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Abstract

Study objective: Triage quickly identifies critically ill patients, facilitating timely inter-

ventions. Many emergency departments (EDs) use emergency severity index (ESI) or

abnormal vital sign triggers to guide triage. However, both use fixed thresholds, and

false activations are costly. Prior approaches using machinelearning have relied on

information that is often unavailable during the triage process. We examined whether

deep-learning approaches could identify critically ill patients only using data immedi-

ately available at triage.

Methods: We conducted a retrospective, cross-sectional study at an urban tertiary

care center, from January 1, 2012–January 1, 2020. De-identified triage information

included structured (age, sex, initial vital signs) and textual (chief complaint) data, with

critical illness (mortality or ICU admission within 24 hours) as the outcome. Four pro-

gressively complex deep-learning models were trained and applied to triage informa-

tion from all patients.We compared the accuracy of themodels against ESI as the stan-

dard diagnostic test, using area under the receiver-operator curve (AUC).

Results: A total of 445,925 patients were included, with 60,901 (13.7%) critically

ill. Vital sign thresholds identified critically ill patients with AUC 0.521 (95% confi-

dence interval [CI] = 0.519–0.522), and ESI <3 demonstrated AUC 0.672 (95% CI =

0.671–0.674), logistic regression classified patients with AUC 0.803 (95%CI= 0.802–

0.804), 2-layer neural networkwith structured data with AUC 0.811 (95%CI= 0.807–

0.815), gradient tree boostingwith AUC0.820 (95%CI= 0.818–0.821), and the neural
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network model with textual data with AUC 0.851 (95% CI= 0.849–0.852). All succes-

sive increases in AUCwere statistically significant.

Conclusion: Deep-learning techniques represent a promising method of augment-

ing triage, even with limited information. Further research is needed to determine if

improved predictions yield clinical and operational benefits.
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1 INTRODUCTION

1.1 Background

Triage quickly identifies critically ill patients, helping to facilitate

rapid interventions with the goal of altering the course of disease.

Many emergency departments (EDs) use the emergency severity index

(ESI) or other standardized scores to facilitate triage and prioritize

patients.1 Concurrently, many EDs combine this with a clinical trigger

system,whichmobilizes available physicians and nurses to see patients

with acute ESI scores or abnormal vital signs immediately after ini-

tial triage. The use of clinical triggers to mobilize clinicians has been

demonstrated to improve patients’ time to physician evaluation and

time to antibiotics.2

1.2 Importance

Both ESI and vital sign triggers rely on specific vital sign thresholds.

Although ESI is among themost validated algorithms for triage, numer-

ous studies have shown that both under-triage and over-triage remain

persistent issues.3,4 When patients are under-triaged, opportunities to

change the course of disease are missed, whereas over-triage has the

potential to disrupt physicians’ and nurses’ workflows, detracting from

safe and efficient care for other patients in the ED. In particular, better

understanding of the effects of advanced age, the influence of specific

chief complaints, and more robust criteria for vital sign abnormalities

have been highlighted as areas for improvement to the current ESI.4,5

Studies examining machine-learning approaches have shown promise

in supplementing the ESI score at triage, including random forest mod-

els to help differentiate outcomes for patients within ESI categories,6

gradient boosting algorithms to predict admission,7 and outcomes in

specific conditions, such asmortality in sepsis.8

However,many of these studies have leveraged information, such as

structured diagnosis lists and past medical histories, which is unavail-

able for many patients at the time of triage. In particular, patients who

are making their first contact with an ED rarely bring medical history

information in a readily accessible electronic format. Patients alsomay

beunable tomeaningfully provide a clear pastmedical history,whether

because of dementia, language barriers, or limited health literacy.

Dependingon their complexity, somemachine-learning approaches are

not readily integrated with commercial electronic health record (EHR)

systems, and may require considerable effort to tune and adapt to a

health system’s specific population.

Deep neural networks are a family of machine-learning algorithms

that have led to rapid improvements across a variety of domains,

including computer vision and natural language processing and have

made progress toward automated diagnosis in subfields of radiol-

ogy and pathology. Compared to traditional methods of regression

analysis, neural networks are intended to model multiple levels of

complex, high dimensional interaction terms between independent

variables without loss of specificity, and can be rapidly retrained to

account for subtle differences between populations. In the last few

years, several open source frameworks havemade it simple to develop,

deploy, and share these algorithms without the need for specialized

equipment.

1.3 Goals of this investigation

We examined whether a set of progressively complex deep-learning

algorithms could identify critically ill patients with greater discrimina-

tive power than ESI or vital sign triggers alone using information imme-

diately available at triage, as measured by the area under the receiver-

operator curve (AUC).

2 METHODS

2.1 Study design and selection
of participants

This was an observational study examining a retrospective cohort of

adult patients who visited an academic, urban ED at a tertiary care

center in the Northeastern United States with an average volume of

55,000 visits annually. All patients between January 1, 2012–January

1, 2020 were screened for the study. Patients were included if their

data included triage vital signs (patients with one or more vital signs

were included, patients with none were not). ESI score, whether a vital

sign trigger had been activated, and ultimate disposition (including

whether they expired within the ED) were recorded for all patients.

Clinical data was obtained from an automated quality assurance
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database for the ED information system. Data were de-identified

during extraction using the HIPAA SAFE HARBOR method, and the

study authors were blinded to identifying information. The study was

structuredwith respect to the transparent reporting of amultivariable

prediction model for individual prognosis or diagnosis (TRIPOD)

statement.9 The host institutional review board granted an exemption

for de-identified data used.

2.2 Measurements

Vital signs were defined as a patient’s initial triage measurement of

temperature, heart rate, systolic and diastolic blood pressure, res-

piratory rate, and percent oxygenation. To exclude potentially erro-

neous data entries, vital signs were included in the analysis pro-

vided they fell within broad physiologically feasible ranges, includ-

ing temperature below 110◦, heart rate below 300 beats/min, sys-

tolic, and diastolic measurements below 300 mm Hg, respiratory

rate below 80 respirations/min, and oxygenation at or below 100%.

Missing or spurious data were considered as null values for the

analysis.

Triage chief complaints were included as free text entered immedi-

ately at a patient’s arrival at triage. Chief complaints were not stan-

dardized during the study period, and typographic errors and blank

entries were included in the analysis for fidelity. Nursing documenta-

tion after the patient’s initial registration was not included. As a result

of de-identification, patients older than 89 years of age were included

within a single 90+ age category.

Vital sign trigger criteria were defined as heart rate <40 or >130

beats/min, respiratory rate below 8 or above 30 respirations/min, sys-

tolic blood pressure below 90 mm Hg, or an oxygen saturation below

90% on room air, which is standard practice for trigger activations at

triage for the institution.2 As a result of the clinical system at our insti-

tution, all patients who meet clinical trigger criteria are classified as

having an ESI score of 1 or 2.

2.3 Outcomes

The primary outcome was whether a patient was critically ill, defined

as whether they expired within 24 hours of arrival, required ICU

admission from the ED, or were transferred from an inpatient ward

to the ICU (or for an emergent procedure) within 24 hours of admis-

sion. The data abstraction process included the possibility of a patient

being discharged and returning to the ED as critically ill within

24 hours. There have been many different measures of resource

use and illness severity used across studies evaluating the efficacy

of triage and machine-learning predictions, including specific diag-

noses such as sepsis,8 admission,7 and overall mortality.10 The com-

posite of mortality and ICU admission is an appealing compromise

metric, as it identifies a population that is more likely to require

rapid intervention than the larger population of patients needing

admission.

The Bottom Line

Initial patient triage is designed to rapidly identify which

patientswill require the greatest resources in the emergency

department and the hospital. In this manuscript, the authors

demonstrate that deep learning techniques can improve the

accuracy of model to predict the need for ICU admission

and or death when compared to traditional triage methods.

Future prospective studies are needed to determine the ben-

efit of these newmodels.

2.4 Neural network model creation and
derivation

Neural networks consist of a series of nodes known as neurons, which

take input variables, apply an affine transformation to the inputs based

on a set of weights, and yield an output based on whether a discrete

threshold, known as the activation function, has been met. A loss func-

tion measuring the neuron’s output relative to the correct diagnostic

labels is used to adjust the neuron’s weights repeatedly until loss has

been minimized. Accordingly, logistic regression can be thought of as a

single neuronwith a sigmoid activation function.

Neural networks leverage multiple layers of interconnected neu-

rons to model high-degree interaction effects. For instance, a neuron

within a deep neural network layer might recognize specific combina-

tions of elevated heart rate and temperature, whereas a separate neu-

ron within the same layer might recognize separate thresholds for the

same variables when associated with a different age range or set of

chief complaints.

Our models were created in TensorFlow, an open-source frame-

work for deep-learning.11 The triage data was split between the struc-

tured vital sign data and the chief complaint text data. The vital sign

data was normalized and used as the input for a logistic regression

(with L2 normalization), and for a 2-layer deep neural network. A third,

deep neural network combining both structured and text data likewise

used the vital sign data as the input to a smaller 2-layer deep neu-

ral network. The chief complaint text data was first embedded into a

text vector and input into a long short-term memory network, a stan-

dard architecture for text processing and in clinical natural language

processing.12,13 As tree-based approaches have been used in a number

of other recent studiesofmachine learning in theED,6 wealsoprovided

a tree-based model on the structured data for comparison, using the

XGBoost framework.14

The outputs of these 2 subnetworks were then concatenated and

used as the cumulative input to a densely connected layer, with a

final logistic prediction layer. Hyperparameters of the model, such

as the number of neurons per layer and the total number of lay-

ers in the overall model, were adjusted using random search and

subsequently manually adjusted, with adaptive moment estimation

for optimization.15 Data was divided into a randomized 80:10:10
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F IGURE 1 Study enrollment

TABLE 1 Characteristics of the study participants

All patients Not critically Ill Critically ill

Characteristic (IQR) (n= 445,925) (n= 384,917, 86.3%) (n= 60,901, 13.7%)

Age 53 (34 –68) 50 (32–65) 69 (57–81)

Sex (female, n, %) 241,412 (54.1) 212,657 (55.2) 28,755 (47.2)

Triage temperature 98.0 (97.5–98.6) 98.0 (97.0–98.5) 98.0 (97.6- 98.6)

Triage heart rate 84 (72–96) 83 (72–95) 86 (73–100)

Triage systolic BP 133 (120–148) 133 (120–148) 130 (113–149)

Triage diastolic BP 77 (68–87) 78 (69–77) 72 (61–83)

Triage respiratory rate 18 (16–18) 18 (16–18) 18 (16–20)

Triage SpO2% 99 (97–100) 99 (98–100) 98 (96–100)

training:validation:testing split to avoid overfitting and run in a 10-fold

cross-validation to ensure that all data were tested.

2.5 Analysis

We report the diagnostic accuracy of the methods evaluated (both

current triage methods and machine-learning methods) in this study

in terms of their sensitivity, specificity, accuracy, and AUC with 95%

CI, relative to the reference standard of critical illness abstracted

from the medical record. Statistical analysis was carried out in Python

3.8 using the SciPy and SciKit-Learn scientific and machine-learning

libraries.16,17 Differences between group means were tested at an

alpha level of 0.05, with strict Bonferroni correction for multiple com-

parisons (0.0065 for 8 comparisons).

Prior studies of machine-learning at triage have suggested that crit-

ically ill patients represent a fraction of the total patients seen within

the ED, estimated as 2% of patients by Raita et al.18 and Levin et al.6,

who examined a large random sample of patients from the National

Hospital Ambulatory Medical Care Survey (NHAMCS) and the yearly

volume of an urban ED, respectively. As a result of the high proportion

of lower-acuity patients in the underlying population, we used theAUC

as the primary measure of test accuracy for comparison between the

existing triage models and the deep-learning models. AUC is reported

with a 95% CI and compared using DeLong’s test.19,20 Comparisons

were made between tests based on ascending AUC values, using an

alpha level of 0.05,withBonferroni correction (0.01 for5 comparisons).

3 RESULTS

3.1 Characteristics of the study subjects

From January 1, 2012–January 1, 2020, 445,925 adult patients met

inclusion criteria, detailed in Figure 1A. Patient demographic and vital

sign characteristics are detailed in Table 1. A total of 60,901 (13.7%)

patientsmet criteria for critical illness. Vital sign information contained

a missing or spurious data point for 34,827 (7.6%) of patients, most

commonly in the form of amissing temperaturemeasurement at triage

(24,872; 5.6%). Missing or spurious vital signs (500, <0.1%) or ages

(104, <0.1%) were entered into the neural network as null values and

were included in the analysis. The full enrollment process is described

in Figure 1.

There were significant differences between the groups of patients

assessed at triage whowere critically ill and those whowere not. Criti-

cally ill patients typically were older, more likely to be male, had faster

heart rates and respiratory rates, higher temperatures, lower blood

pressures, and lower oxygen saturations, all of which were significant
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TABLE 2 Test characteristics of the diagnostic approaches

Method Sensitivity (95%CI) Specificity (95%CI) AUC (95%CI)

Abnormal vital sign trigger 0.050 (0.050–0.051) 0.991 (0.991–0.991) 0.521 (0.519–0.522)

Triage ESI≤2 0.697 (0.696–0.699) 0.647 (0.646–0.649) 0.672 (0.671–0.674)

Logistic regression 0.778 (0.775–0.782) 0.673 (0.669–0.678) 0.805 (0.801–0.808)

Neural network–structured data 0.813 (0.811–0.814) 0.653 (0.652–0.655) 0.812 (0.811–0.814)

XGBoost structured data 0.814 (0.813–0.815) 0.666 (0.665–0.667) 0.820 (0.818–0.821)

Neural network combined data 0.845 (0.844–0.846) 0.704 (0.702–0.705) 0.857 (0.856–0.858)

F IGURE 2 Area under the receiver operator curve for detecting critically Ill patients by analysis method

(P < 0.00625). Admitted patients who were transferred to the ICU

within 24 hours constituted a small portion of the overall population

of the critically ill (n = 4,623; 7.6%). The full details of the population

cohorts are detailed in Table 1.

3.2 Main results

The existing standards of triage evaluation to identify critical patients

at our institution, abnormal vital sign triggers and ESI scores ≤2,

demonstrated limited overall accuracy, and divergent sensitivity and

specificity. Strict abnormal vital sign triggers demonstrated low dis-

crimination (AUC, 0.521; 95% CI = 0.519–0.522), very low sensitivity

(0.050; 95% CI= 0.050–0.051) but very strong specificity (0.991; 95%

CI = 0.991–0.991). Conversely, the ESI score demonstrated greater

discrimination (AUC, 0.697; 95%CI= 0.696–0.699; difference in AUC,

P < 0.01), representing the product of significantly increased sensitiv-

ity but more modest specificity. The full details of the models’ diagnos-

tic scores are presented in Table 2 and ROC curves in Figure 2.

The deep-learning approaches demonstrated progressive increases

in sensitivity andAUCas themodels becamemore complex. The design

of the deep-learning models is illustrated in Figures 3A–3C. The initial

logistic regression on structured data yielded an AUC of 0.805 (95%

CI= 0.801–0.808), with a sensitivity of 0.778 (95%CI= 0.775–0.782).

The2-layer neural networkon this same structureddata demonstrated

modest increases in AUC (0.812; 95% CI = 0.811–0.814) and sen-

sitivity (0.813; 95% CI = 0.811–0.814), but was slightly below that

of the tree-based model, which had an AUC of 0.820 (0.818–0.821),

representing a slightly higher specificity (0.666; 95% CI = 0.665–

0.667). All pairwise comparisons of increasing AUC were significant

(P< 0.01).

The addition of the unstructured chief complaint data provided

further discriminatory power. After training and hyperparameter

optimization, the final neural network model classified critically ill

patients with AUC 0.851 (95% CI = 0.849–0.852), reflecting a

total sensitivity of 0.845 (95% CI = 0.844–0.846). Compared with

the tree-based model, this increase in AUC was likewise significant

(P< 0.01).
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F IGURE 3 (A) Logistic regression organization. (B) Two-layer neural network representation. (C) Combined neural network representation
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4 DISCUSSION

Our study examines severalmodels of triage that demonstrate increas-

ing accuracy in tandem with increasing complexity. For those models

relying on vital sign data alone, this progression is logical, asmore com-

plex models can draw more granular borders between data. The dis-

crete vital sign cutoffs used for trigger criteria are simple to remember

and demonstrate considerable specificity but miss a substantial num-

ber of critically ill patients. Theenhancedaccuracyof themore complex

models likely reflects 2 factors—interaction effects between different

vital signs and the potential effects of age.

Early in their disease course, a critically ill patient may demonstrate

subtle changes in multiple vital signs, which may be difficult to rec-

ognize individually, but meaningful in the aggregate. We are primed

to recognize that a heart rate above 100 or a respiratory rate above

20 is abnormal because these numbers are salient.21,22 Comparatively,

a heart rate of 95 combined with a respiratory rate of 18 might be

equally predictive of illness, which may be easy for a clinician to miss,

but will not elude a regression. Similarly, there exist meaningful age-

related variations within vital signs, particularly for the elderly, which

the regression and neural network models can recognize, but might be

lost on all but the most meticulous clinicians.23,24 Cognitive aids exist

for recognizing abnormal vital signs over broad age ranges, such as the

Broselow tape in pediatric resuscitation,25 but no cognate tool exists

for the adult and elderly populations. For the deep-learning models

examined in our study, however, abnormal vital signs can be redefined

to a patient’s age on a year-by-year basis.

The modest improvement in accuracy between the logistic regres-

sion model and the neural network model and tree-based models

examining vital signs and demographic variables alone may reflect an

underlying information-theoretic limit to a single set ofmeasurements.

Although these models are more accurate than rigid vital sign cutoffs

anduseof theESI score, it is notable that optimal neural networkmodel

examining vital signs in our study was only 2 layers deep and was not

improved by adding additional layers representing higher-dimension

interaction effects. This suggests that although vital signs are essen-

tial to the triage process, and their interpretation can be improved sub-

stantially, alone they are not sufficient to identify all critical patients.

Although the addition of textual chief complaint data entails only

a small amount of additional data per patient, it was associated with

small but significant improvements in both the sensitivity and speci-

ficity of the neural network model. This likely reflects the critical con-

textual information that a patient’s chief complaint provides. A young

patient presenting with tachycardia and tachypnea may not be crit-

ically ill if their complaint is anxiety, and the additional attention of

being taken to a critical care bay might exacerbate their symptoms.

However, the same vital signs in a patient with a chief complaint of

abdominal pain could be essential to identifying a ruptured ectopic

pregnancy. Integrating free-text data directly into the analysis is a par-

ticular strength of the neural networks, as many other approaches

(eg, regression) may require either entering completely standardized

chief complaints (for use as categorical variables), or extensive pre-

processing. For example, a system that requires a nurse to choose

between “chest pain” and “back pain” will not capture the informa-

tion that “sudden chest pain radiating to back” can signify as a chief

complaint.

Ourmodels demonstrate similar levels of accuracy topriormachine-

learning approaches to predict admission from the ED. The neural net-

work in our study achieved similar accuracy to that examined by Hong

et al7 that predicted the larger category of all patients requiring admis-

sion, and Levin et al,6 which additionally predicted a patient’s spe-

cific ESI score. However, a significant distinction between our model

and similar approaches is that our model depends only on informa-

tion immediately available at triage. The models examined by Hong

et al7 had the benefit of using the triage ESI score as an input vari-

able. Although predicting the larger population of patients requiring

admission is important for operations management, and the triage ESI

score represents a rich source of data, it represents a prediction that

is informed by the triage process, rather than informing it. Conversely,

the e-triage system outlined by Levin et al leverages pre-existing data

within the medical record, which may disadvantage patients without

prior access to care, or patients who cannot provide a history.26 As a

result of using an open source framework, the neural networks exam-

ined in this study can be adapted for use in an EHR or web-browser,

and the model parameters are available to interested researchers by

request.

It is important to note that, as with any decision support tool, it

would be a mistake to use our model as a substitute for the judge-

ment of emergency physicians and nurses. The triage process is multi-

faceted, and the definition of critical illness used in this study excludes

many patients who require immediate attention and would be appro-

priately identified at an ESI level 1 or 2. For instance, patients pre-

sentingwith testicular or ovarian torsionwill rarely require ICU admis-

sion but clearly need immediate attention. Similarly, many triage pro-

tocols, such as those for patients being ruled out for stroke, require

patients to be appropriately triaged to levels 1 and 2, even if many ulti-

mately do not require critical interventions. However, even account-

ing for the effect of these patients on the specificity of ESI, within our

study, the current ESI algorithm fails to identify nearly a third of criti-

cally ill patients as meeting high acuity level criteria.

Accordingly, our results suggest that a neural networkmodel can be

a powerful supplement to clinicians’ immediate evaluations during the

triage process. Although the population of patients within this study

represented a higher rate of critically ill patients than found in sim-

ilar datasets, a distinct advantage of neural network models is that

they can be rapidly retrained to reflect the characteristics of different

population with similar performance. Combined with the use of frame-

works such as Local Interpretable Model-Agnostic Explanations,27

these models can also provide clinicians with real-time insight about

features that are particularly suggestive of critical illness (Figure 4) (ie,

subtle but important changes in vital signs) relative to patient age and

chief complaint. Thus, clinicians can think of a neural networkmodel at

triage as akin to having an automated, finely grained Broselow tape for

adults.
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F IGURE 4 Neural networkmodel prediction explanation for users

5 LIMITATIONS

Thiswas a retrospective study conducted at a single urban tertiary care

center with a significantly higher proportion of critically ill patients

than has been reported in similar studies. This may be partly explained

in terms of the relatively high average age of the patient population

but could also reflect institutional bias. The use of ICU admission as a

proxy for critical illness also introduces several significant limitations.

Depending on a hospital’s ICU and floor capabilities, as well as its insti-

tutional culture, a patient requiring ICU admission at one institution

(for frequent vital sign checks, vasoactive drips, VIP status, or as part of

certain post-operative protocols) might qualify for a stepdown unit at

another. Similarly, because abnormal vital signs may serve as an inde-

pendent criteria for admitting patients to the ICU, the presence of

abnormal vital signs may create a self-fulfilling prophecy—artificially

enhancing the accuracy of any predictive test of ICU admission, inde-

pendently of the severity of underlying illness. Finally, because of the

fact that our compositemetric examines outcomes after care in the ED,

a portion of patients who are triaged appropriately as critically ill but

who respond rapidly to treatment and ultimately do not need admis-

sion to an ICU, may be inappropriately mislabeled as not critically ill,

artificially decreasing themeasured sensitivity of triage.

An important technical and clinical consideration is that although

our study examined tests in terms of AUC and optimal test charac-

teristics, many clinicians will prefer to use diagnostic thresholds that

maximize test sensitivity at triage at the expense of reduced speci-

ficity. These preferences, and their operational consequences, should

be examined carefully before adapting any clinical decision support

system.

6 CONCLUSIONS

In this single-center, retrospective study of deep-learning approaches

to identifying critically ill patients at ED triage, neural network and

gradient-boosting models demonstrated significantly higher accuracy

than traditional methods of triage, suggesting that these models have

thepotential to significantly enhance the triageprocess.Althoughdiag-

nosing patients who are critically ill can more accurately help to more

appropriately mobilize resources within the ED to treat them, future

studies areneeded toassess the clinical andoperational impactof using

neural networks to enhance the triage process and to identify which

critically ill patients can benefit most from rapid intervention.
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