DCA + ZOL treated leukemia cell lines induce 
higher IFN-γ production by Vγ9Vδ2 T-cells compared with 
ZOL treatment alone. We also suspected that DCA increases the 
supply of metabolites upstream of IPP and therefore increases 
PAg accumulation when combined with ZOL (161). Still, 
alternative explanations are possible as DCA decreases tumor 
cells’ LA production (160) and LA can directly inhibit several 
immune functions. Tumor LA efflux is, therefore, an attractive 
target and could be targeted by inhibition of lactate transport-
ers and nonsteroidal anti-inflammatory drugs (NSAID) (101). 
Concerning potential anti-tumor effects of NSAIDs, the use of 
indomethacin as well as specific cyclooxygenase-2 inhibitors 
resulted in an increase of Vγ9Vδ2 T-cell dependent tumor cell 
lysis. If this observation is connected to LA release has not been 
investigated but was attributed to the inhibition of prostaglandin 
effects (162). Finally, the enzymes CD39 and CD73 that regulate 
ATP/adenosine balance and thereby the function of immune 
cells might represent interesting targets for immunotherapy 
(163). Here, CD39 might be of special interest in the context 
of Vγ9Vδ2 T-cell therapy as it was shown to be capable of PAg 
hydrolyzation (164).

Summary
Adoptive transfer of ex vivo cultured cells and various combi-
nations of N-BPs, BrHPP, and IL-2 have demonstrated clinical 
effects but are rather disappointing compared to the promising 
pre-clinical results. The discrepancy suggests that the in  vivo 
characteristics of stimulated Vγ9Vδ2 T-cells are still insufficiently 
understood. To overcome the current limitations, we need to 
learn more about differentiation and functionality of PAg acti-
vated γδ T-cells, its subpopulations and migration patterns. PAgs 
and N-BPs with improved pharmacokinetics and potency are 
very promising new developments, but their toxicity profile and 
clinical effectiveness have yet to be established. A breakthrough 
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would be the development of PAg or N-BP analogs with strong 
molecular tumor cell specificity.

Beside these innovations, we should search for additional 
tumor-specific transport mechanisms and metabolic peculiari-
ties. A good example for the exploitation of a “metabolic weak 
spot” in cancer is the use of asparaginase in acute lymphatic 
leukemia (165). We need to identify such targets in the context of 
γδ T-cell sensing and will hopefully be able to design specific and 
effective compounds at least for certain types of cancer. Finally, 
we should consider the metabolic needs of immune cells as well. 
They may also rely on mevalonate pathway products or upregu-
late aerobic glycolysis following activation (166) and therefore 
become negatively affected by certain therapeutic interventions.

TARGeTiNG ACTivATiNG AND 
iNHiBiTORY ReCePTORS

NKG2D and its Ligands
In innate immune responses mediated by NK-cells, NKG2D 
serves as a primary activating receptor and ligand binding trig-
gers cytotoxicity and cytokine production (167–169). In humans, 
one NKG2D homodimer assembles with four DAP10 adaptor 
proteins that become phosphorylated upon ligand binding and 
activation (170). Ligands from distinctive families, the MHC 
class I polypeptide related sequence A (MICA) and B (MICB) 
and the cytomegalovirus UL16-binding protein (ULBP) family 
bind NKG2D even though they share little sequence similarity 
(171). The expression of NKG2D ligands (NKG2DL) is induced 
or upregulated primarily in tissues of epithelial origin, as a result 
of cellular stresses such as viral infection, malignant transforma-
tion, or classical heat shock (172, 173). All NKG2DLs are not 
functionally equivalent and can enable immune cells to recognize 
of a broad range of different types of infections and indicate 
malignant transformation in different tissues (170, 171, 174).

NKG2D is also expressed by γδ T-cells and provides important 
(co-)stimulatory signals in T-cell-mediated immune responses 
by amplifying T-cell cytokine production, proliferation, and 
cytotoxicity in vitro (52, 98, 169, 175). The NKG2D pathway is 
also relevant in the context of N-BP treatment and the expres-
sion of ULBP1 was found correlated with the sensitivity of 
AML blasts toward TCR-mediated killing by Vγ9Vδ2 T-cells 
(114). Additionally, the results of Wrobel et al. indicated that the 
NKG2D pathway is involved in anti-tumor effects of γδ T-cells 
against melanoma and various epithelial cancers (55).

MiCA-Polymorphism and Soluble  
MiC (sMiC)
The general concept is that cell stress and transformation increase 
the expression of MICA antigens and activate immune cells via 
NKG2D. However, MICA is a highly polymorphic human stress 
antigen and Shafi et  al. showed that MICA coding sequence 
polymorphisms substantially affected RNA and protein expres-
sion (176). Some examined individuals showed better response 
to higher, others to lower MICA expression, and challenging 
the concept of an invariable direct correlation between stress 
molecule abundance and immune cell activation (176, 177).

Tumors also adopt evasion strategies, like shedding of free 
or the exosome form of MICA/MICB. These released molecules 
can inhibit immune effector cells due to interaction with 
NKG2D (178). Märten et al. found elevated levels of sMIC levels 
in sera of patients with pancreatic carcinoma correlated with 
tumor stage. The cytotoxic response of immune toward tumor 
cells was found impaired with in the presence of high sMIC 
levels but restored by neutralization of sMIC (179).

Temozolomide (TMZ) and Other Chemotherapeutics
Glioblastoma multiforme (GBM) is an extremely aggressive 
brain tumor, which is not very sensitive to either classical chemo-
therapy or immunotherapeutic approaches. Lamb et al. showed 
that ex vivo expanded γδ T-cells recognize malignant glioma via 
NKG2DL and lyse glioma cell lines and primary GBM specimens. 
Additionally TMZ, a DNA methylating chemotherapeutic agent 
licensed for GBM therapy, increased NKG2DL also on TMZ-
resistant glioma cells. They also demonstrated that immune effec-
tor cells can be genetically modified to resist the toxicity of TMZ 
without changing their phenotype or their cytotoxicity against 
GBM target cells (180). Similarly, Chitadze et al. investigated the 
NKG2DL system in different GBM cell lines and confirmed that 
TMZ increased the cell surface expression of NKG2DL and sensi-
tizes GBM cells to γδ T-cell mediated lysis. TMZ might therefore 
enhance the potential of adoptive transfer of ex vivo expanded γδ 
T-cells for glioblastoma treatment (181, 182).

Dacarbazine is a cytotoxic drug used for treatment of 
Hodgkin’s lymphoma and melanoma. Although dacarbazine 
does not directly affect immune cells, it triggers the upregulation 
of NKG2DL on tumor cells, leading to NK-cell activation and 
IFN-γ secretion in mice and humans (183). Apart from TMZ and 
dacarbazine, studies suggest that other chemotherapeutics, like 
fluorouracil, doxorubicin, or vincristine sensitize tumor cell lines 
toward a NKG2D-dependent cytotoxic activity of Vγ9Vδ2 T-cell 
(184, 185). This could be a target cell or drug specific phenom-
enon as we were unable to boost γδ T-cell induced lysis of several 
leukemia cell lines with other cytostatic drugs (186).

Bortezomib and Epigenetic Drugs
Niu et al. reported that multiple myeloma (MM) cells can be sen-
sitized toward killing by γδ T-cells and NK-cells using low-dose 
bortezomib. Additionally, bortezomib increases the expression of 
NKG2D and induces apoptosis of MM-cells, but not γδ T-cells 
and NK-cells (187). Treatment with 5-azacytidine, its derivate 
decitabine or histone deacetylase inhibitors may also increase 
the expression of NKG2DL in different types of malignancies 
prompting Bhat et  al. to consider those epigenetic drugs a 
promising approach in γδ T-cell immunotherapy (188). Suzuki 
et al. evaluated possible additive effects of valproic acid (VPA), a 
histone deacetylase inhibitor, on γδ T-cell mediated cytotoxicity 
against bladder cancer cell lines TCCSUP and 253J (189). VPA 
did increase expression of NKG2DL and sensitivity toward 
cytolysis by γδ T-cells for both cancer cell types, whereas ZOL 
pre-treatment was only effective against TCCSUP. 253J cells were 
preferentially engaged via NKG2D-NKG2DL interaction, while 
TCCSUP cells were mainly recognized through the γδ TCR (189). 
Chávez-Blanco et  al. showed that hydralazine in combination 
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with VPA increase the expression of MICA and MICB ligands 
by target cells, as well as NK-cell cytotoxicity via NKG2D. 
Additionally it reduces the shedding of MIC molecules to the 
supernatant (190). Satwani et al. incubated acute lymphoblastic 
leukemia and non-Hodgkin lymphoma cell lines for 24 h with 
10 ng/mL of romidepsin (191). They demonstrated an approxi-
mately 50- to 1,300-fold increase in the number of cells positive 
for the surface expression of MICA/B in these cell lines. They 
further demonstrated a significant increase in NK-cell-mediated 
in vitro cytotoxicity (191).

inhibitory Receptors
The development of immune checkpoint inhibitors targeting 
the cytotoxic T-lymphocyte-associated Protein 4 (CTLA4) or 
programmed cell death protein 1 (PD-1) and its ligand (PD-L1) 
has substantially extended the possibilities of immunotherapy. 
These substances are able to induce enduring remissions in a 
considerable subset of patients with treatment refractory types 
of cancer, for example melanoma, non-small cell lung cancer, 
and Hodgkin’s lymphoma (192). Considering their clinical sig-
nificance, relatively little is known about the role of γδ T-cells 
in immune checkpoint therapy and also regarding the role of 
inhibitory axes for γδ T-cell biology.

Programmed Cell Death Protein 1
Programmed cell death protein 1 is a key inhibitory receptor 
in inflammation, responsible for induction of tolerance, and 
immunosuppression in cancer (193). Following interaction with 
its ligands programmed death-ligand 1/2, the PD-1 receptor 
inhibits TCR and PI3K/AKT signaling and decreases prolifera-
tion and IL-2 release (194). It is interesting that both the PD-Ls 
and the CTLA4 ligands (CD80 and CD86) are members of the B7 
family of proteins and therefore interrelated to BTN3A/CD277. 
Several types of malignancies have a relevant susceptibility to 
therapeutic PD-1/PD-L1 blockade, but it is barely predictable 
which individual patient will respond. The initially assumed 
direct relationship between tumor cell expression of PD-Ls and 
response rate following therapeutic PD-1 blockade might not be 
universally valid and the strength of PD-1 dependent immuno-
suppression is influenced by the topographic organization of the 
tumor microenvironment (195).

An early in vitro study addressed the expression profile and 
functionality of PD-1/PD-L1 in γδ T-cells following stimula-
tion with HMBPP and suggested that the PD-1/PD-L1 axis is 
important for regulation of anti-tumor mechanisms of γδ T-cells 
(196). Later it was found that PD-1 expression is more frequent 
on Vδ1, compared with Vδ2 T-cells (197) and equably distributed 
over several functionally distinctive subsets of Vγ9Vδ2 T-cells 
(44). A report that ex vivo cultivated Vδ2 T-cells depict stable, 
low cell surface expression of PD-1 following adoptive transfer 
(198) might fit the observations that PD-1 is only temporarily 
upregulated following in vitro stimulation as it has been reported 
both for HMBPP and ZOL (196, 198). Vδ2 T-cells derived from 
neonates may behave differently as they depict prolonged PD-1 
expression following activation and function as a regulator of 
tumor necrosis factor-α (TNF-α) production and cell degranula-
tion, both being part of fetal inflammatory response (199).

Programmed cell death protein 1 expression might contribute 
to insufficient expansion of Vγ9Vδ2 T-cells in cancer patients, 
as a diminished response to PAg stimulation was demonstrated 
in bone marrow derived Vγ9Vδ2 T-cells from patients with 
MM. Such cells depicted a significantly increased PD-1 expres-
sion and were located in proximity to PD-L1+ MM-cells and 
myeloid-derived suppressor cells (200). Additional treatment 
with PD-1 antibody resulted in a twofold increase in prolifera-
tive response and an increased mobilization of CD107a follow-
ing ZOL stimulation in  vitro (200). Beside the bone marrow 
of MM patients, PD-1 positive γδ T-cells were also found in 
neuroblastoma infiltrated bone marrow (201).

Other Inhibitory Receptors
Alongside PD-1 several other inhibitory molecules are currently 
investigated regarding their function in limiting anti-tumor 
responses and potential therapeutic prospects (202). This is 
of special interest as there are indications for compensatory 
upregulation of alternative inhibitory receptors during anti-PD-1 
therapy (203). Examples are the B- and T-lymphocyte attenuator 
(BTLA), CTLA4, T-cell immunoglobulin and mucin-domain 
containing-3 (TIM-3), and lymphocyte activation gene-3 (LAG-
3) and their respective ligands.

B- and T-lymphocyte attenuator was suggested to inhibit late 
phases of immune reactions and has structural and functional 
similarities to PD-1 and CTLA4 (204). It is expressed on Vγ9Vδ2 
T-cells and engagement by its ligand, the herpesvirus entry 
mediator, reduced activation, proliferation, and anti-lymphoma 
response (205). Differing from PD-1 expression kinetics (196, 198),  
BTLA is initially downregulated following stimulation with  
PAgs but upregulated upon IL-7 treatment (205).

Compared with PD-1 and BTLA, even less is known concern-
ing the functional implications of CTLA4, LAG-3, and TIM-3 
on γδ T-cells. Melanoma patients with a higher ratio of Vδ1 to 
total γδ T-cells had poorer overall survival and vice versa higher 
frequencies of Vδ2 cells were associated with longer survival 
in a study using CTLA4 inhibitory antibody ipilimumab (16). 
Expression of LAG-3 indicates inhibition of PD-1 + T-cells in the 
tumor tissue and poorer prognosis in follicular lymphoma (206). 
From studies examining distinctive T-cell populations, we know 
that CTLA4 can inhibit T-cell activity via signaling mechanisms 
distinctive from PD-1 (207), but we still lack mechanistic studies 
conclusively demonstrating CTLA4 expression and function for 
Vγ9Vδ2 T-cells. In women with pre-eclampsia γδ T-cells with 
low TIM-3 expression depict a higher IFN-γ production (208) 
and in the context of malaria infection a high TIM-3 level was 
found correlated with reduced pro-inflammatory cytokine pro-
duction (209). Similar to anti-PD-L1 antibodies, the inhibition 
of the TIM-3 ligand galactine-9 that is expressed by γδ T-cells, 
increases tissue infiltration by αβ T-cells in a pancreatic tumor 
model (5).

Summary
The referred data provide interesting prospects to enhance immu-
notherapy by means of modulating the expression of NKG2DL. 
Even though several of the referred effects were shown for 
NK-cells, these strategies might also apply for sensitizing tumor 
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cells toward γδ T-cell dependent cytotoxicity. Negative aspects 
like possible adverse effects on immune cell functionality or 
tumor escape mechanisms like sMIC and MICA-polymorphism 
need to be considered in future studies.

The physiological relevance of the currently known inhibitory 
receptors for γδ T-cells biology remains vague and additional 
observational and experimental studies are required. Based on 
the current evidence we assume that PD-1 is important for regu-
lation of Vγ9Vδ2 T-cell functionality under specific conditions 
only, for example in an immunosuppressive tumor microenvi-
ronment. In inflammation and in the tumor microenvironment, 
γδ T-cells can become inhibited via PD-1 and also inhibit other 
PD-1 +  immune cells via PD-L1 expression (5, 210). However, 
inhibitory effects of PD-1 may be overruled upon strong (co-)
stimulation, for example via the TCR or with IL-2. Beside the local 
tissue distribution of receptors and ligands, expression kinetics 
are important to understand the function of the inhibitory recep-
tors for immune homeostasis. Unfortunately, many studies do not 
distinguish whether tissue infiltrating T-cells are αβ or γδ T-cells 
in the first place. Combination therapy of adoptive transfer or 
in vivo stimulation of γδ T-cells with PD-1, PD-L1, CTLA4, or 
BTLA antibodies therefore seems feasible but the pre-clinical 
rational is currently not well established.

ADCC AND ANTiBODY CONSTRUCTS

Cytotoxicity of γδ T-cells against target cells can be significantly 
enhanced using specific monoclonal antibodies (mAbs) that 
induce ADCC. ADCC of γδ T-cells is thought to depend on 
Fc-γ receptor III (CD16) as it has been demonstrated that anti-
CD19 antibody triggered CD107a, IFN-γ, and TNF-α expression 
is correlated to the amount of CD16+ γδ T-cells in an in vitro 
cytotoxicity assay (211). Furthermore, γδ T-cell mediated ADCC 
increases with higher numbers of CD16+ γδ T-cells (212) and 
was found inhibited with CD16 blocking antibodies (213). CD16 
expression is usually low in unstimulated γδ T-cells, but increases 
following activation, for example with PAgs (213, 214).

B-Cell Malignancies
Rituximab
Several lymphoma and B-cell lineage leukemia subtypes were 
studied using stimulated γδ T-cells in combination with mono-
clonal anti-CD20 antibodies (212–216). Tokuyama et al. found 
RTX to increase the killing of several lymphoma cell lines and 
to improve ADCC of γδ T-cells against CLL and autologous fol-
licular lymphoma cells (213). Furthermore, BrHPP stimulated γδ 
T-cells demonstrated stronger CD107a expression and increased 
ADCC toward individual B-cell lymphoma cell lines and patient 
CLL cells in combination with anti-CD20 antibodies (214). One 
single clinical phase I/IIa study used RTX plus BrHPP and IL-2 
for in  vivo stimulation of γδ T-cells in patients with relapsed 
follicular lymphoma (89). Altogether, 45 patients were treated 
according to protocol and the treatment was generally well 
tolerated, with low grade pyrexia being the most common side 
effect (89). Despite the 45% overall response rate (26% complete 
response) (89), it seems like development of BrHPP containing 
therapies is no longer pursued by the company in charge.

Second Generation Anti-CD20 Antibodies  
and Anti-CD52
The newer anti-CD20 antibodies ofatumumab and obinutu-
zumab were also tested regarding the efficacy inducing ADCC 
in connection with γδ T-cells (215). Obinutuzumab is an Fc 
engineered type II monoclonal antibody (217) and causes an 
increased secretion of perforin and IFN-γ compared to RTX 
and ofatumumab. Accordingly, the highest ADCC against B-cell 
lymphoma cell lines and primary follicular lymphoma cells was 
found for obinutuzumab (215). Similar to anti-CD20 antibodies, 
Gertner-Dardenne found alemtuzumab, an anti-CD52 antibody, 
to increase γδ T-cell dependent ADCC against lymphoma cell 
lines (214).

Solid Tumors
Breast Cancer
Two groups investigated whether the human epidermal growth 
factor receptor 2 (HER2/neu) specific antibody trastuzumab 
enhances γδ T-cell dependent ADCC toward breast cancer cell 
lines in  vitro (63, 213). The addition of trastuzumab greatly 
increased lysis of HER2/neu overexpressing cell lines, whereas 
there was no change in a HER2/neu negative cell line (213). The 
extent of ADCC was increased with higher density of HER2/
neu expression. Anti-tumor activity was confirmed in an animal 
model with SCID Beige mice. Here, the tumor growth was more 
efficiently inhibited by a combination treatment with γδ T-cells 
and trastuzumab compared to treatment with trastuzumab or γδ 
T-cells alone (63).

Neuroblastoma and Ewing’s Sarcoma
Both in neuroblastoma and in Ewing’s sarcoma, the disialo-
ganglioside specific antibody ch14.18/CHO increased γδ T-cell 
mediated ADCC in vitro (124, 218). This finding was confirmed 
in an advanced immunodeficient mouse model, where ex vivo 
stimulated and adoptively transferred γδ T-cells with simultane-
ous administration of ch14.18/CHO antibody impaired tumor 
growth more efficiently than single antibody or sole γδ T-cells 
treatment (124).

Antibody Constructs and Nanobodies
Antibody constructs have been studied in both lymphoma and 
solid tumor models. Seidel et  al. used the Fc modified CD19 
antibody 4G7SDIE as a backbone for bispecific CD19-CD16 
and CD19-CD3 antibody constructs (211). Although no direct 
comparison between unaltered antibodies and the antibody 
constructs was made, the constructs proofed active in inducing 
cytotoxic reactions by γδ T-cells. Schiller et  al. went one step 
further and engineered a so called “single chain triplebody,” 
called SPM-1, that consists of three single chain antibody frag-
ments (CD19-CD19-CD16) (219). Indeed, SPM-1 induced a 
higher lysis compared to 4G7SDIE. A comparable approach is a 
recombinant construct consisting of a CD20 single-chain frag-
ment variable (scFV) linked to MICA or ULBP2 which enhances 
cytotoxicity of stimulated γδ T-cells against CD20+ lymphoma 
cell lines and primary CLL cells via NKG2D (220). Oberg 
et  al. designed two bispecific antibodies that bind either CD3 
or the Vγ9 TCR-chain on γδ T-cells and Her2/neu expressed 
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by pancreatic adenocarcinoma cells (221). Both antibodies 
enhanced γδ T-cell mediated cytotoxicity and adoptive transfer 
of γδ T-cells combined with [(HER2)2xVγ9] antibody therapy 
inhibited growth of pancreatic cancer in a SCID Beige mouse 
model (221). Furthermore, Hoh et al. demonstrated improved 
anti-tumor effects against hepatocellular carcinoma and hepato-
blastoma cells with MT110, an epithelial cell adhesion molecule 
EpCAM/CD3 bispecific T-cell engager antibody, compared to 
the anti-EpCAM antibody adecatumumab (222). Zhang et  al. 
utilized a bifunctional fusion protein (anti-CD3 single-scFV/-
NKG2D) that binds NKG2DL+ tumor cells and recruits and 
stimulates T-cells via CD3 (223). This fusion protein was able 
to stimulate IFN-γ production by T-cells, increased cytotoxic 
reaction against NKG2DL+ tumor cells in vitro and promoted 
survival in a murine lymphoma model (223).

Another innovative approach is the use of so called nanobod-
ies, a single heavy chain fragment. They bind highly selective 
to the Vγ9Vδ2 chain and elicited either inhibiting or activating 
reactions from γδ T-cells (224, 225). Although no data on cyto-
toxic features against tumor cells are available, it seems to be a 
promising approach to a selective modulation of Vγ9Vδ2 T-cell 
activity.

Summary
Monoclonal antibodies combine high target specificity with a 
favorable toxicity profile, but often depict limited activity when 
used as single agents. Therefore, combination with γδ T-cells 
is a promising concept for cancer immunotherapy. There are 
many mAbs for various hematological and non-hematological 
malignancies in clinical use already and more are currently in 
pre-clinical or early clinical development. Several such mAbs 
are promising combination partners as they show a uniformly 
strong enhancement in γδ T-cell mediated cytotoxicity. However, 
results of the only clinical study in this regard, which used RTX 
plus in vivo stimulation of γδ T-cells fell short of expectations. 
With the advent of new and Fc optimized antibodies and more 
specifically stimulated γδ T-cells, a higher effectivity might be 
achievable.

COUNTeRACTiNG PRO-TUMOR eFFeCTS

The local interplay of malignant, immune and stroma cells via 
direct cellular interactions and soluble factors characterizes the 
tumor microenvironment. Under these conditions, infiltrating 
immune cells can be suppressed and therapeutic activation 
may even unfold unintended tumor-promoting effects. Beside 
macrophages and regulatory T-cells (70, 96), IL-17-producing 

γδ T-cells (γδ T17 cells) are often suggested as important local 
mediators of tumor progression as repetitively demonstrated 
in animal models (226–228). It is possible to induce IL-17 
production in human cells γδ T-cells in vitro (229) and γδ T17 
cells were described in the human tumor microenvironments 
(7, 230) where they have been found inversely correlated with 
survival and associated with increased stage in breast (6) and 
colorectal cancer (7). It is important to note that not all studies 
differentiated between Vδ2 and non-Vδ2 cells or other γδ T-cell 
subclasses but it seems likely that both, Vδ2 but mainly the non-
Vδ2 cells produce IL-17 (7). Direct proof is lacking, but it has 
been suggested that γδ T-cells can be changed toward an IL-17 
producing phenotype by means of the tumor microenvironment 
(229,  231). Beside IL-17, vascular endothelial growth factor 
(VEGF) and granulocyte-macrophage colony-stimulating fac-
tor are predominately recognized as pro-tumor factors in the 
microenvironment, but it may not be reasonable to attribute 
an exclusive pro- or anti-tumor effect to any signal protein, 
cytokine, cell type or receptor-ligand interaction. For example 
VEGF facilitates neo-angiogenesis and immunosuppressive 
effects (232, 233) but also promotes tissue trafficking of different 
leukocytes (234, 235). The use of immunostimulatory drugs can 
induce unexpected changes in VEGF levels, as we observed an 
increase in VEGF serum levels following treatment with ZOL 
plus low-dose IL-2 in cancer patients (72). Pro-angiogenic fac-
tors like VEGF play an important pro-tumor role and predict 
poor clinical response to certain types of immunotherapy (72, 
236). We recently described that following stimulation with 
IL-2 local lymphocyte-monocyte interactions regulate VEGF 
homeostasis via release of VEGF and soluble VEGF recep-
tor 1 in a time-dependent manner in  vitro (237). Potential 
pro-tumor factors and cells could be additionally targeted in 
combination with γδ T-cell therapy, for example via VEGF or 
IL-17 antagonists. VEGF antibodies are already widely used as 
cancer therapeutics making clinical studies investigating such 
a combination therapy feasible. The modest clinical effects of 
anti-angiogenic strategies call for a more fundamental analysis 
of VEGF signaling in the tumor microenvironment and the 
contribution of immune cells to these processes. The same also 
applies for other factors like IL-17.

Finally, both pro- and anti-tumor effects are mediated 
locally, as a consequence the in vivo efficacy of Vγ9Vδ2 T-cells 
will depend on their ability to infiltrate into the relevant tis-
sues. Unfortunately we have little information concerning the 
capacity of activated γδ T-cells to reach the tumor in humans. 
One single clinical study demonstrated that autologous, ex vivo 
stimulated γδ T-cells predominately migrate to lung, liver and 
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spleen and could also be detected in individual tumor sites 
(84). Whether or not an effector cell is capable of tissue hom-
ing might be predicted by expression of chemokine receptors, 
selectins and other cell adhesion molecules. Expression of these 
molecules however depends on γδ T-cells subpopulation and 
differentiation status (43, 238, 239).

CONCLUSiON

The results from pre-clinical research and individual clinical 
responses to γδ T-cell therapy encourage to carry on study-
ing γδ-T-cell biology and aim to improve γδ T-cell related 
anti-cancer therapies. The question is, how the manifold 
observations on cellular mechanisms can help to establish 
better anti-cancer strategies and which drugs have an actual 
translational perspective. An overview on current γδ T-cell 
dependent therapeutic strategies and immune cell interactions 
in the tumor microenvironment is given in Figure 1. The use 
of mAb in combination with activated γδ T-cells is strikingly 
effective in vitro. Still the results from in vivo experiments did 
not always keep up with such expectations and the results of the 
only clinical trial did not proof superior to mAb monotherapy. 
We will need a thorough understanding of Vγ9Vδ2 T-cell 
subpopulations and their functional differences and must learn 
how to influence differentiation and prevent exhaustion. Our 

knowledge regarding the migration and tissue infiltration of 
Vγ9Vδ2 T-cells in vivo is still sparse, as is the understanding 
of pro- and anti-tumor mechanisms and cellular interactions 
in the tumor microenvironment. The establishment of better 
models could help deciphering those local and time-dependent 
processes. While the relevance of metabolic changes for immune 
and cancer cell function is now increasingly acknowledged, we 
need to learn how immune cells detect and respond to such 
changes. Reactivity to PAg by Vγ9Vδ2 T-cell may serve as an 
example, but we should be able to target even more specific 
tumor characteristics with cellular or combination therapy in 
the future.
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