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ABSTRACT In livestock, current statistical approaches utilize extensive molecular data, e.g., single nucle-
otide polymorphisms (SNPs), to improve the genetic evaluation of individuals. The number of model
parameters increases with the number of SNPs, so the multicollinearity between covariates can affect the
results obtained using whole genome regression methods. In this study, dependencies between SNPs due
to linkage and linkage disequilibrium among the chromosome segments were explicitly considered in
methods used to estimate the effects of SNPs. The population structure affects the extent of such de-
pendencies, so the covariance among SNP genotypes was derived for half-sib families, which are typical in
livestock populations. Conditional on the SNP haplotypes of the common parent (sire), the theoretical
covariance was determined using the haplotype frequencies of the population from which the individual
parent (dam) was derived. The resulting covariance matrix was included in a statistical model for a trait of
interest, and this covariance matrix was then used to specify prior assumptions for SNP effects in a Bayesian
framework. The approach was applied to one family in simulated scenarios (few and many quantitative trait
loci) and using semireal data obtained from dairy cattle to identify genome segments that affect perfor-
mance traits, as well as to investigate the impact on predictive ability. Compared with a method that does
not explicitly consider any of the relationship among predictor variables, the accuracy of genetic value
prediction was improved by 10–22%. The results show that the inclusion of dependence is particularly
important for genomic inference based on small sample sizes.
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Inwhole-genome regressionanalyses, it is often the case that thenumber
of genomic markers, p, exceeds that of the observations, n. Moreover,
linkage and linkage disequilibrium (LD) between loci adds a second
source of dependency among the predictors. The number of genomic
markers such as single nucleotide polymorphisms (SNPs) is still grow-
ing, e.g., �26 million SNPs have been identified in the whole-genome
sequences of cattle (Daetwyler et al. 2014). Genomic prediction works
reasonably well when based on a huge number of explanatory variables
(e.g., Gianola 2013), but the high dependency among predictors, which

is often called multicollinearity, may lead to the incorrect genomic
inference of marker effects because the standard error of the estimated
effects is likely to be high.

For “p. n” problems, various methods are available that implic-
itly consider dependencies by selecting relevant predictors and/or
shrinking the effect sizes (for a thorough review, see de los Campos
et al. 2013). Bayesian (e.g., Meuwissen et al. 2001; Habier et al. 2011)
and penalized (e.g., Gianola et al. 2006; Piepho 2009) methods are
the most common choices for genomic prediction. However, explic-
itly exploiting dependencies, especially those due to the proximity of
SNPs, relies on the appropriate order of loci. Using the order of
SNPs, and clustering them according to their adjacency combined
with the Group Lasso method can obtain better performance than
other penalized approaches, where clusters that contain causal var-
iants may be identified with more confidence (Dehman et al. 2015).
Alternatively, haplotype-based approaches (e.g., Calus et al. 2008;
Cuyabano et al. 2014) exploit the connections between SNPs, which
may improve the accuracy of genetic value prediction. Associations
throughout the genome can also be modeled using a first-order
antedependence correlation structure (Yang and Tempelman
2012). A penalty term placed on successive differences between
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the coefficients is employed to consider the natural order of effects,
thereby yielding estimates with smooth transitions. In addition,
sparsity in terms of nonzero effect estimates can be achieved by
penalizing the L1 norm of differences in the fused lasso approach
(Tibshirani et al. 2005). In a Bayesian smoothing framework,
random-walk priors were suggested by Fahrmeir and Lang (2001),
which also allow nonequal distances between predictors. In partic-
ular, for genetic applications, Gianola et al. (2003) described an
autoregressive process with variable distances between markers
in a mixed-model formulation. Incorporating the dependencies
among SNPs can improve the outcomes of genomic evaluations
(Yang and Tempelman 2012), but the assumed pattern of the co-
variance structure has been based on general assumptions in pre-
vious studies.

The objective of the present study was to extend the Bayesian
approach by using an autoregressive prior for marker effects, and to
determine the autocorrelation parameter explicitly according to genetic
theory. The population structure influences the extent of associations.
Family stratification leads to different levels of LD among families, and
may result in a biased population-wide measure of LD. Thus, depen-
dencies caused by LD were theoretically derived for a single half-sib
family that ispartof a typical livestockpopulation (e.g., dairy cattle). This
required the haplotypes and recombination rates of the common par-
ent (sire) as well as the LD of gametes in the population fromwhich the
individual parent (dam) was derived. The obtained covariance struc-
ture was then integrated into a statistical model for genomic evaluation.
Genome segments with significant impacts on a quantitative trait were
inferred, and the precision of the parameter estimates as well as the
accuracy of genomic prediction were evaluated. This report ends with a
discussion of partial successes, drawbacks, and further options for con-
sidering dependencies.

MATERIALS AND METHODS

Statistical model
To study the genetic effects captured by SNPs, each with two alleles, A
and B, the following whole genome regression model is fitted to a trait
y ¼ ðy1; . . . ; ynÞ9,

y ¼ 1mþ Xmþ e: (1)

The design matrix X ¼ fXi;jgi;j contains the genotype codes at locus
j 2 f1; . . . ; pg for individual i 2 f1; . . . ; ng, where 1 and21 indicate
homozygous genotypes AA and BB, respectively, and the heterozy-
gote is coded as 0. The vector m ¼ ðm1; . . . ;mpÞ9 contains the addi-
tive genotype effect at each SNP (i.e., half the difference between
homozygotes). Furthermore, m denotes the overall mean, and 1 is a
vector of n ones. The residuals are assumed to be independent and
normally distributed, ei � Nð0;s2

e Þ for i ¼ 1; . . . ; n. For conve-
nience, other effects are omitted.

Covariance between SNP genotypes
In this section, model (1) is extended to consider the dependencies
among predictor variables in X due to linkage and LD specifically for a
paternal half-sib family design. The covariance between genotype codes
can be derived theoretically for each pair of SNPs. The derivation is
based on Bonk et al. (2016), who deduced the covariance between SNP
genotypes coding for additive and/or dominance effects in a general
mating, where the haplotypes of both parents are available. In the main
result for the additive effects of SNP alleles, the covariance can be split
into paternal (s) and maternal (d) contributions because the alleles are

inherited independently. In extension to Bonk et al. (2016), the mater-
nal contributionmust be generalized. It is assumed that a dam is drawn
randomly from the population. Half-sibs have a common sire, so the
covariance between loci j and k is determined according to the sire’s
diplotype S,

Kj;k   : ¼ cov
�
Xi;j;Xi;k

��SÞ
¼ cov

�
Xi;j;s;Xi;k;s

��S �þ cov
�
Xi;j;d;Xi;k;d

�
; (2)

where Xi;j;s and Xi;j;d take a value of 12 if the A allele was inherited, but
21

2 otherwise, and Xi;j ¼ Xi;j;s þ Xi;j;d .
Todetermine thepaternal contribution tothecovariance inEquation

(2), three different types of sire diplotypes are distinguished (the results
were taken from Bonk et al. 2016).

1. Double homozygous sire (haplotypes AA and AA): all half-sibs
inherit the same paternal haplotype AA, and the paternal covari-
ance is zero.

2. The sire is heterozygous at one locus (haplotypes AA and AB): two
haplotypes AA and AB can be observed among half-sibs, where
each is equally frequent. The paternal covariance is also zero.

3. Double heterozygous sire (haplotypes AA and BB or AB and
BA): all possible haplotypes appear among daughters with a
probability that depends on the recombination rate uj;k.
Thus, covðXi;j;s;Xi;k;s

��AA=BBÞ ¼ 1
4 ð12 2uj;kÞ or covðXi;j;s;Xi;k;s

��
AB=BAÞ ¼ 2 1

4 ð12 2uj;kÞ. If j ¼ k, then uj;k ¼ 0.

Using the allele frequency, pAj , and haplotype frequencies of the
maternal gametes, pXYj;k , the second part of Equation (2) is:

cov
�
Xi;j;d;Xi;k;d

� ¼ E
�
Xi;j;dXi;k;d

�
2 E

�
Xi;j;d

�
E
�
Xi;k;d

�
;

E
�
Xi;j;dXi;k;d

� ¼ pAAj;k
1
4
2 pABj;k

1
4
2 pBAj;k

1
4
þ pBBj;k

1
4
;

E
�
Xi;j;d

� ¼ pAj 2
1
2
;

E
�
Xi;k;d

� ¼ pAk 2
1
2
:

Combining the terms yields covðXi;j;d;Xi;k;dÞ ¼ pAAj;k p
BB
j;k 2 pABj;k p

BA
j;k ¼

Dj;k, the LD of maternal gametes. If j ¼ k, then covðXi;j;d;Xi;j;dÞ ¼
varðXi;j;dÞ ¼ pAj ð12 pAj Þ.

In summary, the covariancebetweenSNPgenotypes amonghalf-sibs
can be split into a linkage part contributed by the sire and an LD part
added by the mother. The covariance matrix K ¼ fKj;kgpj;k¼1 is set up
with the following elements:

Kj;k ¼

8>>>>><
>>>>>:

Dj;k þ 1
4

�
12 2uj;k

�
; for  sire  with  haplotypes  AA  and  BB

Dj;k 2
1
4

�
12 2uj;k

�
; for  sire  with  haplotypes  AB  and  BA

Dj;k; else:

The linkage phase of sire, the corresponding recombination rate (uj;k),
and the LD (Dj;k) of maternal gametes are assumed to be known. If
they are not available, these population parameters may be estimated,
such as using the maximum likelihood approach (Gomez-Raya et al.
2013). Now it is necessary to determine whether genomic evaluations
can be improved by knowing this covariance structure.
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Specification of prior assumptions
To estimate the unknown parameters of model (1), a Bayesian
shrinkage approach is employed. The matrix K can be incorporated
as a scale matrix during the specification of the prior assumptions.
Thus, a hierarchical structure is defined for model (1):

yjm;m;s2
e � N

�
1mþ Xm; Is2

e

�
;

mjC � Nð0;CÞ;

m} constant;

s2
e � x22ð22; 0Þ;

where x22ðn; SÞ denotes the inverse x2 distribution with n degrees of
freedom and scaling parameter S. Let C ¼ CðKÞ be a covariance
matrix that depends on the elements of K .

The SNP effects can be estimated as the mean of their poste-
rior distribution, which can be obtained by Gibbs sampling
from the conditional distribution (e.g., Sorensen and Gianola
2002)

mjy;C;m;s2
e }N

�
SX9ðy2 1mÞ;Ss2

e

�
with

S ¼  
�
X9X þC21s2

e

�21
:

(3)

Several specifications of C are suitable, which differ in terms of the
dynamics of their regularization parameters, as follows.

(P1) Uncorrelated prior C ¼ diagðs2
1; . . . ;s

2
pÞ. An inverse

prior is stipulated for the shrinkage parameters s2
j , i.e.,

pðs2
j Þ} 1

s2
j
, j ¼ 1; . . . ; p. Hence, the posterior distribution is

s2
j jelse} x22ð1;m2

j Þ. This approach is similar to that pro-
posed by Xu (2003), which represents a baseline model.

(P2) Correlated prior C ¼ Ks2. A flat prior is used for the variance
component, i.e., pðs2Þ} x22ð22; 0Þ, which is similar to that
proposed by Wang et al. (1994). This parameter is distributed a
posteriori as s

2 jelse � x22ðp2 2;m9K21mÞ.
(P3) Correlated and adaptive prior C ¼ GKG with G ¼ diag

ðg1; . . . ; gpÞ. The prior of the regularization parameters is
specified as pðgjÞ} x22

1 , j ¼ 1; . . . ; p. Therefore, the pattern
of the posterior density pðgj

��elseÞ is unknown, but it is pos-
sible to employ a hybrid strategy, where a Metropolis step
replaces the Gibbs step if sampling a parameter is impossible
(Tierney 1994). For each g, a single Metropolis iteration is
used. A log-normal density is applied to the gs as the proposal
density qðg�

j

��gðt21Þ
j Þ to obtain a random walk chain. By single-

site updating during each iteration t, the gs are individually
drawn from the proposal distribution:

x � N
�
lngðt21Þ

j ; e
�
;

g�j ¼ expðxÞ:

The tuning parameter e is set to one. (The choice of e is discussed
below.) Let t� denote the vector of tk ¼ 1=gk, k ¼ 1; . . . ; p, where
the jth component is replaced by the current proposed value, and
tðt21Þ refers to the vector of the samples obtained from the last
iteration. The ratio R is obtained as (see Appendix):

R ¼
p
�
g�j
���gðt21Þ

2j ;mðt21Þ; y
�

q
�
g�j
���gðt21Þ

j

� q
�
g
ðt21Þ
j

���g�j �
p
�
g
ðt21Þ
j

���gðt21Þ
2j ;mðt21Þ; y

�

¼
exp

�
2
1
2
t�9 ~Kt� þ 3

2
ln  t�j 2

t�j
2

�

exp

0
@2

1
2
tðt2 1Þ9 ~Ktðt21Þ þ 3

2
lntðt21Þ

j 2
t
ðt21Þ
j

2

1
A
;

with ~K ¼ K21#mm9 using the Hadamard product (#). The accep-
tance ratio is then determined as a ¼ minðR; 1Þ. The proposed
value is accepted, gðtÞ

j ¼ g�
j , if a random sample from a uniform

distribution is lower than a; otherwise, gðtÞ
j ¼ g

ðt21Þ
j . The idea is

related to the weighting of variables: with values starting at one,
the proposed values of g move slowly away from the initial esti-
mate toward zero if there is evidence of a null effect, or they in-
crease for nonzero SNP effects. Finally, after j ¼ 1; . . . ; p
Metropolis steps, the vector mðtÞ is sampled from the conditional
distribution (3).

(P4) Correlated and adaptive prior C21 ¼ LGL9 with G ¼ diag
ðg1; . . . ; gpÞ and LL9 ¼ K21. The prior of the shrinkage pa-
rameters is assumed to be pðgjÞ} x2

1 for j ¼ 1; . . . ; p. The
posterior density is then recognized as the kernel of a scaled

Figure 1 (A) Theoretical vs. empirical correlation for a randomly se-
lected SNP based on the simulated genotypes. (B) Contribution of
linkage (paternal part) to the covariance between SNPs.
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x2 distribution with v ¼ 2 and S ¼ ð~m2
j þ 1Þ21, where ~m ¼ L9m

(see Appendix).

If covariances betweenSNPs arenot considered, i.e.,K ¼ I, the prior
P2 is similar to a ridge-regression-type of model, while P3 and P4 are
similar to, e.g., BayesA-type of model (Meuwissen et al. 2001). In P3
and P4, two different types of modified Cholesky decompositions of the
scale matrix K are incorporated (Pourahmadi 2007). For P3, where the
correlations between SNPs are known and stationary, the covariances
between SNPs are affected by the gs which are sampled duringMarkov
chain Monte Carlo (MCMC) simulations. Shrinkage based on P4 is
related to differences in the effects of adjacent markers because the gs
influence the entries of the lower triangular matrix L.

Furthermore, the overallmean and residual variance component are
distributed a posteriori as

mjelse � N

�
1
n
19ðy2XmÞ;s

2
e

n

�
;

s2
e

��else � x22
�
n2 2; e9e

�
  with  residuals  e¼ y2 1m2Xm:

The columns of X are centered to favor mixing of the MCMC algo-
rithm (Stranden and Christensen 2011).

Criteria for evaluation
Theaccuracyofgenetic valuepredictionwasverifiedbycross-validation.
As a measure of accuracy, the mean correlation was calculated be-
tween the estimated and simulated genetic values in test data sets,
r ¼ corðXm̂;XmÞ. In addition, to compare the predictive ability of
the chosen priors, the mean true genetic value (TGV) was calculated
for individuals, which were selected based on their estimated genetic
value (EGV) according to a given fraction of selection (r). A range of
r values between 0.05 and 1 was considered for evaluation. It is expected
that the different methods would yield different rankings for the EGV.
In general, the maximum mean TGV is obtained when only a few
individuals are selected as parents of future offspring, and it approaches
zero if more individuals are selected. Thus, the performance of a
method can be determined by comparing the relationship between
the mean TGV and r.

The precision of the estimates of the residual and genetic variance
component was determined as the mean squared error (MSE) based on
repeated simulations:

Figure 2 Simulation with five QTL. SD of estimated effects at key SNPs for different sample sizes based on oneMCMC run: n ¼ 10;000 (A), n ¼ 1000
(B), n ¼ 100 (C). (D) Mean of TGV of individuals that were selected by their EGV based on 100-fold cross-validation (size of training set n ¼ 100).
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MSE
�
s2
e

� ¼ 1
B

XB
l¼1

�
ŝ2ðlÞ
e 2s2

e

�2
;

MSE
�
s2
a

� ¼ 1
B

XB
l¼1

�
ŝ2ðlÞ
a 2s2

a

�2
;

where ŝ2ðlÞ
e and ŝ2ðlÞ

a are the estimated residual and genetic variance in
the lth training block, respectively, l ¼ 1; . . . ;B. Given the estimated
marker effects, the genetic variance was estimated as ŝ2

a ¼ m̂9Km̂.
The true genetic variance was calculated based on simulated marker
effects as s2

a ¼ m9Km (Bonk et al. 2016). This formula considers the
contribution of LD to the genetic variance (Gianola et al. 2013).

Furthermore, the precision of the estimated effects at selected key
SNPs was verified by the SD of traced samples based on one MCMC
run. The SNPs at the five simulated quantitative trait loci (QTL) with
largest effects and, for each of the two largest QTL, two SNPs being in
high or low LD with the QTL, and within a window of 20 SNPs to
both sides were selected as key SNPs.

An appropriate measure of significance was required to evaluate the
suitability of the suggested priors for understanding the genetic archi-
tecture, particularly relevant genomic regions. First, because the SNP
effects were correlated, segment effects sðlÞj ¼P10

k¼0m
ðlÞ
jþk were calcu-

lated for a sliding window with an arbitrary width, which covered
11 SNPs, in the lth sampling round. These effects resemble haplotype
effects. Second, the posterior probability of being positive was obtained
from the Gibbs samples:

hj ¼ 1
N

XN

l¼1
I
�
sðlÞj . 0

�
;

where Ið�Þ denotes the indicator function, andN the number of Gibbs
samples after the burn-in period. If hj . 0:95 (positive effect size), or
hj , 0:05 (negative effect size), the segment was declared to have a
nonzero effect on y. This quantity represents a measure of evidence,
which is a Bayesian analog of the P-value, in a similar manner to that
described by De Braganca Pereira and Stern (1999).

Data
Two sets of data were explored. First, simulated data were used to
evaluate the performance of the Bayesian approach depending on the
different prior choices. Second, real genotype data were used to study
the pattern of covariance between SNPs in a real half-sib family and
for a particular chromosome. A real phenotype was not analyzed
because the present study focused on the impact of the covariance
matrix on the outcomes of genomic evaluations. Thus, challenges
related to real observations (other nuisance effects or uncertainty
about genetic effects on the selected chromosome) were eliminated
completely. Hence, a phenotype was simulated based on the real
genotypes to investigate the feasibility of the method in a general
manner.

Simulated data: Thegenomicdatawere simulatedusingasyntheticand
simplified approach, but the structure obtained for the dependencies
resembled a realistic setting. Further details are provided in Supple-
mental Material, File S1. In total, 500 marker genotypes for 10,000
progeny were simulated on a chromosome segment with a length of
12 cM, but only the loci at which the sire was heterozygous were
considered in further analyses (p ¼ 259). The SNP alleles were recoded,
so the sire haplotypes were AA/BB regardless of the allele frequencies.
The coding of alleles only affected the sign of the covariance and not the
estimated effect size.

Figure 3 Simulation with five QTL, n ¼ 100, and 100 repetitions. De-
tection of nonzero segment effects using the uncorrelated prior P1 (A)
and correlated prior P2 (B). Gray dots indicate the simulated QTL
positions.

n Table 1 Estimated variance components based on one MCMC
run and n ¼ 10;000 observations

Prior
5 QTL 50 QTL

s2
e s2

a s2
e s2

a

Uncorrelated P1 0.503 0.488 0.486 0.510
Correlated P2 0.507 0.475 0.488 0.499
Adaptive P3 0.506 0.497 0.488 0.522
Adaptive P4 0.506 0.497 0.488 0.522
Simulated 0.500 0.487 0.500 0.489

s2
e, residual variance; s

2
a , additive genetic variance.

Volume 6 September 2016 | Covariance Between SNPs | 2765

http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.116.032409/-/DC1/FileS1.pdf


To simulate phenotypic observations, the effects of either five or
50 QTL were drawn randomly from a gamma distribution with shape
parameter a ¼ 0:420, and scale parameter b ¼ 2:619. The sign was
sampled with equal likelihood. In the five-QTL scenario, the second
largest QTL was placed adjacent to the largest QTL, with four SNPs
between them to complicate its detection. A residual error was added,
and the resulting phenotype was scaled to have a variance of one.
Finally, the simulated residual variance component s2

e was 0.500,
and, considering the formula for additive genetic variance given above,
the simulated additive genetic variance s2

a was 0.487 in the five-QTL
scenario, and 0.489 in the 50-QTL scenario. The QTL were taken from
the SNP set, and they remained in the data.

The accuracy of the predicted genetic value, and the estimated
variance components was evaluated using a B-fold cross-validation.
For that, the complete data set (n ¼ 10;000) was split into successive
blocks with a training set size of n ¼ 100 (small sample size, B ¼ 100
repetitions) or n ¼ 1000 (medium sample size, B ¼ 10 repetitions).

Semireal data: The data set comprised a single half-sib family of
Holstein-Friesian cows (n ¼ 106), which were initially genotyped
with a 50K SNP chip, where the complete data set was described
by Wittenburg et al. (2013). The sire was phased based on the
daughter genotypes using the R package hsphase (Ferdosi et al.
2014). For convenience, only p ¼ 903 SNPs at which the sire was
heterozygous were selected from BTA1. The SNP alleles were
recoded corresponding to the sire haplotypes AA/BB. The paternal
recombination rate and LD of maternal gametes were estimated by
numerical maximization (NM) of the log-likelihood function using
the R function optim (R Core Team 2014) (see File S1). It was found
that 407 of the 903 eigenvalues of K were negative, so the bending
algorithm proposed by Jorjani et al. (2003) was employed to obtain a
positive definite approximation of the covariance matrix. A pheno-
type was simulated based on five QTL (s2

a ¼ 0:521, s2
e ¼ 0:500), as

described above.
The data are provided as File S2 and File S3. The physical order of

the SNPs on BTA1 followed the Btau4.2 annotation (File S4).

MCMC computing
(Metropolis-within-) Gibbs sampling algorithms were implemented in
Fortran 90 embedding LAPACK 3.5.0 (www.netlib.org/lapack) and
module random 1.13 (jblevins.org/mirror/amiller). The program ran
on a 2.93 GHz multi-user system. A single chain comprising 50,000
sampling rounds was executed, and 20,000 iterations were omitted as
the burn-in. The R package coda was used for MCMC diagnostics. In
particular, the effective sample size (ESS) andHeidelberger andWelch’s
test, which tests the null hypothesis that the samples were drawn from a
stationary distribution, were employed to determine the convergence of
a Markov chain.

Data availability
The authors state that all data necessary for confirming the conclusions
presented in the article are given in the Supplemental Material (File S2,
File S3, and File S4).

RESULTS

Simulated data
The diagonal elements of the theoretical covariance matrix K ranged
from 0.473 to 0.500, with a mean value of 0.492. The off-diagonal
elements varied from 0.174 to 0.331 around a mean of 0.231. The
covariance decreased gradually with increasing distance between the
SNPs. After conversion into correlations, the off-diagonal entries
ranged from 0.352 to 0.667, with a mean value of 0.470. As shown in
Figure 1A, the theoretical and observed correlations were compared for
a randomly selected SNP in a window of 200 SNPs, where the theoret-
ical correlation decreased rapidly from the diagonal to off-diagonal
elements, but this agreed with the values observed based on the geno-
types. Figure 1B shows the paternal contribution (i.e., linkage) to the
covariance between SNPs, as discussed later.

MCMC diagnostics indicated the convergence of the MCMC algo-
rithm for all of the proposed priors. ESS at key SNP effects was rather
high, i.e., . 10,309, and . 30,000 for a few exceptions; these values
hardly differed between SNPs being the QTL or not. Heidelberger and
Welch’s test was generally passed. The test failed only at the key SNP
with the smallest simulated effect in the five-QTL scenario when the
prior P4 was selected. Furthermore, for the hybrid strategy with prior
P3, the acceptance ratea ranged from 0.54 to 0.79 (from 0.55 to 0.80) in
the five-QTL (50-QTL) scenario.

For all of the selected priors, andwithfive and 50 simulatedQTL, the
estimated SNP effects agreed well with the simulated effects when the
complete data set (n ¼ 10;000) was used. Most of the shrinkage effects
were observed with the correlated prior P2. Many spurious effects were
estimated with small effect sizes using all of the correlated prior choices.
As expected, the empirical SD of key SNP effects was lowest when based
on the complete data set, and it increased as the sample size decreased
(e.g., see Figure 2, A–C for the five-QTL scenario). Inmost cases, the SD
of SNP effects at the QTL was lowest with the correlated prior P2,
irrespective of the sample size. At non-QTL, smallest SD was obtained
with P2 only for the small sample size. This was attributed to the very
high shrinkage due to the prior P2.

For the five-QTL scenario and based on one MCMC run, few
significant chromosome segments were falsely detected when one of
the correlated priors was selected. However, for small sample sizes,
repeated simulations showed that using the uncorrelated prior P1 and
correlated prior P2, only one significant segment at the end of the
chromosome was identified correctly (Figure 3). The relevant region
was smaller with the uncorrelated prior assumption. No significant
segments were found with priors P3 and P4. For the 50-QTL scenario

n Table 2 Mean squared error (MSE) of the estimated variance
components

Prior
5 QTL 50 QTL

MSE s2
e MSE s2

a r MSE s2
e MSE s2

a r

Uncorrelated P1 0.145 0.074 0.760 0.157 0.080 0.747
Correlated P2 0.015 0.021 0.839 0.007 0.013 0.909
Adaptive P3 0.055 0.065 0.692 0.057 0.100 0.739
Adaptive P4 0.014 0.072 0.682 0.014 0.107 0.730

Correlation (r) between the predicted and simulated genetic values; 100-fold
cross-validation (size of training set n ¼ 100). s2

e, residual variance; s
2
a , additive

genetic variance.

n Table 3 MSE of the estimated variance components

Prior
5 QTL 50 QTL

MSE s2
e MSE s2

a r MSE s2
e MSE s2

a r

Uncorrelated P1 0.00092 0.00116 0.974 0.00133 0.00358 0.964
Correlated P2 0.00090 0.00575 0.916 0.00042 0.00277 0.943
Adaptive P3 0.00056 0.01849 0.880 0.00069 0.02758 0.889
Adaptive P4 0.00060 0.02581 0.862 0.00047 0.03698 0.874

Correlation (r) between the predicted and simulated genetic values; 10-fold
cross-validation (size of training set n ¼ 1000). s2

e, residual variance; s
2
a , additive

genetic variance.
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and using all priors, hardly any chromosome segments were detected due
to the high level of uncertainty. For a medium sample size, the identifi-
cation of significant segmentswas generally improved, and it even reached
100% for the largest QTL with all of the priors (results not shown).

The estimated variance components differed only slightly among the
four methods for the complete data set, which were estimated to range
from 0.475 to 0.497 for s2

a, and from 0.503 to 0.507 for s2
e in the five-

QTL scenario (Table 1). In the 50-QTL scenario, the estimates ranged
from 0.499 to 0.522 for s2

a, and from 0.486 to 0.488 for s2
e (Table 1).

The MSE of the estimated variance components showed that the pre-
cision was greatest with the correlated prior P2 irrespective of the
number of QTL when the sample size was small, as well as with a
medium sample size and 50 QTL (see Table 2 and Table 3).

The accuracy of the genetic value predictions was highest for the
correlated prior P2 only with n ¼ 100; otherwise, the highest accuracy
was obtained using the uncorrelated prior P1. The decrease in the mean
TGV according to the fraction (r) of selected candidates gave mixed
results (e.g., see Figure 2D), where no method performed especially well
with five QTL. The mean TGV was highest with the correlated prior P2
onlywhen rwas between about 30%and 70% in thefive-QTL scenario, but

this prior was generally better with 50 simulated QTL. The adaptive priors
P3 and P4 generally performed worse in terms of all the evaluation criteria.

Additional figures showing the results are provided in File S1.
Moreover, as part of this material, a simple simulation study was
conducted to determine the shape of the theoretical covariance
according to the recombination rate between a pair of SNPs. The
average theoretical covariance agreed well with the empirical covari-
ance obtained based on the progeny genotypes.

Semireal data
There was a good agreement between the theoretical and empirical
correlations between SNP genotypes. The pattern of the correlations is
shown in File S1. A gradual decrease in the entries was found with
increasing distance between the SNPs. The off-diagonal values ranged
from 20:411 to 1.000, with a mean value of 0.219. The low minimum
value was due to an extreme estimate of the LD, i.e., D ¼ 2 0:202
between SNP 99 and 619, where the corresponding covariance
was 20:193. If the distance between SNPs is rather large, then an
extreme covariance indicates a potential error in the marker map. This
hypothesis is supported by the values in the 99th row ofD, which is the

Figure 4 Estimated maternal LD with two selected
SNPs on BTA1 for the real genotypes. The vertical line
refers to the SNP with which pairwise LD was calculated.
Smoothing via B-splines visualizes the trend of the data
(red curves). (A) LD pattern shows a potential error in the
marker map. (B) Maximum LD was observed around the
reference SNP indicating correct positioning.
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matrix of the pairwise LD values. It was expected that the maximum at
around position 99 would decrease more or less smoothly on both
sides, but this was not the case for this SNP, unlike SNP 619 (Figure 4).

Using MCMC computing, ESS at key SNP effects varied between
324 and 39,910, and was lowest with prior P2. However, ESS differed
slightly between SNPs at the QTL and non-QTL. Heidelberger and
Welch’s test was passed by all of the priors, which indicated that the
Markov chain converged to a stationary distribution. Furthermore, the
acceptance rate a ranged from 0.13 to 0.25 with prior P3.

The estimated SNP effects were far from their simulated effect sizes,
whichwas duemainly to the small sample size causing a high amount of
uncertainty. Using the correlated prior P2, whichwas the approachwith
the highest degree of shrinkage, a significant segment at the end of the
chromosome was identified correctly. The variance components were
estimated as s2

a ¼ 0:419 and s2
e ¼ 0:505. The other prior choices

yielded variance component estimates . 2 · these values.

DISCUSSION
Our theoretical investigations have shown that the covariance between
SNPs depends on the genetic distance and the maternal LD between
them. In this study, the covariance matrix derived for a single half-sib
family was employed in genomic evaluations of a simulated phenotype
with heritability of about 50%. The results depended greatly on the
sample size, but the inclusion of the covariance matrix was clearly
beneficial for small sample sizes (n ¼ 100) in terms of both the MSE of
the additive and residual variance components as well as the accuracy of
the genetic value predictions, although there were no advantages with
larger sample sizes (n ¼ 1000). These variable outcomes may have
several explanations, which are related to the nature of covariance in
the selected population design and the different prior assumptions.

Covariance matrix
Previous studies have suggested that some covariance or correlation
structure for marker effects should be included in regression models to
estimate their effects. Candidates selected from covariance structures
haveproveduseful inotherfields, suchas time series analysis, i.e., equally
spaced autoregressive, Toeplitz and Gaussian decay (Gianola et al.
2003), and first-order antedependence (Yang and Tempelman 2012).
All of these methods assume some decay of the correlations with in-
creasing distance between the markers, thereby considering the fact
that recombination becomes more frequent when markers are more
distant. However, in contrast to these previousmethods, our derivation
makes explicit use of well-established genetic arguments, and it is based
on the recombination frequencies, Haldane’s underlying mapping
function (Bonk et al. 2016), and the population-wide pairwise LD.
Basically, the covariance between SNPs is determined as the sum of a
paternal andmaternal part. Assuming many half-sibs, the paternal part
is considered for coinheritance (linkage), whereas the maternal part

models the population-wide LD. The sign and size of the correlations
are known a priori (with the exception of the second adaptive method,
P4) in contrast to the antedependence model proposed by Yang and
Tempelman (2012). In the latter model, the sign and size of the re-
gression for a marker effect on that of its predecessor are determined
during each iteration by sampling from a normal distribution. Both
adaptive versions allow for some variation in the covariances be-
cause each sampled gamma parameter affects both the diagonal and
off-diagonal elements of the inverse covariance matrix. In non-QTL
regions, small gs are expected, whereas large g-values are related to
QTL regions. This was also observed in our data analyses (see File S1).
Therefore, such a covariance structure may be classified as nonstation-
ary in a similar manner to the antedependence model because the
covariances depend on the distances between markers and on the
marker positions, i.e., their proximity to QTL.

Unlike haplotype-based approaches (e.g., Calus et al. 2008;
Cuyabano et al. 2014), which require that all of the individuals are
phased, only the sire’s haplotypes need to be known when using the
proposed method. In the present study, we focused on a half-sib family
structure, but other population structures are also relevant for livestock,
e.g., full-sib families often occur in chickens. Gametes of full-sibs are
derived from a single sire and dam, and therefore the covariance be-
tween SNPs is restricted to the linkage part. (Paternal half-sibs repre-
sent a special case of a population with full-sib family structure, and the
maternal gametes can be seen as random samples of a population with
corresponding LD.) Then, the haplotypes of both parents should be
considered when setting up the covariance matrix, as shown by
Bonk et al. (2016). A typical livestock population comprises a mixture
of families, so population-specific effects may be required instead of
family-specific effects. The extension of the covariance matrix to a
multiple-family study will be investigated in future research. The pop-
ulation covariance matrix could be set up as a weighted average of
family-specific covariance terms, where the weight depends on the
family size relative to the total sample size. Family sizes are often much
smaller than 100, especially for full-sibs, so including the covariance
between SNPs in genomic evaluations is expected to be beneficial, but
this should be confirmed in a subsequent study.

All of the parameters required for the covariance matrix K were
available for the simulated data. However, the recombination rate and
LD of the maternal gametes had to be estimated from the progeny
genotypes for the real data. In this study, estimates were obtained by
NM of the log-likelihood function. Alternatively, u and D could be
estimated by the expectation-maximization (EM) algorithm (Gomez-
Raya et al. 2013). However, this iterative approach is more time con-
suming than the iterations required forNM. There was good agreement
between the theoretical and empirical covariances obtained from the
progeny genotypes, but the covariancematrix was indefinite for the real
data genotypes (and positive definite for the simulated data), and thus it

n Table 4 MSE of the estimated variance components when the
inverse covariance matrix was sparse

Prior
5 QTL 50 QTL

MSE s2
e MSE s2

a r MSE s2
e MSE s2

a r

Uncorrelated P1 0.145 0.074 0.760 0.157 0.080 0.747
Correlated P2 0.036 0.022 0.831 0.014 0.013 0.904
Adaptive P3 0.087 0.053 0.779 0.083 0.065 0.772
Adaptive P4 0.010 0.014 0.745 0.011 0.029 0.795

Correlation (r) between the predicted and simulated genetic values; 100-fold
cross-validation (size of training set n ¼ 100). For comparison, results with P1
were taken from Table 2.  s2

e, residual variance; s
2
a , additive genetic variance.

n Table 5 MSE of the estimated variance components when the
inverse covariance matrix was sparse

Prior
5 QTL 50 QTL

MSE s2
e MSE s2

a r MSE s2
e MSE s2

a r

Uncorrelated P1 0.00092 0.00116 0.974 0.00133 0.00358 0.964
Correlated P2 0.01499 0.01413 0.858 0.00563 0.00465 0.911
Adaptive P3 0.00084 0.00110 0.969 0.00116 0.00390 0.960
Adaptive P4 0.00063 0.00070 0.965 0.00045 0.00266 0.951

Correlation (r) between the predicted and simulated genetic values; 10-fold
cross-validation (size of training set n ¼ 1000). For comparison, results with P1
were taken from Table 3. s2

e, residual variance; s
2
a , additive genetic variance.
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was forced to be positive definite by bending. This was probably caused
by errors in the estimation of the required parameters, which could be
estimated more precisely using larger families.

When the alleles of the sire haplotypes were coded according to the
observedminor allele frequency in the sample,bothof the sirediplotypes
AA/BB and AB/BA appeared in the double heterozygous case. The
covariance matrix had then a block structure, which represented the
nonrecombinant genome segments.

Prior assumptions
In this study, each of the correlated priors incorporated a dense
covariance matrix, and its inverse is also dense. According to Lang
et al. (2002), locally adaptive random-walk priors penalize the differ-
ence between successive effects, thereby allowing local regularization to
avoid oversmoothing. The inverse K21, which is also called the pre-
cision matrix, could be adjusted to have a banded structure to allow
better local adaptivity in genomic evaluations. As an option, sparseness
can be achieved by eliminating the “noise”. In the present study, the
paternal contribution (i.e., linkage) to the covariance matrix was more
important than the maternal part (i.e., population LD), where the
interquartile range of D was zero in the simulations (mean ¼ 0) and
0.064 in the real genotypes (mean¼ 0:016). Thus, an approximation of

K retained only the paternal part

	
1
4 ð122uj;kÞ


p

j;k¼1

. Figure 1B shows

the pattern for a randomly selected SNP. This simple struc-
ture can be inverted theoretically by exploiting, for instance,

12 2u1;3 ¼ ð12 2u1;2Þð12 2u2;3Þ, based on Haldane’s mapping
function. The dependence throughout the genome represents an
autoregressive process, so the inverse covariance matrix depends only
on the predecessor and successor, thereby yielding a three-band ma-
trix that fully considers the unequal distances between SNPs. This
type of sparse structure has also been derived and implemented using
a Gibbs sampling strategy for a backcrossed population by Reichelt
et al. (2015). Using this structure, a more local impact of the regular-
ization parameters is obtained using the adaptive priors P3 and P4,
and the error propagation caused by numerical imprecisions along
the chromosome appears to be reduced. The influence of this struc-
ture on the performance of the correlated prior selections is shown
in Table 4 and Table 5, and in File S1. In particular, the MSE was
smallest using the adaptive priors P3 and P4. Furthermore, the iden-
tification of significant chromosome segments was improved, and
slightly superior to the uncorrelated prior P1 (e.g., see Figure 5 for
the five-QTL scenario). During the analysis of real data, this approx-
imation has an additional positive impact because only the recombi-
nation rate needs to be estimated. Unlike classical linkage analysis or
linkage/LD analysis (e.g., Meuwissen et al. 2002), which is applied to a
marker bracket instead of all markers simultaneously, this restriction
to the linkage part, works well, even though the parental origin of the
SNP alleles has not been identified.

A second option for approximation uses the modified Cholesky
decomposition of the inverse matrix, C

21 ¼ LGL9, which is suitable
for P4. Wu and Pourahmadi (2003) derived a smoothing algorithm for

Figure 5 Simulation with five
QTL, n ¼ 100, and 100 repeti-
tions. Detection of nonzero seg-
ment effects using the sparse
inverse covariance matrix and
uncorrelated prior P1 (A), corre-
lated prior P2 (B), adaptive prior
P3 (C), and adaptive prior P4 (D).
Gray dots indicate the simulated
QTL positions.
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L along its subdiagonals for longitudinal data and p, n. Future studies
should investigate whether this banded structure can also be derived for
p. n. The sparse structure of the inverse matrix is also a consequence
of the antedependence specification proposed by Yang andTempelman
(2012). Exploiting a sparse structure in the MCMC algorithm will also
improve the computational speed (e.g., for n ¼ 100, the current imple-
mentation required on average 15 min based on prior P1, and 48 min
based on prior P4.)

The prior covariancematrix used inP3 is similar to that described by
George and McCulloch (1993) in terms of the dynamic regularization
parameters (gs), although it is implemented as a variable selection
approach. In the present study, variable selection was not executed
because it was assumed that each marker contributes to the genetic
variation, at least indirectly through LD. However, this strategy led to
poormixing in theMCMCalgorithm compared with the adaptive prior
P4 using semireal data (results not shown). The trace plots contained
repetitions of effect samples with low variability, followed by samples
with very high variability, which was not observed to the same extent
for the simulated data with small sample sizes. The correlated prior
P2 was the most robust prior choice for both the simulations and
semireal data because it could detect significant chromosome seg-
ments and estimate the variance components with the smallest MSE.
To facilitate realistic genome-wide evaluations, we recommend
specifying chromosome-wise priors, i.e., mcjCc � Nð0;CcÞ and
Cc ¼ K cs

2
c for c ¼ 1; . . . ; nchr. Genome-wide shrinkage, which em-

ploys a single regularization parameter s2, may be too strict if only a
few QTL are present.

Bayesian approaches require the specification of prior distributions
but theuseofhyper-parameterswasminimized in thepresent study.The
sensitivity to the selected priors has been evaluated and discussed
previously, e.g., by Knürr et al. (2013) and Gianola (2013). In the
adaptive prior P3, the tuning variance was set to e ¼ 1:0, which made
this approach sensitive, and it compromised the repeatability of the
experiments. For example, for different choices of e 2 f0:01; 0:1; 1:0g,
a varying acceptance rate a was obtained, where a was higher when e
was smaller. However, the impact on a single-effect estimate was neg-
ligible for both the simulated and semireal data, whereas the estimated
variance componentss2

e ands
2
a differed in terms of the second decimal

place (results not shown). With e ¼ 1:0, the range of a roughly agreed
with the rule of thumb given by Besag et al. (1995) who showed that an
acceptance rate between about 30% and 70% was often satisfactory.
Alternatively, the tuning variance may be adjusted during the burn-in
phase to obtain an intermediate a (25–50%) in a similar manner to
Yang et al. (2015).

Sample size
The sample size had a major effect on the outcome. For small sample
sizes (n ¼ 100), the effect estimates were poor, and a high EGV was
obtained even for those individuals with low TGV. Thus, the curves of
themean TGVs (e.g., in Figure 2D based on five simulatedQTL) started
below 0.900 at a selection rate r ¼ 5%, although the 95% quantile for
the TGV was 1.106. The shape of the curve based on the correlated
prior choice P2 was unusual, where it decreased very slightly until
r ¼ 50%, and it then declined rapidly, which may be explained by
the following two reasons. First, the SNP effects were greatly reduced
toward zero due to the major effect of the shrinkage parameter s2.
Second, the sire was heterozygous at all of the loci considered (with
A alleles on one strand and B alleles on the other), so there were only
few recombinant offspring, and the distribution of EGV was bimodal
(see File S1). The variation around the two modes was due to variation
in the maternally inherited gametes. Thus, the individuals selected with

the highest EGV comprised a mixture of high/medium/low-TGV in-
dividuals, and the curve obtained for the mean TGVs decayed slowly.
The curve approached the population mean rapidly above r ¼ 50 %.
This outcome was also observed, but to a much greater extent, in
simulations with 50 QTL as well as when combined with the sparse
inverse covariancematrix (File S1). This patternwas not detectedwith a
medium sample size (n ¼ 1000), probably because of the improved
estimation of the parameters, and the occurrence of more recombinant
offspring. This phenomenon is unlikely to occur if more than one
chromosome is investigated, thereby causing greater variation in the
paternal gametes.

Conclusion
In this study, the dependence between SNP genotypes was derived
theoretically from the genetic parameters for a half-sib family. Integrat-
ing this information into genomic evaluations improved the estimates of
the variance components and the genetic value predictions when the
sample size was small (n ¼ 100). Thus, in small populations, for which
the parameter estimates are typically affected by high uncertainty when
the number of predictors is large, additional information about the
population structure can increase the precision, thereby following the
general Bayesian principle. The proposed correlated prior choices could
potentially obtain better overall performance if a locally adaptive ap-
proximation of dependence is employed.
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APPENDIX

Prior P3

The target distribution pðgj
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For convenience, it is tj ¼ 1
gj
and t ¼ ðt1; . . . ; tpÞ9. Hence,
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with ~K ¼ K21#mm9 employing the Hadamard product (#). Thus,
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The proposal density is lognormal, i.e.,
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Except the last ratio, this function is symmetric in g�
j and g

ðt21Þ
j . Let t� denote the vector of ts, where the jth component is replaced by the current

proposed value, and tðt21Þ refers to the vector of samples from the last iteration. Finally, the ratio R is
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Prior P4

The posterior density of regularization parameters is derived as
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Set ~m ¼ L9m, then
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Thus, the gs are conditionally independent, each distributed as scaled x2.
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