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Abstract

The use of human tissue to validate putative analgesic targets identified in rodents is a promising strategy for
improving the historically poor translational record of preclinical pain research. We recently demonstrated that in
mouse and human sensory neurons, agonists for metabotropic glutamate receptors 2 and 3 (mGluR2/3) reduce
membrane hyperexcitability produced by the inflammatory mediator prostaglandin E2 (PGE2). Previous rodent
studies indicate that mGluR2/3 can also reduce peripheral sensitization by suppressing inflammation-induced
sensitization of TRPV1. Whether this observation similarly translates to human sensory neurons has not yet been
tested. We found that activation of mGluR2/3 with the agonist APDC suppressed PGE2-induced sensitization of
TRPV1 in mouse, but not human, sensory neurons. We also evaluated sensory neuron expression of the gene
transcripts for mGluR2 (Grm2), mGluR3 (Grm3), and TRPV1 (Trpv1). The majority of Trpv1� mouse and human
sensory neurons expressed Grm2 and/or Grm3, and in both mice and humans, Grm2 was expressed in a greater
percentage of sensory neurons than Grm3. Although we demonstrated a functional difference in the modulation
of TRPV1 sensitization by mGluR2/3 activation between mouse and human, there were no species differences in
the gene transcript colocalization of mGluR2 or mGluR3 with TRPV1 that might explain this functional difference.
Taken together with our previous work, these results suggest that mGluR2/3 activation suppresses only some
aspects of human sensory neuron sensitization caused by PGE2. These differences have implications for potential
healthy human voluntary studies or clinical trials evaluating the analgesic efficacy of mGluR2/3 agonists or
positive allosteric modulators.
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Significance Statement

Species differences between rodents and humans have been proposed to contribute to the low success
rate of analgesic drug development. This work utilizes primary human neurons to assess the translational
potential of metabotropic glutamate receptor 2/3 (mGluR2/3), which have been identified as modulators of
pain in a variety of rodent models. In mouse sensory neurons, we found that activation of mGluR2/3 blocked
inflammation-induced sensitization of the nonselective cation channel TRPV1. In contrast, this effect was
not observed in human sensory neurons. These results indicate that mechanisms of peripheral analgesia are
not entirely conserved across species. More broadly, our findings demonstrate that using human tissue to
validate analgesic targets identified in rodents is an important step in the translational research process.
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Introduction
Species differences between rodents and humans have

been proposed to contribute to the low success rate of
analgesic drug development (Le Bars et al., 2001; White-
side and Kennedy, 2010; Woolf, 2010; Mao, 2012). In
preclinical research, putative analgesics are often identi-
fied and exclusively evaluated in rodent tissues and/or
pain models before entering clinical trials, in which such
drugs seldom demonstrate efficacy (Kissin, 2010; Woolf,
2010; Moore et al., 2013). Therefore, using primary human
neurons to validate preclinical rodent findings is an appeal-
ing strategy to improve the translational success of basic
pain research findings. With this goal in mind, we and others
have established approaches to obtain and use human sen-
sory neurons to better understand human nociceptor phys-
iology (Baumann et al., 1996; Anand et al., 2006; Davidson
et al., 2014; Han et al., 2015; Zhang et al., 2015; Sapio et al.,
2016; Valtcheva et al., 2016; Rostock et al., 2017).

The group II metabotropic glutamate receptors (mGluRs)
have recently been identified as putative targets for pain
relief in rodents (Sharpe et al., 2002; Simmons et al., 2002;
Yang and Gereau, 2002, 2003; Jones et al., 2005; Du
et al., 2008; Osikowicz et al., 2008; Carlton et al., 2009,
2011; Zammataro et al., 2011; Asseri et al., 2015; Kolber,
2015; Chiechio, 2016; Johnson et al., 2017). mGluR2 and
mGluR3 are seven transmembrane domain Gi-protein
coupled receptors that decrease cAMP formation, acti-
vate potassium channels, and inhibit voltage-gated cal-
cium channels to reduce neuronal excitability and
synaptic transmission (Conn and Pin, 1997; Johnson and
Schoepp, 2008). Although group II mGluRs are expressed
at each level of the pain neuraxis (Petralia et al., 1996;
Tang and Sim, 1999; Carlton et al., 2001; Varney and
Gereau, 2002; Carlton and Hargett, 2007; Boye Larsen
et al., 2014; Kolber, 2015; Chiechio, 2016; Davidson et al.,
2016), several lines of evidence suggest that activation of

mGlu2 and mGlu3 receptors in peripheral sensory neu-
rons is sufficient for analgesia. For instance, in rodent
inflammatory pain models, pharmacological activation of
mGluR2/3 expressed on peripheral primary afferents can
attenuate pain-like behavior by suppressing sensory neu-
ron sensitization in response to algogens and inflamma-
tory mediators (Yang and Gereau, 2002; Du et al., 2008;
Carlton et al., 2011, 2009; Asseri et al., 2015; Davidson et al.,
2016). Conversely, pharmacological inhibition of peripheral
mGluR2/3 can prolong pain-like behavior and increase
sensory neuron activity, suggesting that endogenous ac-
tivation of mGluR2/3 is analgesic (Yang and Gereau,
2003; Carlton et al., 2011). Given the centrally mediated
adverse effects of existing analgesics such as opioid
addiction and abuse, peripheral analgesic targets are of
particular interest.

Our recent studies on cultured human dorsal root gan-
glia (DRG) neurons suggest peripheral mGlu2/3 receptors
may be clinically relevant analgesic targets. We demon-
strated both anatomical and functional expression of
group II mGluRs in human DRG (Davidson et al., 2016).
Importantly, as in mice, mGluR2/3 activation blocked hu-
man nociceptor membrane hyperexcitability produced by
the inflammatory mediator prostaglandin E2 (PGE2), indi-
cating that a mechanism for peripheral analgesia may be
conserved across species (Davidson et al., 2016). Rodent
studies suggest that mGlu2/3 receptors expressed on
sensory neuron peripheral terminals can also reduce sen-
sory neuron sensitization by suppressing sensitization of
TRPV1 (Yang and Gereau, 2002; Du et al., 2008; Carlton
et al., 2009, 2011), a nonselective cation channel that
detects noxious stimuli and is critical for inflammation-
induced peripheral sensitization (Caterina et al., 1997,
2000; Davis et al., 2000; Moriyama et al., 2005). The
present study tested whether the same mechanism is
conserved in humans. We used sensory neurons obtained
from organ donors without chronic pain to determine
whether mGluR2/3 activation blocks inflammation-induced
sensitization of TRPV1 in human neurons. We demon-
strate that group II mGluR activation suppresses PGE2-
induced sensitization of TRPV1 calcium responses in
mouse, but not human, sensory neurons. Interestingly,
this functional difference was not explained by species
differences in coexpression of the TRPV1 gene transcript
with mGlu2 or mGlu3 receptor gene transcripts.

Materials and Methods
Animals

All experiments were performed in compliance with
protocols approved by the Animal Studies Committee of
Washington University in St. Louis (Protocol nos. 20150246
and 20160097). Experiments were conducted on 5–8-wk-
old C57BL/6J male and female mice (Jackson Laboratory,
RRID:IMSR_JAX000664). Mice were housed in an animal
facility with a 12-h light-dark cycle and given food and
water ad libitum.

Donors
Human tissue was obtained in compliance with proce-

dures approved by Mid-America Transplant (St. Louis,
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MO), and the Human Research Protection Office at Wash-
ington University in St. Louis provided an International
Review Board waiver. Human DRG were obtained from
organ donors with full legal consent for use of tissue for
research. Only donors without a history of chronic pain
were used in this study (Table 1).

Mouse DRG cultures
For each tissue preparation, two age- and sex-matched

mice were killed by live decapitation, and cervical through
lumbar DRG were removed and pooled together. DRG
were incubated in papain (45 U, Worthington) for 20 min at
37°C, 5% CO2. DRG were then rinsed and incubated in
collagenase (1.5 mg/mL, Sigma-Aldrich) for 20 min. Both
enzyme solutions were made up in Ca2�- and Mg2�-free
Hanks’ buffered salt solution (Corning) with 10 mM Hepes
(Sigma-Aldrich). DRG were manually triturated with fire-
polished Pasteur pipettes (VWR) to dissociate neurons,
passed through a 40-�m filter (VWR), and plated onto
poly-D-lysine/collagen (Sigma-Aldrich)-coated 12-mm glass
coverslips (Thermo Fisher Scientific). Neurons were main-
tained in culture for 2 d in Neurobasal A medium (Invitro-
gen) supplemented with 100 U/mL penicillin/streptomycin
(Corning), 2 mM GlutaMAX (Life Technologies), 2% B27
(Gibco), and 5% fetal bovine serum (Gibco).

Human DRG cultures
Human DRG from the first through fifth lumbar verte-

brae were surgically extracted and cultured as described
in detail previously (Valtcheva et al., 2016). Briefly, after
extraction, fat and dura were trimmed away from the
ganglia. DRG were minced, incubated in papain for 1 h,
rinsed, and incubated in collagenase for 1 h. Both enzyme
solutions were made up in an N-methyl-D-glucamine arti-
ficial cerebrospinal fluid solution (Sigma-Aldrich). DRG
were manually triturated with fire-polished Pasteur pi-
pettes to dissociate neurons, passed through a 100-�m
filter (VWR), and plated onto poly-D-lysine/collagen–coated
12-mm glass coverslips. Neurons were maintained in cul-
ture for up to 9 d in the medium described above (mean
time in culture: 6 d). Every 3 d, half of the culture medium
was replaced with fresh media to ensure neuronal health.

Calcium imaging
Calcium imaging experiments were performed on

mouse and human sensory neurons on days in vitro (DIV)
2 and 3–9, respectively. Acutely after culturing human

DRG neurons, satellite glial encased neurons, and thus
accurate physiology experiments could not be performed
until the glial peeled off and exposed the neuron plasma
membrane, which occurred after 3–4 DIV as reported
previously (Valtcheva et al., 2016). Mouse calcium imag-
ing experiments were therefore initially performed on DIV
4. Strikingly, we found that only 2% of mouse DRG neu-
rons responded to 100 nM capsaicin on DIV 4, which we
interpreted as a functional downregulation of TRPV1. There-
fore, we chose to perform mouse calcium imaging experi-
ments on DIV 2 such that recordings were not performed
acutely after culturing neurons, yet were completed be-
fore TRPV1 functional downregulation.

Cultured neurons from mice and humans were incu-
bated with 3 �g/mL of the ratiometric calcium indicator
Fura-2 AM (Life Technologies) for 45 min. Neurons were
then incubated in external solution for 15 min to allow for
de-esterification of Fura-2 AM. External solution con-
sisted of (in mM): 130 NaCl, 5 KCl, 2 CaCl2, 1 MgCl2, 30
glucose, and 10 Hepes. For recordings, coverslips were
placed into a chamber and perfused with room tempera-
ture external solution. Cells were viewed under an in-
verted microscope (Olympus Optical), and fluorescent
images were acquired every 2 s using a Hamamatsu
ORCA camera (Hamamatsu). SimplePCI Software (HCIm-
age, Hamamatsu) was used to identify regions of interest
surrounding Fura-2 AM–loaded neurons a priori and to
record fluorescence emission at alternating excitation
wavelengths of 357 and 380 nm.

The experimental protocol entailed a 2-min baseline in
external solution followed by a 20-s bath application of
100 nM capsaicin (Sigma-Aldrich), a 3-min wash with
external solution, then a treatment condition entailing ap-
plication of either 7 min of vehicle (external solution), 6 min
of 1 �M prostaglandin E2 (PGE2, Tocris), or 1 min of 10 �M

(2R, 4R)-4-aminopyrrolidine-2,4-dicarboxylate (APDC,
Tocris) alone followed by 6 min of 10 �M APDC plus 1 �M

PGE2. Immediately after treatment, a second pulse of 100
nM capsaicin was bath-applied, neurons were washed for
6 min with external solution, and a 10-s pulse of 50 mM

KCl was applied to test for cell viability. At least 2 treat-
ment conditions were tested for a given mouse or donor
tissue preparation. All drugs were diluted in external so-
lution and bath-applied at a rate of 2 mL/min. Stock
solutions of 2.8 mM PGE2 and 10 mM APDC were made up
in DMSO and water, respectively. Peak calcium responses
were calculated by dividing the absolute increase in Fura-2
AM signal after stimulus application by the proceeding 30-s
baseline Fura-2 AM signal. The response threshold to
capsaicin was defined as an increase of �10% from
baseline signal. Cells that did not respond to high KCl
were excluded from calcium imaging analysis.

Fluorescent in situ hybridization (RNAscope)
At the conclusion of mouse and human calcium imag-

ing experiments, neurons were fixed on ice with 4% para-
formaldehyde/4% sucrose for 15 min and washed with
PBS. Fluorescent in situ hybridization (FISH) studies were
performed according to the protocol for cultured adherent
cells using the RNAscope Multiplex Fluorescent Assay

Table 1. Donor information and tissue uses

Donor Age, y Sex Race
Cause

of death Tissue uses
1 21 Male White Stroke Ca2� imaging
2 55 Female White Stroke Ca2� imaging, FISH
3 22 Male Black Anoxia Ca2� imaging
4 44 Female White Stroke Ca2� imaging
5 12 Female White Anoxia Ca2� imaging, FISH
6 26 Male White Head trauma Ca2� imaging, FISH
7 18 Female White Head trauma Ca2� imaging, FISH
8 18 Male White Head trauma Ca2� imaging, FISH

y, year; FISH, fluorescent in situ hybridization.
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(Advanced Cell Diagnostics) with minor modifications. Af-
ter dehydration and rehydration of cells in ethanol, glass
coverslips were mounted onto glass slides using ethyl
cyanoacrylate. Neurons were treated with protease III
diluted 1:10 (mouse) or 1:5–7.5 (human) at room temper-
ature for 10 min. Species-specific target probes for Trpv1,
Grm2, and Grm3 (Table 2) were combined, applied to
neurons, and allowed to hybridize for 2 h at 40°C in a
humidified oven. A series of incubations were then per-
formed to amplify hybridized probe signal and label target
probes with the assigned fluorescence detection channel
(C1–C3). Coverslips were counterstained with DAPI using
ProLong Gold Antifade Mountant (Invitrogen). Neurons
were imaged at 40� using a Leica SPE confocal micro-
scope (Leica Microsystems). Fields of interest were iden-
tified in the DAPI channel. Fiji (Image J, NIH, RRID: SCR:
002285) software was used to calculate neuron diameter
and manually quantify single RNA molecule signals. In the
RNAscope assay, each punctate dot represents a single
target RNA molecule. However, to reduce the likelihood of
false positives, mouse and human neurons were defined
as positive for a given RNA target if they had �4 or �2
puncta, respectively, based on the range in neuron puncta
density observed for each species. Although we used the
same mouse and human tissues used in both assays
(Table 1), neuron populations analyzed using FISH were
not identical to those analyzed via calcium imaging.

Statistical analyses
The experimenter was blind to treatment condition and

gene of interest throughout analysis of calcium imaging
and in situ hybridization data, respectively. Microsoft Ex-
cel, GraphPad Prism, R, and the R package Ime4 (RRID:
SCR_015654) were used for data organization and
statistical analyses (Bates et al., 2014; Team, 2017). Cal-
cium imaging data were analyzed using (1) unpaired t
tests and Bonferroni correction for multiple comparisons
and (2) linear mixed-effects model (LMM) analyses. LMM
analyses controlled for donor as a random effect and
donor sex, donor age, and DIV as fixed effects. As the
primary objective of the present study was to make spe-
cies comparisons, we were not sufficiently powered to
evaluate the effects of mouse age or sex on calcium
imaging outcomes. Species comparisons of the percent-
age of capsaicin-responsive neurons and gene transcript
expression were made using �2 tests and Bonferroni cor-
rection for multiple comparisons, when appropriate. When
describing and discussing species differences in gene tran-
script expression, we default to mouse mRNA nomencla-
ture. Superscript letters listed with p-values correspond to
the statistical tests shown in Table 3.

Results
mGluR2/3 suppress PGE2-induced TRPV1
sensitization in mouse, but not human, sensory
neurons

TRPV1 is sensitized by the cAMP/PKA pathway, which
is stimulated by inflammatory mediators such as PGE2

(Lopshire and Nicol, 1998; De Petrocellis et al., 2001;
Bhave et al., 2002; Mohapatra and Nau, 2003; Meves,
2006). In contrast, group II mGlu receptor activation in-
hibits adenylyl cyclase and subsequent cAMP production
(Conn and Pin, 1997; Johnson and Schoepp, 2008). To
determine whether mGluR2/3 activation blocks TRPV1
sensitization, we quantified capsaicin-induced calcium re-
sponses of mouse and human sensory neurons. Two 20-s
pulses of 100 nM capsaicin were bath-applied to DRG
neurons, and the degree of TRPV1 sensitization was de-
fined as the response ratio of the peak of the second
capsaicin response divided by the peak of the first cap-

Table 2. RNAscope probes used for FISH

Target Catalog no.
Mm-Trpv1 313331
Mm-Grm2-C3 317831-C3
Mm-Grm3-C2 317821-C2
Positive Control Probe-Mm 320881
Hs-TRPV1 415381
Hs-GRM2-C3 589771-C3
Hs-GRM3-C2 500181-C2
Positive Control Probe-Hs 320861
Negative Control Probe 320871

Mm, mus musculus; Hs, homo sapiens; C2, channel 2; C3, channel 3.

Table 3. Statistical analysis

Location Data Structure Type of Test Comparison 95% confidence interval
a Non-normally distributed t test Vehicle vs. PGE2 –0.6862 to –0.2728
b Non-normally distributed t test PGE2 vs. PGE2 � APDC 0.1317 to 0.618

Non-normally distributed t test Vehicle vs. PGE2 � APDC –0.2736 to 0.06428
c Non-normally distributed t test Vehicle vs. PGE2 –0.5774 to –0.2563
d Non-normally distributed t test PGE2 vs. PGE2 � APDC –0.4204 to 0.2717

Non-normally distributed Vehicle vs. PGE2 � APDC –0.7953 to –0.1871
e Non-normally distributed Regression Vehicle vs. PGE2 vs. PGE2 � APDC –0.1178 to 0.1284
f Categorical Chi-squareda 0.5621 to 0.8235
g Mouse: non-normally distributed t test Mouse vs. human –15.17 to –13.08

Human: normally distributed
h Categorical Chi-squareda 2.653 to 4.769
i Categorical Chi-squareda 1.846 to 3.855
j Categorical Chi-squareda 1.047 to 1.967

The D’Agnostino and Pearson normality test was performed, when applicable.
aOdds ratio confidence interval reported.
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saicin response. Under vehicle conditions, TRPV1 desen-
sitization is observed in both mouse and human DRG
neurons in the form of reduced calcium responses to
subsequent capsaicin pulses (Fig. 1A, B). In mouse sen-
sory neurons, bath application of PGE2 between capsai-
cin pulses significantly increased the capsaicin response

ratio compared with vehicle (Fig. 1A, Ca). Coapplication of
the selective group II mGluR agonist APDC with PGE2

significantly reduced the response ratio compared with
PGE2 alone (Fig. 1A, Cb). As an additional measure of
TRPV1 sensitization, we quantified the total calcium load,
or area under the curve (AUC) of a subset of capsaicin

Figure 1. mGlu2/3 receptor activation blocks PGE2-induced TRPV1 sensitization in mouse, but not human, sensory neurons.
Representative traces of 100 nM capsaicin (Cap)-induced calcium responses in mouse (A) and human (B) DRG neurons in response
to vehicle (left), 1 �M PGE2 (middle), or 1 �M PGE2 � 10 �M APDC (right). Experiments concluded with a pulse of 50 mM KCl to
determine cell viability. The degree of TRPV1 sensitization is expressed as a response ratio calculated by dividing the peak amplitude
of Cap 2 by the peak amplitude of Cap 1 (A, dashed lines). C, In mouse DRG neurons, PGE2 significantly increased the capsaicin
response ratio compared with vehicle (���� p � 2.1 � 10–5; n � 143–150 neurons, n � 4 preps/condition). Coapplication of APDC
with PGE2 blocked this effect and significantly reduced the response ratio compared to PGE2 alone (�� p � 0.0081; n � 89–150
neurons, n � 3–4 preps/condition). D, PGE2 also significantly increased the capsaicin response ratio of human DRG neurons
compared with vehicle (���� p � 3.0 � 10–6; n � 59–71 neurons, n � 5–6 donors/condition); whereas coapplication of APDC did not
suppress PGE2-induced increases in the capsaicin response ratio (p � 1, n � 59–64 neurons, n � 6 donors/condition), which
remained significantly greater than vehicle (�� p � 0.0053, n � 64–71 neurons, n � 5–6 donors/condition). Capsaicin response ratios
were compared using unpaired t tests and a Bonferroni correction for multiple comparisons. Data are presented as mean � SEM.
E, Compared with those of mice, a greater percentage of human DRG neurons responded to 100 nM capsaicin (�2 � 15.45,
���� p � 8.5 � 10–5, mouse: 405/1761 neurons, n � 4 preps, human: 223/731 neurons, n � 8 donors). F, LMM regression correction
for impact of individual donor, as well as donor age and sex, did not alter human capsaicin response ratio analysis statistical outcomes
compared with t tests alone.
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responses. Consistent with the effects on capsaicin peak
response ratios, application of PGE2 significantly increased
AUC compared with vehicle, and coapplication of APDC
with PGE2 significantly reduced this effect (data not
shown). These findings confirm our previously published
work in cultured sensory neurons obtained from CD-1
mice in which we also demonstrated that suppression of
PGE2-induced TRPV1 sensitization by APDC is blocked
by the group II mGluR antagonist LY341495, and thus is
attributable to mGlu2/3 receptor activation (Yang and
Gereau, 2002).

In human sensory neurons, we found that although
application of PGE2 between capsaicin pulses signifi-
cantly increased the capsaicin response ratio compared
with vehicle, the response ratio after coapplication of
APDC with PGE2 did not significantly differ from applica-
tion of PGE2 alone (Fig. 1B, Dc,d). We observed similar
results for total calcium load of capsaicin responses (data
not shown). Unlike rodents used in preclinical studies,
human organ donors display wide demographic and ge-
netic diversity. To correct for between-donor heterogene-
ity, we performed a LMM regression. As the effect of age
and sex on human sensory neuron physiology is of broad
interest to pain researchers, these parameters were in-
cluded as covariates in our LMM regression. Interestingly,
we found that correcting for impact of individual donor, as
well as donor age and sex, did not alter our capsaicin
response ratio outcome (Fig. 1F). Moreover, LMM regres-
sion analysis indicated that the day in vitro at which
calcium imaging experiments were performed did not
influence capsaicin response ratios for any of the condi-
tions tested (t � 0.105, p � 0.9182e). Taken together,
these results demonstrate that mGluR2/3 activation sup-
presses PGE2-induced TRPV1 sensitization in mouse, but
not human, sensory neurons.

We were also interested in whether the same percent-
age of mouse and human sensory neurons respond to
capsaicin. A neuron was defined as capsaicin responsive
if it responded to either the first or second pulse of
capsaicin. Notably, compared with vehicle conditions,
application of PGE2 did not increase the number of neu-
rons that did not respond to the first pulse of capsaicin
but did respond to the second pulse of capsaicin in either
species. Therefore, data were pooled across treatment
conditions for calculations of percentage of capsaicin-
responsive neurons. Of the total number of sensory neu-
rons evaluated in calcium imaging studies, 23.0% of
mouse sensory neurons versus 30.5% of human sensory
neurons responded to 100 nM capsaicin, indicating that
human sensory neurons are modestly more capsaicin
responsive (Fig. 1Ef). These results are consistent with our
initial observations that human sensory neurons exhibit
greater chemosensitivity to algogens and pruritogens
compared with rodents (Davidson et al., 2014). In the
present study, we chose to use 100 nM capsaicin to test
for modulation of TRPV1 desensitization. Previous studies
using higher concentrations of capsaicin (200 nM to 1 �M)
indicate that capsaicin elicits calcium responses in a
greater proportion of mouse DRG and trigeminal neurons,
ranging from 30% to 70% (Davis et al., 2000; Elitt et al.,

2008; Barabas and Stucky, 2013; Ren et al., 2014;
Valtcheva et al., 2015; Mohammed et al., 2017).

Mouse and human sensory neurons share similar
Trpv1, Grm2, and Grm3 expression and coexpression
profiles

We hypothesized that the observed species differences
in mGluR2/3 functional modulation of TRPV1 could be
due to reduced coexpression between TRPV1 and mGlu2
and/or mGlu3 receptors in human versus mouse sensory
neurons. We previously demonstrated mGluR2 immuno-
reactivity in human sensory neurons (Davidson et al.,
2016). However, because of the lack of highly selective
mGluR3 antibodies suitable for immunohistochemistry
(García-Bea et al., 2016), we assessed expression of
TRPV1, mGluR2, and mGluR3 mRNA transcripts (referred
to as Trpv1, Grm2, and Grm3, respectively) in dissociated
sensory neurons using RNAscope FISH. The mouse DRG
neurons evaluated in FISH studies ranged from 10.0 to
35.5 �m in diameter, with a mean diameter of 17.7 � 0.2
�m for the total population and 20.3 � 0.4 �m for Trpv1�

neurons (Fig. 2A). In comparison, human DRG neurons
ranged from 10.0 to 56.3 �m in diameter, with a mean
diameter of 31.9 � 0.5 �m for the total population and
33.9 � 0.9 �m for TRPV1� neurons (Fig. 2B). The mean
diameter of the total human DRG neuron population was
significantly larger than that of mice (Fig. 2Cg). Our find-
ings closely resemble the size distribution of mouse DRG
neurons reported previously (Dirajlal et al., 2003; Barabas
et al., 2012; O’Brien et al., 2015). Previous human studies
show that the average sensory neuron diameter in unfixed
tissues is between �40 and 60 �m (Anand et al., 2006;
Davidson et al., 2014; Xu et al., 2015; Han et al., 2016;
Zhang et al., 2017), further highlighting the species differ-
ence in sensory neuron size.

With respect to mRNA expression, of the total popula-
tion of mouse DRG neurons, 37.2% of neurons were
positive for the Trpv1 gene transcript, 61.5% were posi-
tive for Grm2, and 30.9% were positive for Grm3 (Fig. 2D).
Similar transcript expression was observed in human sen-
sory neurons, with 32.2% of all neurons positive for
TRPV1, 52.7% positive for GRM2, and 29.5% positive for
GRM3 (Fig. 2E). Notably, a significantly greater percent-
age of total DRG neurons expressed Grm2 compared to
Grm3 in both mice (�2 � 74.56, p � 1.0 � 10–15 h) and
humans (�2 � 28.83, p � 8.0 � 10–8 i). Although there was
a trend toward an increased percentage of Grm2� neu-
rons in mouse compared with human DRG (�2 � 2.229
with Bonferroni correction, p � 0.077j), there were no
significant species differences in the expression of the
transcripts of interest.

Analysis of transcript coexpression showed that the
majority of Trpv1� mouse DRG neurons coexpressed Grm2,
Grm3, or both. To elaborate, 33.3% of Trpv1� neurons
coexpressed Grm2, 7.5% coexpressed Grm3, and 44.2%
coexpressed both Grm2 and Grm3 (Fig. 2F). Of TRPV1�

human DRG neurons, 41.0% coexpressed GRM2, 8.4%
coexpressed GRM3, and 32.5% coexpressed both GRM2
and GRM3 (Fig. 2G). No significant species differences
were observed in the coexpression of Trpv1 with Grm2
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and/or Grm3 gene transcripts. Thus, these findings sug-
gest that the absence of mGluR2/3-induced suppression
of TRPV1 sensitization in human DRG neurons cannot be
explained by reduced coexpression of TRPV1 with group
II mGluRs at the gene transcript level.

Discussion
Peripheral targets for pain relief are greatly desired

given the centrally mediated side effects, including addic-
tion and misuse of current frontline analgesics such as
opioids. In both mice and humans, activation of group II
mGluRs blocks sensory neuron membrane hyperexcit-
ability elicited by the inflammatory mediator PGE2 (David-
son et al., 2016). In the present study, we demonstrate
that suppression of inflammation-induced TRPV1 sensiti-
zation represents an additional mechanism by which
mGluR2/3 reduce peripheral sensitization in mouse, but
not human, sensory neurons. We further show equivalent
colocalization of Trpv1 with Grm2 and Grm3 mRNA tran-

scripts in mouse and human DRG neurons, suggesting
that disparities in coexpression do not explain species
differences in the functional modulation of TRPV1 by
group II mGluRs. These findings indicate that although
mGluR2/3 activation decreases sensory neuron sensitiza-
tion in both mice and humans, mechanisms of peripheral
analgesia are not fully conserved across species.

mGluR2/3 functional differences in mouse and
human sensory neurons

That the mGlu2/3 receptor agonist APDC did not sup-
press PGE2-induced TRPV1 sensitization in human DRG
neurons was a surprising observation. Foremost, cDNA
and amino acid sequences of human and rodent mGluR2
and mGluR3 display at least 90% homology (Flor et al.,
1995; Makoff et al., 1996; Johnson and Schoepp, 2008).
In turn, APDC exhibits comparable potency at rodent and
human group II mGluRs with respect to inhibition of stim-
ulated cAMP responses (Schoepp et al., 1995). Our recent

Figure 2. Expression of Trpv1, Grm2, and Grm3 mRNA transcripts in dissociated mouse and human sensory neurons. A, Size
distribution of total and Trpv1� mouse DRG neuron populations; mean diameter of total neurons: 17.7 � 0.2 �m (n � 395 neurons,
n � 4 preps), mean diameter of Trpv1� neurons: 20.3 � 0.4 �m (n � 147 neurons). B, Size distribution of total and TRPV1� human
DRG neuron populations; mean diameter of total neurons: 31.9 � 0.5 �m (n � 258 neurons, n � 5 donors), mean diameter of TRPV1�

neurons: 33.9 � 0.9 �m (n � 83 neurons). Data are reported as mean � SEM. C, The mean diameter of total human DRG neurons
was significantly larger than that of total mouse DRG neurons (unpaired t test, ���� p � 1.0 � 10–14). Data are presented as mean �
SD. Percentage of total mouse (D) and human (E) DRG neurons that expressed Trpv1, Grm2, and Grm3, as well as the percentage
of neurons that coexpressed one mRNA transcript with another. Pie charts showing the percentage of Trpv1� mouse (F) and human
(G) DRG neurons that coexpressed Grm2, Grm3, or both transcripts. No significant differences in gene transcript expression of total
neurons or Trpv1� neuron subpopulations were observed between species.
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finding that APDC decreases excitability and increases
action potential threshold in PGE2-treated sensory neu-
rons of both species further suggests mGluR2/3 func-
tional homology in mouse and human sensory neurons
(Davidson et al., 2016). Existing behavioral and in vitro
rodent studies strongly suggest that inhibition of cAMP-
dependent TRPV1 sensitization is another mechanism by
which mGluR2/3 can block sensory neuron sensitization
(Yang and Gereau, 2002; Du et al., 2008; Carlton et al.,
2009, 2011). Here, we substantiate these findings by dem-
onstrating that APDC blocks PGE2-induced TRPV1 sensiti-
zation in C57BL/6J mice. However, this observation did not
translate in human sensory neurons despite the apparent
similarities of mGluR2/3 function between species.

There are multiple potential explanations for the lack of
translation of mGluR2/3 functional modulation of TRPV1
from mice to humans. For example, in addition to PKA,
PGE2-induced intracellular signaling cascades can acti-
vate other kinases known to sensitize TRPV1, including
PKC and c-Src kinase (Vellani et al., 2001; Numazaki
et al., 2002; Jin et al., 2004; Moriyama et al., 2005). Thus,
although we observed PGE2-induced sensitization of cap-
saicin responses in both mouse and human sensory neu-
rons, it is possible that in contrast to mice, PGE2-induced
TRPV1 sensitization in humans occurs via a predomi-
nantly PKA-independent pathway that is not influenced by
mGlu2/3 receptor activation. Further investigation of the
intracellular mechanisms that underlie PGE2-induced TRPV1
sensitization in human sensory neurons is therefore needed.

Another important consideration is that although we
observed equivalent coexpression of Grm2 and Grm3
gene transcripts in Trpv1� mouse and human DRG neu-
rons, whether equivalent coexpression of TRPV1 and
mGluR2/3 also extends to the protein level remains un-
clear. For instance, it is possible that species differences
exist in the regulation of translation, posttranslational
modifications, and subcellular compartmentalization of
TRPV1 and mGlu2/3 receptors. TRPV1 immunoreactivity
has been demonstrated in human DRG neurons, periph-
eral nerves, and intra-epidermal nerve fibers (Anand et al.,
2006, 2015; Facer et al., 2007; Li et al., 2015; Han et al.,
2016). However, until selective mGluR2 and mGluR3 an-
tibodies suitable for immunohistochemistry are gener-
ated, our ability to evaluate the coexpression and
subcellular localization of group II mGluRs with TRPV1
remains limited. Importantly, although mGlu2/3 receptor
activation does not modulate sensitization of TRPV1 in
humans, the expression of GRM2 and/or GRM3 in the
majority of small-diameter (�50 �m) TRPV1� human DRG
neurons suggests that these receptors are well positioned
to modulate nociceptor activity by alternative mecha-
nisms. Thus, mGluR2/3 remain putative human peripheral
analgesic targets.

Sensory neuron expression of Grm2, Grm3, and
Trpv1

Existing immunohistochemical analyses of rodent DRG
neurons demonstrate high colocalization of group II mGlu
receptors with TRPV1, with 93% of TRPV1-positive neu-
rons expressing mGluR2/3 and effectively all mGluR2/3-

positive neurons expressing TRPV1 (Carlton et al., 2009).
Here we demonstrate that the majority (�81%) of Trpv1�

mouse and human sensory neurons also express Grm2
and Grm3 gene transcripts. In contrast, we found that in
both mice and humans, only a subset (45%–62%) of
either Grm2� or Grm3� neurons also expressed the Trpv1
transcript. Importantly, prior immunohistochemistry stud-
ies using nonselective mGluR2/3 antibodies and RNA-
sequencing analysis of homogenized DRG precluded
analyses of which group II mGlu receptor is predominantly
expressed in sensory neurons and to what extent mGluR2
and mGluR3 are coexpressed within the same neurons.
We show for the first time that Grm2 is more highly
expressed than Grm3 in mouse and human sensory neu-
rons. Further, while Grm2 and Grm3 are coexpressed in a
subset (38%–77%) of mouse and human sensory neu-
rons, the transcripts are also expressed individually.
These findings suggest that mGluR2 may play a larger
role in modulating nociceptor excitability than mGluR3.
Indeed, previous behavioral studies demonstrate that the
analgesic efficacy of group II mGlu receptor agonists
persists in mGluR3-/-, but not mGluR2-/-, mice, suggesting
a greater role for mGluR2 than mGluR3 in pain regulation
(Zammataro et al., 2011). As repeated dosing with group
II mGlu receptor agonists causes analgesic tolerance in
rodents (Jones et al., 2005; Chiechio et al., 2009), alter-
native strategies to reinforce endogenous activation of
mGluR2 may be required to effectively target group II mGlu
receptors for clinical pain relief. Our results suggest that
recently developed mGluR2-specific positive allosteric mod-
ulators may be promising agents for blockade of peripheral
sensitization (Galici et al., 2006; Asseri et al., 2015).

Distinctions between human and rodent sensory
neurons

In addition to differences in mGlu2/3 receptor function,
we demonstrate that human sensory neurons possess
distinct fundamental properties including increased diam-
eter and an increased percentage of capsaicin-responsive
neurons compared with those of mice. Using calcium
imaging, we found that 30.5% of human DRG neurons
responded to 100 nM capsaicin. However, it is possible
that a larger proportion of human sensory neurons ex-
presses TRPV1 and/or responds to capsaicin. For in-
stance, previous immunohistochemical analysis of human
DRG showed that roughly 55% of all DRG neurons were
TRPV1-immunoreactive (Anand et al., 2006). Further, in
calcium imaging experiments, �60% of ganglionecto-
mized DRG neurons removed due to chronic intractable
pain responded to 100 nM capsaicin (Baumann et al.,
1996, 2004). These findings suggest that an even greater
species difference in capsaicin-responsive neurons may
exist between mice and humans than we report here. Of
course, variability in experimental conditions or donor
demographics, genetic diversity, and pain-related health
conditions could underlie differences in TRPV1 expres-
sion across human studies. For this reason, developing an
extensive donor tissue bank to investigate DRG neuron
gene and protein expression as well as to further charac-
terize sensory neuron subpopulations will allow for more

Negative Results 8 of 11

March/April 2018, 5(2) e0412-17.2018 eNeuro.org



complete comparisons between species, and perhaps
more interestingly, among donor subpopulations.

Nevertheless, while only a small number of comparative
studies of rodent and human sensory neurons have been
conducted, it is becoming increasingly clear that species
differences exist in gene expression, ion channel proper-
ties, and action potential firing patterns (Baldo et al., 2013;
Han et al., 2015; Chang et al., 2017; Ray et al., 2017;
Rostock et al., 2017; Zhang et al., 2017). Therefore, hu-
man sensory neurons represent a vital tool for improving
our understanding of human nociceptor physiology under
both normal and pathologic conditions. Further, using hu-
man sensory neurons to assess the validity of putative an-
algesic targets identified in rodents may lead to increased
translational success of preclinical findings.
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