
Effect of Fish Oil vs. Resolvin D1, E1, Methyl Esters of Resolvins 
D1 or D2 on Diabetic Peripheral Neuropathy

Alexander Obrosov1, Lawrence J Coppey1, Hanna Shevalye1, and Mark A Yorek1,2,3,4,*

1Department of Internal Medicine, University of Iowa, Iowa City, USA

2Department of Veterans Affairs, Iowa City Health Care System, Iowa City, USA

3Veterans Affairs Center for the Prevention and Treatment of Visual Loss, Iowa City, USA

4Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, USA

Abstract

Objective—Fish oil is enriched in omega-3 polyunsaturated fatty acids primarily 

eicosapentaenoic and docosahexaenoic fatty acids. Metabolites of these two polyunsaturated fatty 

acids include the E and D series resolvins. Omega-3 polyunsaturated fatty acids and resolvins have 

been reported to have anti-inflammatory and neuroprotective properties. The objective of this 

study was to evaluate the efficacy of menhaden oil, a fish oil derived from the menhaden, resolvins 

D1 and E1 and the methyl esters of resolvins D1 and D2 on diabetic peripheral neuropathy. 

Hypothesis being examined was that the methyl esters of resolvins D1 and D2 would be move 

efficacious than resolvins D1 or E1 due to an extended half-life.

Methods—A model of type 2 diabetes in C57BL/6J mice was created through a combination of a 

high fat diet followed 8 weeks later with treatment of low dosage of streptozotocin. After 8 weeks 

of untreated hyperglycemia type 2 diabetic mice were treated for 8 weeks with menhaden oil in the 

diet or daily injections of 1 ng/g body weight resolvins D1, E1 or methyl esters of resolvins D1 or 

D2. Afterwards, multiple neurological endpoints were examined.

Results—Menhaden oil or resolvins did not improve hyperglycemia. Untreated diabetic mice 

were thermal hypoalgesic, had mechanical allodynia, reduced motor and sensory nerve conduction 

velocities and decreased innervation of the cornea and skin. These endpoints were significantly 

improved with menhaden oil or resolvin treatment. However, the methyl esters of resolvins D1 or 

D2, contrary to our hypothesis, were generally less potent than menhaden oil or resolvins D1 or 

E1.

Conclusion—These studies further support omega-3 polyunsaturated fatty acids derived from 

fish oil via in part due to their metabolites could be an effective treatment for diabetic neuropathy.
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Introduction

Peripheral neuropathy affects about 50% of the diabetic population and no effective 

treatment is available. Our laboratory has shown that treating type 1 or type 2 diabetic 

rodents with menhaden oil can delay progression and with late intervention reverse many 

endpoints related to peripheral neuropathy [1–5]. Moreover, we have demonstrated in studies 

using type 1 and type 2 diabetic mice that daily treatment with resolvin (resolution phase 

interaction products) D1 improves peripheral neuropathy [6,7].

Resolvins and neuroprotectin D1, metabolites of eicosapentaenoic and docosahexaenoic 

acids found in fish oil, have anti-oxidant, anti-inflammatory and neuroprotective properties 

[8,9]. E-series resolvins are oxygenated metabolites of eicosapentaenoic acid and D series 

resolvins are derived from docosahexaenoic acid. Neuroprotectin D1 is synthesized from 

docosahexaenoic acid requiring the enzyme 15-lipoxygenase-1. Neuroprotectin D1 produced 

following treatment with docosahexaenoic acid of corneas damaged by refractive surgery 

has been shown to have nerve regenerating properties [10,11]. Treating primary cultures of 

trigeminal ganglia neurons from Swiss Webster mice also increases neurite outgrowth [10]. 

We have reported that neurite outgrowth by dorsal root ganglia neuron from C57Bl6/J mice 

was increased by resolvin D1 [6]. However, whether resolvin E1 promotes neurite outgrowth 

or provides efficacy toward diabetic peripheral neuropathy is unknown. Both 

eicosapentaenoic and docosahexaenoic acids are present in fish oil and other marine 

products and determining if both provide similar protection toward diabetic peripheral 

neuropathy is an important issue to address. Methyl esters of resolvins have a longer 

biological half-life, thus it is also important to determine if these metabolites are more 

efficacious in vivo for diabetic peripheral neuropathy [12]. Thus, in this study we 

investigated whether resolvin E1 can attenuate diabetic peripheral neuropathy and if the 

methyl esters of resolvins D1 or D2 have a greater efficacy than resolvin D1 on diabetic 

peripheral neuropathy.

Identifying a modified metabolite of docosahexaenoic acid with a longer half-life that could 

be administered daily could be a preferred approach for some human subjects compared to 

the daily consumption of fish oil capsules due to the gastric side effects considered 

unpleasant by some individuals such as belching.

Materials and Methods

Materials

Unless stated otherwise all chemicals used in these studies were obtained from Sigma-

Aldrich Co. (St. Louis, MO).

Obrosov et al. Page 2

J Neurol Neurophysiol. Author manuscript; available in PMC 2018 February 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Animals and diet fatty acid composition analysis

C57BL/6J mice were obtained from Jackson Laboratories. Mice were housed in a certified 

animal care facility and water and standard diet were provided ad libitum. Measures were 

taken to minimize pain or discomfort and all experiments were conducted in accordance 

with the Public Health Service Policy on Humane Care and Use of Laboratory Animals and 

were compliant with all institutional guidelines for use of animals (IACUC approval 

5071451). Twelve week old C57BL/6J mice were divided into seven groups. After 1 week 

on a standard diet (3.0 kcal/g, 13% kcal fat, 7001, Harlan Teklad, Madison, WI) six of the 

groups were fed a high fat diet for eight weeks (5.2 kcal/g, 60% kcal fat, D12492; Research 

Diets, New Brunswick, NJ). The group maintained on the standard diet served as the control 

group (I) and was fed the standard diet for the duration of the study. To create a model for 

type 2 diabetes, these mice were treated with 100 mg/kg streptozotocin, i.p. (EMD 

Chemicals, San Diego, CA). Three days later, if the blood glucose was less than 13.8 mM 

(250 mg/dL), a second dose of streptozotocin (50 mg/kg) was administered (Accu-Chek, 

Roche Inc., Indianapolis, IN) [13]. Mice with a blood glucose ≥ 13.8 mM (250 mg/dL) 1 

week after the initial injection of streptozotocin were considered diabetic. Following 8 

weeks of hyperglycemia, one group of mice was continued on the high fat diet (non-treated 

diabetic group, (II)). A second group (III) was fed a high fat diet with ½ of the lard-derived 

calories replaced with menhaden oil (Research Diets D10122003). The four other groups 

remained on the high fat diet and were treated with resolvin D1 (7S, 8R, 17S-trihydroxy-4Z,

9E,11E,13Z,15E,19Z-docosahexaenoic acid, (IV)), resolvin E1 (5S, 12R, 18R-

trihydroxy-6Z,8E,10E,14Z,16E-eicosapentaenoic acid, (V)), 17(R)-resolvin D1 methyl ester 

(7S,8R, 17R-trihydroxy-4Z,9E,11E,13Z,15E,19Z-docosahexaenoic acid, methyl ester, (VI)) 

or resolvin D2 methyl ester (7S,16R,17S-trihydroxy-4Z,8E, 10Z,12E,14E,19Z-

docosahexaenoic acid, methyl ester) VII)) (Cayman Chemical Company, Ann Arbor, MI). 

All resolvin compounds were dissolved in 0.4% ethanol and the mice received daily i.p. 

injections of 1 ng/g body weight. The selection of 1 ng/g as the dose for the resolvins used in 

this study was based on 1 ng/g of resolvin D1 providing maximal effects in a previous study 

[6]. The control and non-treated diabetic group also received daily injections of 0.4% 

ethanol as a vehicle control. The treatment phase lasted for 8 weeks.

Diets and liver samples were used to determine the fatty acid composition by gas-liquid 

chromatography. Following extraction of the lipids with a 2:1 (vol/vol) mixture of 

chloroform and methanol, phase separation was induced with a solution of 154 mM NaCl 

and 4 mM HCl. The chloroform/lipid fraction was trans esterified using 14% boron 

trifluoride in methanol and the fatty acid methyl esters extracted into heptane before 

separation by gas-liquid chromatography [14]. Individual fatty acids peaks as % of total fatty 

acids present were identified by comparison to known fatty acid standards. The fatty acid 

composition of the standard diet (Harlan Teklad 7001), high fat diet (Research Diets 

D12492) and the custom prepared menhaden oil supplemented high fat diet (Research Diets 

D10122003) is provided in Table 1. As expected the levels of eicosapentaenoic and 

docosahexaenoic acids are increased in the diets containing menhaden oil.

Behavioral examinations: Thermal sensitivity was measured using the Hargreaves method 

with instrumentation provided by IITC Life Science; Woodland Hills, CA (model 390G). 
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This procedure was initiated by placing the mouse in the observation chamber. The mouse 

was allowed to acclimate to the warmed glass surface (300C) and surroundings for a period 

of 15 min. Afterwards, the heat source was maneuvered so that it was under the heel of the 

hind paw, activated, a process that turns on a timer and locally warms the glass surface and 

when the mouse withdrew its paw, the timer and the heat source was turned off [13]. 

Following an initial recording, which was discarded, four measurements were made for each 

hind paw, with a rest period of 5 min between each examination. The mean of the 

measurements, reported in seconds, was used as a measure of the thermal nociceptive 

response latency. Mechanical allodynia was evaluated by quantifying the withdrawal 

threshold of the hind paw in response to stimulation with flexible von Frey filaments as 

previously described [15]. The data were reported in grams. The tactile response tests were 

repeated at least three times with a rest period of 10 min between tests. The behavioral 

examinations were performed in a masked fashion on different days and completed 

immediately before the terminal procedures.

Motor and sensory nerve conduction velocity: Mice were anesthetized with Nembutal (75 

mg/kg, i.p., Abbott Laboratories, North Chicago, IL). Motor and sensory nerve conduction 

velocities were assessed as in previous experiments [16]. Body temperature was monitored 

using a rectal probe and regulated between 36°C and 37°C using a heating pad and radiant 

heat. This procedure maintained a normal temperature near the sciatic nerve [2]. Motor 

nerve conduction velocity was calculated by using the stimulus artifact of the evoked 

potential, subtracting the latency measurement (in milliseconds) from the sciatic notch from 

the latency measurement of the Achilles tendon and dividing the difference by the distance 

between the two stimulating electrodes (measured in millimeters). Sensory nerve conduction 

velocity equaled the distance between stimulating and recording electrodes over the latency 

to initial peak negative deflection. Both motor and sensory nerve conduction velocity was 

reported in m/s.

Corneal nerve imaging: The Rostock cornea module for the Heidelberg Retina Tomograph 

(Heidelberg Engineering, Vista, CA) was used for in vivo assessment of sub-epithelial 

nerves in the mouse cornea as described previously [6,17]. Briefly, anesthetized mice were 

fitted to a stereotaxic mouse head holder (model 921-E; David Kopf Instruments, Tujunga, 

CA) and secured to a platform that allows for three-dimensional adjustments. GenTeal eye 

lubricant gel (Alcon; Fort Worth, TX) was applied to the lens and advanced forward to make 

contact with the mouse cornea epithelium. At least three non-overlapping images of the sub-

epithelial nerves were acquired per mouse and assessed for total nerve length per image. 

Corneal nerve fiber length has proven to be the best morphological parameter in diagnosing 

diabetic neuropathy showing the lowest coefficient of variation [18]. Corneal nerve fiber 

length is represented as a mean value of the nerve lengths measured from the images and 

expressed in mm/mm2.

Intraepidermal nerve fiber density in the hind paw: Skin was collected from the footpads for 

determination of intraepidermal nerve fibers as in previous experiments [6,17]. Nerve 

profiles were imaged using a Zeiss LSM710 confocal microscope with a 40× objective (EC 

Plan-Neofluar 40x/0.75), counted by two independent investigators masked to the sample 

condition and profiles were normalized to the length of the epidermis in millimeters.
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Analysis of biological markers: We used a glucometer (Accu-Chek, Roche Inc., 

Indianapolis, IN) to measure blood glucose in a non-fasting mouse. Steatosis was examined 

by freezing liver samples in OCT compound (Sakura FineTek USA, Torrance, CA). 

Afterwards, 5 μm thick sections were incubated with BODIPY (Molecular Probes, Carlsbad, 

CA, USA), at a 1:5000 dilution in 1.0% BSA for 1h at room temperature. The samples were 

washed, mounted using ProLong® Gold antifade reagent (Molecular Probes, Carlsbad, CA, 

USA) and covered with a glass coverslip. Images of each liver section were collected using 

Zeiss 710 LSM confocal laser scanning microscope. These images were analyzed for % area 

fraction of lipid droplets using Image J software. Chymotrypsin-like proteasome activity was 

assayed in liver extracts using 96-well format as described by Otoda et al. [18,19]. The 

reaction mixture contained 100 μg of liver extract protein, 100 μM of peptide substrate Suc-

Leu-Leu-Val-Tyr-AMC in an assay buffer consisting of 50 mM HEPES (pH 7.8), 10 mM 

NaCl, 1.5 mM MgCl2, 1 mM EDTA, 1 mM EGTA, 250 mM sucrose, 5 mM dithiothreitol, 2 

mM ATP. The proteasome inhibitor MG132 was added at 20 μM concentration for a 

background control for each sample and purified murine 20S proteasome (Boston Biochem, 

Cambridge, MA. USA) served as a positive control in each plate. Free AMC fluorescence 

was measured using a 355/460 nm filter set in FLUOstar Optima microplate reader (BMG 

Labtech, Cary, NC, USA). The proteasome activity was expressed in U/mg protein with 1 U 

equal to 1 nmol of AMC released per 1 min. Protein concentration for each liver sample was 

measured with the bicinchoninic acid protein assay (Thermo Fisher Scientific, Waltham, 

MA). Blood was collected and serum obtained for determination of free fatty acid, 

triglyceride, free cholesterol and resolvin D1 using commercial kits from Roche 

Diagnostics, Mannheim, Germany; Sigma-Aldrich Co., St. Louis, MO; BioVision, Mountain 

View, CA; and Cayman Chemical Co., Ann Arbor, MI respectively. Serum thiobarbituric 

acid reactive substances levels were also determined as a marker of oxidative stress as 

previously described [20]. Briefly, 200 μL of serum was heated to boiling in 0.75 mL of 

phosphoric acid (0.19 M), 0.25 ml thiobarbituric acid (0.42 mM) and 0.3 mL water for 60 

min. Afterwards, methanol/NaOH was used to precipitate each sample, which was then 

centrifuged for 5 min. Supernatant was obtained and fluorometric analysis performed at 

excitation wavelength of 532 nm and emission wavelength of 553 nm. Standards were 

prepared by the acid hydrolysis of 1,1,3,3-tetraethoxypropane. The data were reported as 

mg/ml serum.

Data Analysis: Results are presented as mean ± S.E.M. Comparison between control, non-

treated and treated diabetic mice were conducted using one-way ANOVA and Bonferroni 

post-hoc test comparison (Prism software; GraphPad, San Diego, CA). A P value of less 

than 0.05 was considered significant.

Results

For these studies mice were made diabetic with a streptozotocin low dose treatment strategy 

following 8 weeks on a high fat diet. After 8 weeks of hyperglycemia mice were treated 

daily with menhaden oil or exogenously with resolvin D1, E1 or methyl esters of resolvins 

D1 or D2 for 8 weeks and then analyzed as described below.
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Effect on weight, blood glucose, serum lipid and resolvin D1 levels, serum thiobarbituric 

acid levels and liver proteasome activity and steatosis. Data in Table 2 demonstrate that all 

mice at the beginning of the study weighed approximately the same. At the beginning of 

treatments the diabetic mice generally weighed more than control mice although the 

difference was not significant for all groups. Blood glucose levels were significantly 

increased in all groups of diabetic mice at the beginning of treatment. During the treatment 

phase all mice gained weight and generally all diabetic mice weighed more than the control 

mice although the difference was not significant for all groups. At the end of the study the 

blood glucose levels of all diabetic mice were significantly higher than control mice and 

were similar to the blood glucose levels at the beginning of the treatment phase for all 

groups of mice and were not impacted by treatments.

At the end of the study, serum triglycerides levels were increased in the non-treated diabetic 

mice compared to control mice but the difference was not significant. Treating diabetic mice 

with menhaden oil in the diet or exogenously with resolvins D1 and E1 or the methyl esters 

of resolvins D1 and D2 reduced triglyceride levels to control values or lower. The level of 

serum triglyceride in diabetic mice treated with menhaden oil or the methyl esters of 

resolvins D1 or D2 were significantly lower than in non-treated diabetic mice. Serum free 

fatty acid levels were significantly increased in non-treated diabetic mice compared to 

control mice and was corrected with all treatments.

Serum free cholesterol levels were significantly increased in non-treated diabetic mice 

compared to control mice, which was not corrected by treatment with menhaden oil in the 

diet or resolvin D2 methyl ester and only partially corrected by exogenous treatment with 

resolvins D1, E1 and D1 methyl ester. Serum levels of resolvin D1 were significantly 

increased in diabetic mice treated with a diet enriched with menhaden oil compared to 

control mice and untreated diabetic mice (Table 2). Serum resolvin levels were not 

determined in diabetic mice treated with resolvin D1 because previous studies had shown 

that treatment did not cause an increase in serum levels of resolvin likely due to the short 

half-life of resolvins in circulation [6,7].

Serum thiobarbituric acid levels, a marker for oxidative stress, were significantly increased 

in untreated diabetic mice (Table 2). Treating diabetic mice with dietary menhaden oil did 

not improve serum thiobarbituric acid levels. However, exogenous treatment with resolvins 

did lower serum thiobarbituric acid levels.

For a marker of endoplasmic reticulum stress we examined liver proteasome activity [19]. 

Liver proteasome activity was decreased in non-treated diabetic mice compared to control 

mice and was partially improved by dietary enrichment with menhaden oil or treatment with 

methyl ester of resolvin D2 (Table 2). Treating diabetic mice with resolvins D1, E1 or D1 

methyl ester had minor to no impact on improving liver proteasome activity. Liver steatosis 

(fatty liver) was significantly increased in non-treated diabetic mice (Table 2). Treating 

diabetic mice with a diet enriched with menhaden oil or with daily injections of resolvins 

significantly reduced liver steatosis. However, liver steatosis remained significantly 

increased in all treated diabetic mice compared to control mice.
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Effect on liver fatty acid composition. Data in Table 3 provide the fatty acid composition of 

liver from control, non-treated diabetic and diabetic mice treated with menhaden oil in the 

diet. The fatty acid composition profile of liver from diabetic mice fed the high fat diet was 

not noticeably different from the fatty acid composition of liver from control mice. However, 

in diabetic mice treated with menhaden oil the content of arachidonic acid was significantly 

decreased while the content of eicosapentaenoic and docosahexaenoic acid was significantly 

increased. Treatment of diabetic mice with resolvin D1, E1 or methyl esters of resolvins D1 

or D2 did not impact the fatty acid composition of the liver compared to untreated diabetic 

mice (data not shown).

Effect on nerve conduction velocity, intraepidermal nerve fiber density, thermal nociception 

and corneal nerve fiber length. Motor and sensory nerve conduction velocities is a common 

endpoint for examining peripheral neuropathies and was found to be significantly decreased 

in non-treated diabetic mice (Figure 1).

Treating diabetic mice with menhaden oil significantly improved motor and sensory nerve 

conduction velocities compared to non-treated diabetic mice. Treating diabetic mice with 

daily injections of resolvin D1 or E1 significantly improved both motor and sensory nerve 

conduction velocity with resolvin D1 being more efficacious than resolvin E1. However, 

motor nerve conduction velocity remained significantly impaired in diabetic mice treated 

with resolvin D1 or E1 compared to control mice.

Treating diabetic mice with the methyl esters of resolvins D1 or D2 significantly improved 

motor nerve conduction velocity compared to non-treated diabetic mice but both motor and 

sensory nerve conduction velocities in these treated mice remained significantly impaired 

compared to control mice.

The cornea is the most highly innervated part of the human body. The corneal nerves can be 

visualized using corneal confocal microscopy. This microscope provides a means to perform 

noninvasive in vivo imaging that allows assessment of the sub-epithelial corneal sensory 

nerve structure [18,21,22]. It has been proposed that imaging of diabetes-induced changes of 

these nerves as well as changes in the density of intraepidermal nerve fibers may be 

surrogate markers for early damage and repair for diabetic peripheral neuropathy [21–25]. 

We have previously reported that diabetes in rodents causes a decrease in sensory nerve 

density in the sub-epithelial layer of the cornea as well as a decrease in sensory nerves 

penetrating the corneal epithelium and the changes caused in the structure and density of 

corneal nerves by diabetes in rodents is consistent with the changes in these nerves in 

humans with diabetes [2,17,26–28].

Data in Figure 2 demonstrate that intraepidermal nerve fiber density and sub-epithelial 

corneal nerve fiber length are significantly decreased in non-treated diabetic mice compared 

to control mice. Treating diabetic mice with dietary menhaden oil significantly improved 

intraepidermal nerve fiber density and totally protected corneal nerve fiber density in the 

sub-epithelial layer compared to non-treated diabetic mice. However, intraepidermal nerve 

fiber density in diabetic mice treated with dietary menhaden oil remained significantly 

decreased compared to control mice. Treating diabetic mice with resolvin D1 or E1 also 
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significantly improved intraepidermal nerve fiber density with efficacy that was similar to 

menhaden oil treatment. Treating diabetic mice with resolvin D1 was more efficacious than 

resolvin E1 in protecting sub-epithelial corneal nerve fibers. Treating diabetic mice with the 

methyl esters of resolvins D1 or D2 were about equally effective in protecting 

intraepidermal nerve fiber density. Methyl esters of resolvin D1 or D2 were also effective in 

protecting sub-epithelial corneal fiber density but they were generally less efficacious than 

dietary menhaden oil or exogenous resolvins D1 or E1.

Data in Figure 3 demonstrate that latency to a thermal stimulus was significantly increased 

in non-treated diabetic mice compared to control mice. Dietary enrichment of menhaden oil 

or exogenous treatment with resolvin D1 or E1 reduced the increase in latency to thermal 

stimulus to a similar degree as compared to non-treated diabetic mice. However, there 

remained a significant impairment compared to control mice. Treating diabetic mice with the 

methyl ester of resolvins D1 or D2 was less efficacious toward improving thermal 

nociception.

Mechanical allodynia was significantly decreased in non-treated diabetic mice compared to 

control mice, indicating an increase in sensitivity to a mechanical challenge (Figure 3).

Treating diabetic mice with a diet enriched with menhaden oil or with daily injections of 

resolvin D1, E1 or the methyl ester of resolvin D2 was efficacious in improving mechanical 

allodynia in diabetic mice. However, mechanical allodynia remained significantly decreased 

in these treated diabetic mice compared to control mice. We also found that treating diabetic 

mice with exogenous resolvin D1 methyl ester was the least effective on this endpoint.

Discussion

The first main finding resulting from these studies was that resolvin E1 was as beneficial as 

resolvin D1 as an exogenous treatment for diabetic peripheral neuropathy. This indicates that 

metabolites of either eicosapentaenoic acid (source of E class resolvins) or docosahexaenoic 

acid (source of D class resolvins) will provide protection from diabetic peripheral 

neuropathy. The implication is that increased consumption of either or both 

eicosapentaenoic acid and docosahexaenoic acids, which can be derived from natural 

sources or through dietary supplementation, i.e., capsules containing fish oil, will be 

neuroprotective and there is no need to selectively enrich the diet with a sole source of either 

of these omega-3 polyunsaturated fatty acids. Some studies have found that either 

eicosapentaenoic acid or docosahexaenoic acid provide a better outcome. It has been 

reported that eicosapentaenoic acid but not docosahexaenoic acid was associated with 

significant effects on gene expression involving the interferon pathway as well as down 

regulation of cAMP responsive element protein 1 and hypoxia inducible factor 1α in human 

peripheral blood mononuclear cells [29]. The authors concluded that this may relate to the 

beneficial effects of eicosapentaenoic acid on cardiovascular disease [29]. In contrast, a 

study performed with dogs showed that docosahexaenoic acid was more effective than 

eicosapentaenoic acid in attenuating atrial fibrillation vulnerability and atrial remodeling in 

an experimental model of structural remodeling-induced atrial fibrillation [30]. Both 

eicosapentaenoic acid and docosahexaenoic acid have been shown to reduce serum 
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triglycerides, but in direct comparison studies docosahexaenoic acid was found to cause a 

greater reduction than eicosapentaenoic acid and docosahexaenoic acid also raised high-

density lipoprotein levels compared to placebo, whereas eicosapentaenoic acid did not [31]. 

Eicosapentaenoic acid was found to have a greater efficacy compared to docosahexaenoic 

acid or placebo (coconut oil) as an adjunctive treatment for mild-to-moderate depression 

[32,33]. However, in our studies exogenous treatment with resolvins D1 or E1 as well as 

menhaden oil via the diet were efficacious toward multiple endpoints for diabetic neuropathy 

suggesting a lack of a preferential effect of either eicosapentaenoic acid or docosahexaenoic 

acid.

The second main finding was that the methyl esters of resolvins D1 or D2 as an exogenous 

treatment were found not to be more efficacious for diabetic peripheral neuropathy 

compared to exogenous resolvin D1 even though it has been reported that the half-life of the 

methyl ester derivatives of resolvins D1 or D2 is longer than the native resolvins [12]. Even 

if the resolvin methyl esters have a longer half-life in serum they may not be able to reach 

the target tissues for improving diabetic neuropathy endpoints as effectively as the native 

compounds. However, this explanation is not true for all tissues since our studies 

demonstrated that the methyl ester of resolvin D1 and to a lesser extent resolvin D2 methyl 

ester significantly improved hepatic steatosis.

Anti-inflammatory therapies represent a potential approach for treatment of diabetes 

complications including neuropathy [34–36]. Sharma and colleagues have shown that 

inhibiting nuclear factor-κB (NF-κB) using the IκB inhibitor SC-514 or resveratrol provided 

neuroprotection in diabetic rodents [37–39]. They found that either agent reduced the 

elevated levels of pro-inflammatory cytokines, inducible nitric oxide synthase and 

cyclooxygenase-2 (COX-2). Li et al. found that treating diabetic rats with fish oil inhibited 

mechanical allodynia and thermal hyperalgesia by blocking NF-κB and increasing 

phosphorylation of protein kinase B (AKT) in dorsal root ganglia [40]. Kellogg et al. has 

also reported that inhibition of COX-2 provides protection against various diabetic 

peripheral neuropathy deficits [41]. This study demonstrated that treating type 2 diabetic 

mice with menhaden oil via the diet or with daily injections of resolvins D1 or E1 provided a 

similar neuroprotection. Resolvins are potent anti-inflammatory and pro-resolving mediators 

that are endogenously generated from omega-3 polyunsaturated fatty acids found in fish oils 

and other marine products and may be a good candidate for the treatment of diabetic 

neuropathy [42]. Studies in both animals and humans have demonstrated that circulating 

levels of the resolvins can be increased by dietary supplementation with omega-3 

polyunsaturated fatty acids derived from fish oil and resolvin levels can be further enhanced 

by aspirin [43–46]. In this study we found serum levels of resolvin D1 were increased by 

nearly 2-fold in diabetic mice treated with a menhaden oil enriched diet compared to serum 

collected from control mice or untreated diabetic mice. A deficit in the production of 

resolvins has been demonstrated in obese adipose tissue and restoration of their levels by 

either exogenous administration or by feeding omega-3 polyunsaturated enriched diets has 

been shown to improve inflammatory status, insulin sensitivity and ameliorate metabolic 

dysfunction [42,47–50]. Resolvins have also been shown to be a potential treatment for other 

inflammatory conditions such as rheumatoid arthritis, inflammatory bowel disease and 

allergic responses [51–55]. Thus, treatment of diabetic mice with menhaden oil lead to an 
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increase in resolvin production in vivo which would be expected to reduce inflammatory 

stress and provide a mechanism for improving or protecting from peripheral neuropathy.

In a recent study of subjects with type 1 diabetes it was found that nonalcoholic fatty liver 

disease, diagnosed by ultrasonography, was strongly associated with an increased risk of 

distal symmetric polyneuropathy [56]. Therefore, it is reasonable to postulate that a 

successful treatment for diabetic peripheral neuropathy should also improve nonalcoholic 

fatty liver disease. Enriching the diet of rodents with menhaden oil increases the 

eicosapentaenoic acid and docosahexaenoic acid content of the serum and increases the 

unsaturation index from about 1.5 to 1.9 [2]. In this study enriching the diet of type 2 

diabetic mice significantly increased the eicosapentaenoic acid and docosahexaenoic acid 

content of the liver compared to untreated diabetic mice and decreased the omega-6 to 

omega-3 fatty acid ratio from 3.1 ± 0.4 in untreated diabetic mice to 0.9 ± 0.2 in treated 

diabetic mice. Decreasing the omega-6 to omega-3 fatty acid ratio is an indicator of reduced 

inflammatory stress and has been shown to significantly reduce steatohepatitis [57]. Hepatic 

steatosis was significantly increased in untreated diabetic mice compared to control mice 

and was significantly improved with dietary enrichment with menhaden oil or by exogenous 

treatment with resolvins D1, E1 and the methyl esters of resolvins D1 or D2. Exogenous 

treatment of diabetic mice with resolvin D1 was the least efficacious but there were no 

significant differences between the outcomes from any of the treatments. Serum triglyceride 

and free fatty acid levels were fully corrected with dietary enrichment with menhaden oil or 

by exogenous treatment with resolvins D1, E1 and the methyl esters of resolvins D1 or D2. 

In contrast, serum cholesterol levels were not improved with dietary enrichment with 

menhaden oil or resolvin D2 methyl ester treatment and only partially improved by 

exogenous treatment of the diabetic mice with resolvins D1, E1 and the methyl ester of 

resolvin D1. Hepatic insulin resistance is considered to be a central player in the 

development of metabolic syndrome and nonalcoholic fatty liver disease [58]. Current 

therapies focus on lifestyle changes and weight loss, but the outcome has been disappointing 

[58]. Results from our studies suggest that enriching the diet with a source of omega-3 

polyunsaturated fatty acids or supplementation with fish oil capsules may improve 

nonalcoholic fatty liver disease. This is supported by a recent meta-analysis of randomized 

controlled trials that concluded that supplementation with ω-3 polyunsaturated fatty acids is 

a practical and effective treatment for nonalcoholic fatty liver disease [59].

Conclusion

In summary, these studies further demonstrate that dietary supplement with fish oil may 

provide a safe and efficacious approach to treat diabetic peripheral neuropathy as well as 

nonalcoholic fatty liver disease and the mechanism responsible for the beneficial effects of 

fish oil may be associated with the production of resolvins E1 and D1 from eicosapentaenoic 

and docosahexaenoic acids, respectively.
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Figure 1. 
Effect of Menhaden oil dietary enrichment or daily treatment with resolvin D1, E1, D1 

methyl ester or D2 methyl ester of diabetic mice on motor and sensory nerve conduction 

velocity. Motor and sensory nerve conduction velocities were determined as described in the 

Materials and Methods section. Data are presented as the mean ± S.E.M. in m/s. The number 

of mice in each group was the same as shown in Table 2. * p<0.05 compared to control mice; 
** p<0.01 compared to control mice; + p<0.05 compared to non-treated diabetic mice; ++ 

p<0.01 compared to non-treated diabetic mice.
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Figure 2. 
Effect of Menhaden oil dietary enrichment or daily treatment with resolvin D1, E1, D1 

methyl ester or D2 methyl ester of diabetic mice on intraepidermal nerve fiber (IENF) 

density and sub-epithelial cornea nerve fiber length. Intraepidermal nerve fiber density and 

sub-epithelial cornea nerve fiber length were determined as described in the materials and 

methods section. Data are presented as the mean ± S.E.M. in profiles/mm and mm/mm2, 

respectively. The number of mice in each group was the same as shown in Table 2. ** p<0.01 

compared to control mice; + p<0.05 compared to non-treated diabetic mice; ++ p<0.01 

compared to non-treated diabetic mice.
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Figure 3. 
Effect of Menhaden oil dietary enrichment or daily treatment with resolvin D1, E1, D1 

methyl ester or D2 methyl ester of diabetic mice on thermal nociception and mechanical 

allodynia. Thermal nociception and mechanical allodynia were determined as described in 

materials and methods section. Data are presented as the mean ± S.E.M. in seconds (s) and 

grams (g), respectively. The number of mice in each group was the same as shown in Table 

2. *p<0.05 compared to control mice; **p<0.01 compared to control mice; + p<0.05 

compared to non-treated diabetic mice; ++ p<0.01 compared to non-treated diabetic mice.
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