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Abstract: With the rapid development of communication technology in civil and military fields,
the problem of electromagnetic radiation pollution caused by the electromagnetic wave becomes
particularly prominent and brings great harm. It is urgent to explore efficient electromagnetic wave
absorption materials to solve the problem of electromagnetic radiation pollution. Therefore, various
absorbing materials have developed rapidly. Among them, iron (Fe) magnetic absorbent particle
material with superior magnetic properties, high Snoek’s cut-off frequency, saturation magnetization
and Curie temperature, which shows excellent electromagnetic wave loss ability, are kinds of promis-
ing absorbing material. However, ferromagnetic particles have the disadvantages of poor impedance
matching, easy oxidation, high density, and strong skin effect. In general, the two strategies of
morphological structure design and multi-component material composite are utilized to improve the
microwave absorption performance of Fe-based magnetic absorbent. Therefore, Fe-based microwave
absorbing materials have been widely studied in microwave absorption. In this review, through the
summary of the reports on Fe-based electromagnetic absorbing materials in recent years, the research
progress of Fe-based absorbing materials is reviewed, and the preparation methods, absorbing prop-
erties and absorbing mechanisms of iron-based absorbing materials are discussed in detail from the
aspects of different morphologies of Fe and Fe-based composite absorbers. Meanwhile, the future
development direction of Fe-based absorbing materials is also prospected, providing a reference for
the research and development of efficient electromagnetic wave absorbing materials with strong
absorption performance, frequency bandwidth, light weight and thin thickness.

Keywords: Fe magnetic composites; microwave absorbing particles; controllable synthesis;
microwave absorbing properties

1. Introduction

The rapid development of communication technology in civil and military fields leads
to various electromagnetic waves flooding peoples’ living environments, causing serious
electromagnetic radiation pollution and bringing great harm [1–3]. To solve the electromag-
netic radiation pollution caused by electronic equipment, one of its core technologies is the
development of relevant electromagnetic wave absorbing materials (EMWAMs). For this
reason, scholars have devoted themselves to the research of efficient EMWAMs in the last
ten to twenty years [4,5].

The ideal EMWAMs should have the characteristics of “strong, wide, light and thin”
(strong absorption of EM wave, wide effective absorption band, light weight and thin
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thickness) [6]. Currently, EMWAMs are divided into three categories according to the loss
mechanism: dielectric, resistive and magneto-dielectric. Dielectric-type absorbing mate-
rials such as semiconductors and oxides own the advantages of low dielectric constants,
good impedance matching properties, and chemical stability, but their electromagnetic
loss capability is insufficient [7,8]. Resistive absorbing materials such as carbon materials
have the advantages of high conductivity loss, low density and abundant dipoles, but they
have poor impedance matching characteristics and high reflectivity; thus, it is difficult for
electromagnetic waves to incident into the material, and a large number of electromagnetic
waves are reflected into space, resulting in secondary pollution [9,10]. Magnetic metal
wave-absorbing materials have excellent properties, such as high dielectric constant and
permeability, high magnetic loss, high cut-off frequency, high saturation magnetization
strength, and good temperature stability, which are a class of wave-absorbing materials
with great development potential and application prospects [11–13]. Among them, Fe
magnetic metal has the best performance, the most research, and the most extensive ap-
plication. Fe magnetic absorbent particle material has good magnetic properties, high
Snoek’s cutoff frequency, saturated magnetization, and Curie temperature, demonstrating
an excellent electromagnetic wave loss ability, which has been an important direction for
the development of microwave absorbing materials [14–16]. Although the conventional
structure and single-component Fe magnetic absorbers have a certain wave absorption
performance, Fe magnetic absorbent particles have poor impedance matching characteris-
tics, high density, easy oxidation, and strong skin effect, resulting in the ideal EMWAMs’
performance that cannot be satisfied. In order to improve the comprehensive microwave
absorption performance, the following two performance improvement strategies are gener-
ally used: one is to improve the magnetic permeability and magnetic loss of the material
by a morphological structure design to enhance the wave absorption performance [17,18];
the other is to enhance the wave absorption performance by multi-component material
compounding to enrich the loss mechanism and optimize the impedance matching [19,20].
Therefore, in recent years, the research of Fe metal magnetic absorbing materials is mainly
focused on the preparation of different morphologies and other material composites.

In this paper, the research progress of Fe-based absorbing materials is reviewed firstly,
and then the preparation methods, absorbing properties, and absorbing mechanism of Fe-
based absorbing materials are discussed in detail from two aspects: different morphologies
of Fe-based absorbing agents and Fe-based composite absorbing agents. Finally, the future
development direction of Fe-based absorbing materials is prospected.

2. Wave Absorption Mechanism of EMWAMs

The absorbing mechanism of EMWAMs is shown in Figure 1. Due to the mismatch
between the impedance of the free space and the impedance of the medium, when the
electromagnetic wave propagates in space and meets the medium, part of the electromag-
netic wave will be reflected at the interface between the free space and the medium, while
the other part will be refracted into the medium. The electromagnetic waves propagating
inside the medium will interact with the medium and convert the energy of electromag-
netic waves into other forms of energy such as heat, electricity, mechanical energy, etc., for
dissipation [21].

The impedance matching characteristics of the absorbing material can be achieved by
creating and designing special boundary conditions. For a single-layer absorbing material
model, when an electromagnetic wave is irradiated vertically from a free space with
impedance Z0 to an absorbing layer with input impedance Zin, the reflection coefficient of
the electromagnetic wave is:

R =
Z0 − Zin
Z0 + Zin

(1)

Zin =
E
H

=

√
µrµ0

εrε0
(2)
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Z0 =
µ0

ε0
(3)

where E and H denote the electromagnetic strength and magnetic field strength when
there are electromagnetic waves in the material, respectively; µ0 and ε0 are the free space
permeability and dielectric constant, respectively; µr and εr are the magnetic permeability
and dielectric constant of the material, respectively [22].
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When Zin = Z0, that is µ0/µr = ε0/εr, the reflection coefficient R = 0, the material
achieves impedance matching with free space. In addition, for a specific wavelength of
electromagnetic waves, the design thickness can be targeted d = nλ/4 (n = 1, 3, 5, . . . ).
The absorbing layer (called the narrow-band resonant absorber layer) is where the phase
difference between the reflected electromagnetic waves on both upper and lower surfaces of
the absorbing layer is 180◦; thus, that the interference cancellation makes R minimum [23].

The realization of the attenuation characteristics requires that the electromagnetic
parameters of the absorbing material meet specified requirements. According to the
microwave transmission line principle, the attenuation of electromagnetic waves per unit
length of the material can be expressed in terms of the attenuation parameter α, which is
expressed as follows [24]:

µr = µ′ − jµ′′ (4)

εr = ε′ − jε′′ (5)

α =

√
2π f
c
×

√
(µ′′ ε′′ − µ′ε′) +

√
(µ′′ ε′′ − µ′ε′)2 + (µ′ε′′ + µ′ε′′ )2 (6)

Equations (4) and (5) are the complex expressions of material permeability µr and
dielectric constant εr, respectively. f and c are the frequency and propagation speed of
the electromagnetic wave in a vacuum, respectively. According to Equation (6), it can be
observed that to achieve attenuation of the incident electromagnetic waves, it is necessary to
satisfy that µ′′ and ε′′ are not simultaneously 0. Moreover, to achieve the efficient absorption
of electromagnetic waves, it is necessary to increase the value of α. Therefore, µ′′ is always
as large as possible and µ′ is as small as possible (there is no such problem in the electric
loss absorbing materials), while ε′′ and ε′ are determined by the type of material; for electric



Molecules 2022, 27, 4117 4 of 23

loss absorbing materials, ε′′ large and ε′ small is as good; the magnetic loss absorbing
materials are the opposite.

The permeability real part µ′ and dielectric constant real part ε′ represent the storage
capacity of magnetic field energy and electric field energy of the incident electromagnetic
wave, respectively. The imaginary part of permeability µ′′ and the imaginary part of
dielectric constant ε′′ indicate the energy loss ability [25]. For the absorbing material, its
absorbing performance is closely related to the electromagnetic parameters, and the loss
factor is usually used to characterize the dielectric loss and magnetic loss of the material
for electromagnetic waves, namely:

tan δε = ε′′/ε′ (7)

tan δµ = µ′′/µ′ (8)

Equations (7) and (8) are the electric loss factor and magnetic loss factor of the material,
respectively. It can be observed that the larger the ε′′ and µ′′ of the wave-absorbing material,
the stronger its ability to lose electromagnetic waves. In practical applications, all factors
should be taken into consideration to improve the impedance and loss factor as well as the
internal structure by selecting the material type (magnetic or dielectric) and thickness, so
as to achieve the optimization of the absorber performance and obtain a high-performance
absorber with thin thickness, light mass, wide frequency band, and complete functions.

The mechanism of electromagnetic attenuation caused by the interaction between
absorbing materials and electromagnetic waves mainly includes the following three aspects:
(1) High-frequency dielectric loss, electrical loss, hysteresis loss, or other forms of energy
(thermal energy, electrical energy, mechanical energy, etc.) occur to make electromagnetic
wave energy attenuation; (2) After the electromagnetic wave energy with a certain direc-
tion is affected by the absorbing material, it is transformed into electromagnetic energy
dispersed in all possible directions, so that its intensity decreases sharply and the echo
quantity decreases. (3) The first electromagnetic reflection wave acting on the material sur-
face overlaps with the second electromagnetic reflection wave incident inside the material,
making them interfere with each other and offset each other [26].

3. Preparation and Absorption Properties of Fe with Different Morphologies

The advantages of low cost, easy synthesis, high biodegradability, and biocompati-
bility of Fe make it a potential application material relative to other transition metals [27].
In the past decades of research, Fe has been widely used in various materials, such as
wave absorbing materials [28], magnetic materials [29], catalyst materials [30,31], imaging
materials [32] and detectors [33,34], etc.

It is well known that morphology, which includes microstructure, shape, and size,
plays a crucial role in the properties of materials [35]. The particles with different mor-
phologies have different specific surface areas, magnetic anisotropy fields, etc., which lead
to the difference in interface effect, demagnetization field, and other parameters. When the
particle size enters the nanometer scale, it brings about quantum effects that may lead to
the splitting of electron energy that accompanies the formation of a new band gap, which
also leads to the absorption of microwave energy; at the same time, nanomaterials with a
high density of point defects (such as vacancies) and dangling bonds are prone to polar-
ization in the electromagnetic wave field, which can consume some electromagnetic wave
energy and contribute to enhanced wave absorption [36,37]. The variation of parameters
caused by the morphology and size of the material has an important effect on its absorbing
properties. Therefore, it is of great significance to summarize the preparation methods
and absorbing properties of Fe with different morphologies for the preparation of new
Fe absorbing materials with better comprehensive properties. Figure 2 summarizes the
reported classification and preparation methods of different morphologies of Fe.
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3.1. Sphere-Like Fe

At present, the commonly used methods for preparing spherical Fe are the one-
step solvothermal method [35], corrosion method [38], chemical vapor condensation
method [39], and gaseous nitridation method [40], etc. Scholars have prepared hollow and
porous spherical Fe particle absorbents by various methods. Such a hollow and porous
spherical Fe particle absorbent can not only reduce weight but also produce special mor-
phology to improve electromagnetic properties [41]. Table 1 summarizes some commonly
used preparation methods and absorption properties of spherical Fe absorbent reported.

Table 1. The electromagnetic absorption performance of sphere-like Fe.

Samples Methods ƒE (GHz) Thickness (mm) Filling Ratio RLmin (dB) Reference

Fe3O4 Pyrolysis 11.76 2.07 70 wt% −55.14 [35]
PIPs Corrosion technique 13.2 1.8 20 vol% −42.2 [38]
Fe4N Gaseous nitriding 3.5 3.0 75 wt% −33 [40]

Mingxu Sui et al., synthesized hollow Fe3O4 particles with a diameter of 200–1000 nm
and shell thickness of 35–280 nm under different reaction conditions by the one-step
solvothermal method (Figure 3a) for lightweight and efficient microwave absorption. The
results demonstrate that the microwave absorption performance increases with the increase
in hollow structure size, which is related to the reaction conditions. The sample prepared
at 200 ◦C for 36 h had the best performance. The mass fraction of 70 wt% Fe3O4 was mixed
with paraffin wax, as shown in Figure 3b. When the thickness was 2.07 mm, the frequency
was 11.76 GHz, and the minimum reflection loss (RLmin) was−55.14 dB. When the thickness
is 2.07 mm, the effective absorption bandwidth reaches 4.72 GHz (5.6–10.32 GHz). The
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hollow structure makes Fe3O4 particles obtain a lower density and magnetic loss and
optimized the impedance matching characteristics, so as to obtain an excellent microwave
absorbing performance [35].
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Guoxiu Tong et al., prepared porous iron particles (PIPs) through an easy corrosion
technology (Figure 3c). The PIPs were made by corroding carbonyl iron powders (CIPs)
with citric acid and ferric chloride, and the morphology of the PIPs was changed by con-
trolling the concentration of the etching solution and the number of times of etching, (in
Figure 3c, the 0.1 M citric acid and 0.2 M FeCl3 solution are used for etching for 15 min),
and the complex permittivity, permeability and electromagnetic wave absorption proper-
ties of PIP were studied in the frequency range of 2 to 18 GHz. The results demonstrate
that PIP with a content of 20 vol% is mixed with paraffin wax to make the sample. The
matching thickness is in the range of 1.5–3 mm thickness, and the frequency is in the range
of 7.2–17.2 GHz RL≤ −20 dB. As shown in Figure 3d, when the thickness is 1.8 mm, RLmin
at 13.2 GHz is −42.2 dB. The porous structure of PIPs increases the multi-polarization and
multi-scattering of electromagnetic waves, thus enhancing the absorption performance,
and has the potential for strong, wide, and light absorption materials [38]. Meijie Yu et al.,
prepared single-phase Fe4N particles at nanometer and micron levels by gaseous nitri-
dation. Figure 3e shows the appearance of nanoscale Fe4N particles and compared the
absorption performance of particles of different sizes in the range of 1–18 GHz. The results
demonstrate that the dielectric constant of nanoparticles is higher than that of micron parti-
cles due to a large amount of interfacial polarization, and the absorption performance of the
nanoparticle is higher than that of micron particles. The absorbing properties were tested
by mixing Fe4N nanoparticles containing 75 wt% with paraffin wax to make composites
with thicknesses ranging from 1.2 to 5.0 mm, with RL ≤ −10 dB in the frequency range of
1.8 to 11 GHz (as shown in Figure 3f). When the absorbent thickness is 3 mm, the RLmin
value (RLmin = −33 dB) is obtained at 3.5 GHz [40].

Many spherical ferromagnetic absorbers generally have high permeability and mag-
netic loss and have good absorbing properties in the thickness range and frequency range
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of specific absorbers. Spherical ferromagnetic absorbers have the potential of excellent
absorbing materials.

3.2. Flaky-Like Fe

At present, the ball milling method is generally used to prepare flake Fe particles.
Compared with spherical particles, flake ferromagnetic particles can reduce eddy current
loss (increase permeability) and increase space charge polarization (improve dielectric
constant), thus improving the absorbing performance [42,43]. In the preparation of flake
Fe, flake-shaped carbonyl iron (FCI) is the simplest and most widely used, and adopts
ball milling technology [44]. Ball milling technology is a very effective method to improve
the magnetic permeability of materials. This method can produce flake particles on the
surface of carbonyl-iron particles (CIP) at a nano-scale, which can reduce the saturation
magnetization value of CIP and improve the aspect ratio of flake particles, effectively
improving microwave absorption properties [45,46]. Table 2 summarizes some reported
absorption properties of FCI prepared from CIP by ball milling.

Table 2. The electromagnetic absorption performance of flaky-like Fe.

Samples Methods ƒE (GHz) Thicknes (mm) Filling Ratio RLmin (dB) Reference

FCI Ball milling 2
6.2 - 70 vol% µ′ = 1.61

µ” = 3.20 [46]

Scale-like FCI Ball milling 4.5~8.5 1.5 85 wt% <−10 dB [47]
PACI Ball milling 2.09 3.25 70 wt% −53.1 dB [42]
FCI Ball milling 8~18 1.47 50 wt% <−10 dB [48]
FCI Ball milling 5.92~18 0.8 40 wt% <−8 dB [49]

FCIPs Ball milling 2~18
26.5~40 6 75 wt% <−10 dB [50]

Hongyu Wei et al., prepared FCI (Figure 4a) by high energy ball milling at 200 ◦C for
2 h and mixed 70 vol% powders with paraffin to obtain the best permeability parameters.
In Figure 4b, it can be observed that the real part reaches 3.20 at 2 GHz and the imaginary
part reaches 1.61 at 6.2 GHz. The results show that the permeability and dielectric constant
of the material can be modified by changing the morphology to optimize the microwave
absorption performance [46].

Peicheng Ji et al., prepared scaly FCI with good impedance matching performance
and absorption performance by grinding CIP with the rod milling method (Figure 4c)
and studied the absorption performance of FCI prepared with different milling time in
1−18 GHz. The composite material was prepared by dispersing 85 wt% powders in paraffin
matrix. In Figure 4d, when the thickness was 1.5 mm, the RL value less than −10 dB
could be obtained at 4.5−8.5 GHz, and the RLmin value of −15.7 dB could be obtained
at 6.0 GHz [47]. Cheng Guo et al., used a high-performance ball milling technology
to produce commercial spherical carbonyl iron (PACI) particles into planar anisotropic
carbonyl iron (PACI) particles. The PACI morphology is shown in Figure 4e. Under
the external directional magnetic field, 70 wt% PACI was mixed into paraffin to make
anisotropic composite materials. The lowest complex dielectric constant and the highest
complex permeability could be obtained by orientation for 60 min. When the thickness
was 3.25 mm, the RL value of −53.1 dB could be obtained at 2.09 GHz. RL ≤ −10 dB is in
the frequency range of 1.54 to 2.93 GHz (see Figure 4f) [42]. Yonggang Xu et al., prepared
lamellar carbonyl iron particles (FCI) by a two-step grinding process (morphology as shown
in Figure 4g) and optimized the absorbing performance of the absorber at 8−18 GHz. When
the absorbing agent filling amount is 50 wt% and the thickness is 1.47 mm, the RL value
less than −10 dB can be obtained at 8−18 GHz (see Figure 4h) [48]. Dianliang Zheng et al.,
firstly prepared FCI by the grinding process, and then carried out a chemical corrosion
process to optimize the shape of FCI. The dielectric constant and permeability of optimized
FCIs (Figure 4i) increased slightly. When the absorbing agent filling amount was 40 wt%
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and the thickness was 0.8 mm, an RL value less than −8 dB can be obtained at 5.92–18 GHz
(Figure 4j) [49]. Saichao Dang et al., prepared flake carbonyl iron particles (FCIPs) as
absorbent by ball milling, as shown in Figure 4k. The absorption performance in the
frequency range of 2−18 GHz and 26.5−40 GHz is studied. A three-layer planar ultra-
wideband microwave absorber was designed. The RL value of the 6 mm thick absorber
was less than −10 dB in 91% of the band (Figure 4l) [50].
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Figure 4. (a) SEM and (b) magnetic permeability plot of FCI, reproduced with permission from
Ref. [46], Copyright 2020, Elsevier. (c) SEM and (d) RL plot of scale-like FCI, reproduced with
permission from Ref. [47], Copyright 2019, Springer Nature. (e) SEM and (f) RL plot of PACI,
reproduced with permission from Ref. [42], Copyright 2018, Elsevier. (g) SEM and (h) RL plot of
FCI, reproduced with permission from Ref. [48], Copyright 2016, Elsevier. (i) SEM and (j) RL plot of
FCI, reproduced with permission from Ref. [49], Copyright 2016, Elsevier. (k) SEM and (l) RL plot of
FCIPs, reproduced with permission from Ref. [50], Copyright 2018, Springer Nature.

3.3. Wire-Like Fe

One-dimensional wire-like Fe has the advantages of a small size and the large specific
area, which can improve the anisotropy and resonance frequency of magnetic materials [51].
For example, Fe nanofibers, Fe nanowires, Fe nanochains, etc., all have good microwave
absorption performance and are the focus of current research. Table 3 summarizes some
reported common preparation methods and wave absorption properties of wire-like
Fe absorbers.

At present, the metal salt high-temperature reduction method and chemical vapor
condensation method are commonly used to prepare nanofibers, but these methods have the
disadvantages of sensitive synthetic conditions and high cost [52]. Therefore, many scholars
have started to investigate simpler, low-cost, and efficient methods for the preparation
of Fe nanofibers. For example, Xiaogu Huang et al., prepared Fe3O4 nanofibers by the
electrostatic spinning method (as shown in Figure 5a). The prepared Fe3O4 nanofibers have
an anisotropy and excellent electromagnetic loss capacity within the frequency range of
2−18 GHz, which has the potential as a wave-absorbing material [53]. Qiangchun Liu et al.,
used pyrolysis to prepare isotropic Fe nanofibers with the morphology of Figure 5b. The
absorbent with a thickness of 2 mm was prepared by dispersing 50 wt% Fe nanofibers in
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paraffin wax. The minimum RL value of −17.8 dB was obtained at 9.9 GHz, and the RL
value of less than −10 dB was obtained at 7.3−11.7 GHz (Figure 5c) [54].
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Table 3. The electromagnetic absorption performance of wire-like Fe, dendrite-like Fe, and cube
shape-like Fe.

Samples Methods ƒE (GHz) Thickness (mm) Filling Ratio RLmin (dB) Reference

Fe3O4 nanofibers Electrospinning 2−18 - - - [53]
Fe nanofibers Pyrolysis 9.9 2 50 wt% −17.8 [54]
Fe nanowires Situ reduction 1.3 3.5 50 vol% −32 [55]

Fe NWs Situ reduction 2.72 1.42 20 wt% −44.67 [56]
Chain-like Fe NWs Hydrothermal 3.68 3 20 wt% −27.28 [57]

Dendrite-like α-Fe Electric field-induced,
Electrochemical reduction 10 1.9 70 wt% −32.3 [58]

Dendrite-like
α-Fe2O3

Hydrothermal 2.5 3 70 wt% −25 [59]

Cube shape-like Fe Low-temperature
solution reduction 9.1 2 26 vol% −56 [60]

In situ reduction is a common method for the synthesis of Fe nanowires, which has the
advantages of simplicity, high efficiency, and low cost, and is suitable for large-scale pro-
duction. Fe nanowires are mainly prepared by reducing iron salt with sodium borohydride
(NaBH4). For example, Xinghua Li et al., synthesized spherical and linear Fe nanowires
by the NaBH4 reduction method (linear morphology is shown in Figure 6a). Compared
with iron nanospheres, the magnetic conductivity, dielectric constant, and microwave
absorption performance of iron nanowires are significantly improved. In Figure 6b, the
minimum RL value of −32 dB was obtained at 1.3 GHz, and the RL value of less than
−10 dB could be obtained at 0.8−2.1 GHz [55]. Ping-an Yang et al., synthesized iron
nanowires (Fe NWs) with high-aspect-ratio, uniform length of about 21 µm, and a diameter
of about 60 nm, which were synthesized by a magnetic field-induced in situ reduction
method, and their electromagnetic properties in the frequency range of 2−18 GHz were
investigated [48]. In addition to the in situ reduction method for the preparation of Fe
NWs, the hydrothermal method is also used for the synthesis of Fe NWs. For example,
Junyao Shen et al., synthesized necklace-like Fe NWs with a high aspect ratio of 100 nm in
the average diameter by a magnetic field-assisted hydrothermal method (morphology is
shown in Figure 6e) and tested the absorption performance of the sample with its content of
20 wt% at 2−18 GHz. The results demonstrated that Fe NWs have excellent absorbing per-
formance in the range of 2−6 GHz. When the thickness is 3 mm, the RL value of 3.68 GHz
in Figure 6f reaches −27.28 dB, which provides a reference for the study of low-frequency
absorbing materials [56].
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3.4. Dendrite-Like Fe and Cube Shape-Like Fe

At present, in addition to the common spherical, flaky, and linear forms, other complex
morphologies of Fe absorbers have been prepared, such as dendritic and cubic forms, and
Table 3 summarizes some of the commonly reported methods for preparing dendritic
and cubic Fe absorbers and their wave absorption properties. For example, Zhenxing Yu
synthesized three-dimensional dendritic α-Fe with a width of about 3.0 mm and a length of
about 9.0 mm by electric field induction and electrochemical reduction, and the morphology
is shown in Figure 6g. A total of 70 wt% samples were dispersed in paraffin to prepare a
thickness of 1.9 mm absorber, which can achieve the minimum RL value of −32.3 dB at
10 GHz. When the absorbing thickness is 1.5 mm, the absorbing bandwidth (RL ≤ −10 dB)
is 12 GHz (Figure 6h) in the frequency range of 6−14 GHz [58]. Genban Sun et al., firstly
prepared the dendritic α-Fe2O3 by the hydrothermal method, and then obtained dendritic
Fe particles by hydrogen reduction at high temperature, as shown in Figure 6i. The sample
with a particle content of 70 wt% and thickness of 3 mm was found to have an RL value
of −25 dB at 2.5 GHz by the absorption test (Figure 6j) [59]. Xi’an Fan et al., prepared
cuboidal single-crystal Fe particles by the low-temperature solution reduction method,
which demonstrated an excellent absorbing performance (morphology and RL plot as in
Figure 6k,l). When the content is 26 vol% and the thickness is 2 mm, the RL value of−56 dB
can be obtained at 9.1 GHz [60].
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4. Preparation and Wave Absorption Properties of Fe Matrix Composites

Because of the strong sensitivity of pure iron, the air condition has a great influence on
it and the impedance matching characteristic is poor. In order to develop high-performance
absorbing materials, Fe-based composite materials have aroused many scholars to explore.
Therefore, in recent years, the research of iron matrix composites has increased greatly. So
far, Fe matrix composites have been widely studied and are ideal for numerous applications.
Composite Fe particles with other materials is an effective way to suppress the eddy current
effect, enhance absorbing efficiency, expand absorbing bandwidth and reduce the weight of
the absorbing layer [61]. Currently, common methods for preparing Fe matrix composites
include blending and surface coating (as shown in Figure 7).
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4.1. Blending

Directly mixing pure Fe particles with other wave-absorbing materials is the simplest
way to prepare Fe-based composites. Pure Fe particles can obtain more heterogeneous
interfaces by coupling different materials, and heterogeneous interfaces provide more
interface losses, which are beneficial to improve the electromagnetic absorbing ability. The
mechanism is mainly the synergy of impedance matching and polarization loss.

Table 4 summarizes some reported composites prepared by mixing pure Fe with ad-
ditional materials and their wave absorption properties. For example, Wongyu Jang et al.,
used the Doctor Blade method to disperse CIP with different mass fractions in the matrix
of polydimethylsiloxane (PDMS) to prepare absorbent to study the absorbent performance
within the frequency range of 0.1−18 GHz. When the CIP content is 72 wt% and the
absorbent thickness is 1.5 mm, the absorption performance is the best, and the RLmin
value of −27.5 dB can be obtained at 14.6 GHz. The morphology and RL plot are shown in
Figure 8a,b [62]. Baoshun Zhu et al., used waste fly ash (FA) and Fe particles to carry out the
carbothermal reduction process. Fe particles were evenly embedded into the interior and
surface of the matrix to form composite materials with morphology, as shown in Figure 8c.
The sample with a composite content of 65 wt% and a thickness of 2.5 mm was subjected



Molecules 2022, 27, 4117 12 of 23

to the wave absorption test. It was found that the RL value at 16.1 GHz reached −35.7 dB
and the effective bandwidth reached 4.1 GHz. The curve of RL is shown in Figure 8d [63].
Kaichuang Zhang et al., used in situ polymerization to prepare MWCNTs/Fe3O4/PPY/C
composites with 8.8% mass fraction of ferric oxide, carbon nanotubes, polypyrrole, and
carbon. The morphology is shown in Figure 8e. The composite has multiple interfaces and
multilayer structures, magnetic and dielectric losses, and excellent absorbing properties.
The results demonstrate that the sample is prepared by mixing 25 wt% composite material
with paraffin wax, when the matching thickness is 2.2 mm, the RLmin obtained at 13.92 GHz
is −53.07 dB, and the effective absorption bandwidth is 6.4 GHz. The plot of RL is shown
in Figure 8f [64].

Table 4. The electromagnetic absorption performance of blended Fe-based composites.

Samples Methods ƒE
(GHz)

Thickness
(mm) Filling Ratio RLmin

(dB) Reference

CIPsPDMS Doctor blade 14.6 1.5 72 wt% −27.5 [62]
FeFA Carbothermal reduction 16.1 2.5 65 wt% −35.7 [63]

MWCNTs/Fe3O4
/PPY/C Situ polymerization 13.92 2.2 25 wt% −53.07 [64]

Fe3O4/C Refluxing, annealing 12.2−17.8 1.9 25 wt% −46.5 [65]
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Figure 8. (a) SEM and (b) RL plot of CIPsPDMS, reproduced with permission from Ref. [62],
Copyright 2020, New Physics Sae Mulli. (c) SEM and (d) RL plot of FeFA, reproduced with per-
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MWCNTs/Fe3O4/PPY/C, reproduced with permission from Ref. [64], Copyright 2020, Elsevier.
(g) SEM and (h) RL plot of Fe3O4/C, reprinted with permission from Ref. [65], Copyright 2019, Elsevier.

At present, the preparation of biomaterial-based electromagnetic wave absorbing
materials has become a research hotspot due to their advantages of low cost and no pol-
lution, and renewable and easy processing [65,66]. For example, Xinfeng Zhou et al.,
synthesized the porous foam matrix with fish skin as raw material by the hydrother-
mal method, and then embedded Fe3O4 nanospheres into the carbon matrix uniformly
through the reflux and annealing treatment, and obtained the new Fe3O4/C composite
foam. The morphology and RL plot are shown in Figure 8g,h. The 25 wt% of the compos-
ite foam was dispersed in paraffin wax to make the absorbing specimen, and when the
matched thickness was 1.9 mm, the RLmin value of −47.3 dB was obtained in the range of
12.2−17.8 GHz; when the matched thickness was 2.2 mm, the effective absorption band-
width was 5.68 GHz (12.16−17.84 GHz) [65]. Figure 9 provides the electromagnetic wave
absorption mechanism. The porous foam structure increases the multiple reflections of the
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incident electromagnetic wave, and the Fe3O4 and C mosaic mode increase the interfacial
polarization and dipole polarization to increase the dielectric loss and magnetic loss, so as
to attain efficient electromagnetic wave absorption.
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4.2. Surface Coating

Core-shell structures of different sizes are formed through a surface coating, and
such core-shell structures have rich heterogeneous interfaces, good conductive network,
high anisotropy ratio, magnetic-dielectric synergy and other mechanisms [67–70]. The
coating of pure Fe particles mainly includes the carbon coating [71], metal coating [72],
semiconductor coating [73], and conductive polymer coating [74]. Table 5 summarizes
some reported surface coating methods of Fe particles and Fe-based composites and their
absorbing properties.

4.2.1. Carbon Material-Coated Fe

Carbon material as a dielectric material has received much attention because of its
small density, stable physicochemical properties, and strong conductivity loss [75]. Due to
the easy oxidation and poor impedance matching of pure Fe particles, many scholars use
carbon materials to encapsulate pure Fe particles to improve easy oxidation and enhance
magnetic-dielectric synergy to optimize impedance matching characteristics. Various crys-
talline states of carbon materials, such as carbon nanofiber [71], graphene [76], and carbon
nanotube [77] coated with pure Fe particles, can achieve excellent absorbing properties.

For example, Tao Wang et al., prepared Fe-C nanofiber composites with magnetic iron
nanoparticles uniformly dispersed along the fibers and wrapped by carbon matrix using a
electrostatic spinning technique, and the morphology and RL plot are shown in Figure 10a,b.
The results demonstrated that when the Fe-C nanofibers with a mass fraction of 72 wt%
were mixed with paraffin to prepare the sample, the RLmin value of −44 dB was obtained
at 4.2 GHz when the matching thickness of the sample was 3 mm. When the thickness is
5.2−1.2 mm and the frequency range is 2.2−13.2 GHz, there is RL < −10 dB, indicating
that Fe-C nanofibers’ composites have good absorption properties in the S-X band [71].
Seunggeun Jeon et al., realized the graphene oxide (GO) sheet covered with CIP (GO@CIPs)
through the wet stirring process. The morphology and RL plot are shown in Figure 10c,d.
The complex permeability and permittivity in the frequency range of 0.1−18.0 GHz were
measured. The results demonstrate that by mixing 72 wt% of GO@CIPs powder with
paraffin wax to make absorbers, RLmin values of −56.4 dB and −33.0 dB were obtained at
5.1 GHz and 4.8 GHz when the absorbers were 1.9 mm and 2 mm thick, respectively [78].
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Xueai Li et al., successfully synthesized carbon-coated iron nanoparticles (Fe@C) with a
rose-like porous structure (as in Figure 10e) by an in situ method using iron alcohol salt
precursors as raw materials, and tested their wave absorption properties in the frequency
range of 2.0 to 18.0 GHz. The results demonstrate that the wave absorbing specimens made
by mixing Fe@C with paraffin wax in the ratio of 1:1 by weight, as in Figure 10f, achieved an
RLmin value of −71.47 dB at 11.6 GHz when the specimens were matched with a thickness
of 1.48 mm [79]. Figure 10g shows the electromagnetic wave propagation and attenuation
process of Rose-like Fe@C. Firstly, the porous structure and the core-shell structure of Fe@C
can be synergized to obtain a good impedance match so that more electromagnetic waves
can enter, secondly, the porous structure and the three-dimensional network structure make
the electromagnetic waves reflect and scatter many times inside, which is conducive to
attenuating more electromagnetic waves. Then, the core-shell structure of Fe@C increases
multiple interfacial polarization, realizing more conversion of the electromagnetic wave
into heat energy, and the effect of the absorbing wave is significantly enhanced.
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4.2.2. Metal-Coated Fe

Metal Al produces a dense aluminum oxide (Al2O3) film when the oxidation reaction
occurs, which can insulate the air to play an antioxidant role [80]. Some scholars have
coated aluminum on the surface of oxidation-prone absorbing materials to achieve the ab-
sorbing and antioxidant-integrated absorbing materials. For example, Yingying Zhou et al.,
prepared nano aluminum (Al)-coated carbonyl iron particles (CIPs) by the ball milling
method to prepare Al@CIPs absorbers with oxidation resistance, high absorption, and
heat resistance. The results demonstrated that the absorbing specimens were made by
mixing 70 wt% content of the powder with paraffin wax, and the RLmin value of −27.2 dB
was obtained at 10.5 GHz when the thickness was 1.6 mm [81]. Metallic Ag has good
electrical conductivity and stability, and Ag nanoparticles enhance interfacial polarization,
dipole polarization, and conductivity loss, thus improving microwave absorption perfor-
mance [82]. Ping-an Yang et al., synthesized Ag-coated Fe (Fe@Ag) core-shell nanowires
with strong electromagnetic wave absorption, which were synthesized by a liquid-phase
reduction and layer-plus-island growth methods (see Figure 11c), and the absorbing prop-
erties were investigated in the frequency range of 2.0 to 18.0 GHz. The results demonstrate
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that the comprehensive absorbing performance of the absorber is the best when the mass
fraction of Fe@Ag (Fe:Ag ratio is 2:1) is mixed with paraffin wax. When the matching
thickness is 3.36 mm, the RLmin value of −58.69 dB is obtained at 7.53 GHz. When the
matching thickness is 2.93 mm, the effective absorption bandwidth is 7.32 GHz, covering
the whole C and X bands [83]. Figure 11e provides the electromagnetic wave absorption
mechanism of Fe@Ag core-shell NWs. First, the Ag shell increases the magnetic loss,
adjusts the impedance matching, and can make more electromagnetic wave incident into
the material; second, one-dimensional FeNWs with a high-aspect-ratio form a conductive
network, resulting in the multiple reflection of incident electromagnetic waves, increasing
the multiple reflection loss. Third, the Fe@Ag core-shell NWs structure forms multiple
interfacial polarization, resulting in the conversion of electromagnetic waves into heat
energy to consume more incident electromagnetic waves.
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4.2.3. Semiconductor-Coated Fe

Semiconductor materials such as ZnO [84], MnO2 [85], and SiO2 [86] have good
dielectric properties and chemical stability. The semiconductor material coated on the
surface of the magnetic metal Fe can improve the dielectric constant, optimize impedance
matching and improve the absorbing performance [87–90].

ZnO, a dielectric material with excellent dielectric properties, is often combined with
other materials for wave absorption to improve the performance of absorbing materials [84,91].
For example, Qi Liu et al., prepared iron/zinc oxide (Fe/ZnO) nanocomposites with a
core-shell structure (see Figure 12a) using a low-temperature wet chemical method and
investigated the wave-absorbing properties in the frequency range of 2.0 to 18.0 GHz.
The results demonstrate that Fe/ZnO nanocomposites with a mass fraction of 50 wt%
(Fe/Zn ratio of 1:0.75) are mixed with paraffin uniformly to make the sample, as shown
in Figure 12b. When the matching thickness is 1.59 mm, the RLmin value of −48.28 dB is
obtained at 15.55 GHz. When the matching thickness is 1.90 mm, the effective absorption
bandwidth is 5.10 GHz (10.79−15.89 GHz) [92]. MnO2 is a kind of electrically dissipative
material with good dielectric properties and chemical stability, which is commonly used
as an absorbing material medium [93–95]. For example, Zhengwei Qu et al., prepared
ultrathin MnO2 nanosheets-coated CIP spherical flower-like composites (CIP@MnO2) by a
redox reaction (see Figure 12c), to improve the oxidation resistance and wave absorbing
properties of CIP, and the absorbing properties of CIP@MnO2 with different filling ratios
in the frequency range of 2.0−18.0 GHz were investigated. The results demonstrate that
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the absorption agent made by mixing 40 wt% CIP@MnO2 powder with paraffin wax has
the best comprehensive performance. When the matching thickness is 10 mm, the RLmin
at 6.32 GHz reaches −63.87 dB, and the effective absorption bandwidth (RL < −20 dB)
reaches 7.28 GHz [96]. Figure 12e provides the wave absorption mechanism of CIP@MnO2
composites. The synergistic effect of multiple reflection, good conductive network, multiple
interfaces polarization, magnetic coupling, and magnetic loss makes them have an excellent
electromagnetic wave absorption performance.
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4.2.4. Conductive Polymer-Coated Fe

Conductive polymers have been extensively studied due to their high electrical conduc-
tivity [97,98]. When the conductive polymer exhibits the electrical conductivity in a wide
range, the combination of the conductive polymer and the magnetic loss material produces
a synergistic effect, which can not only make the composite material have special properties
such as light weight, high temperature resistance and oxidation resistance, but also enrich
the polarization loss and enhance the microwave absorption performance [99–101].

For example, Zhengchen Wu et al., prepared the polypyrrole (PPy) Fe3O4-coated
core-shell Fe3O4@PPy composite material (Figure 13a) through corrosion, polymeriza-
tion, replication and other processes, and evenly mixed 50 wt% Fe3O4@PPy powder with
paraffin wax. In Figure 13b, when the matching thickness was 2.0 mm, the RLmin of
−41.9 dB was obtained at 13.3 GHz, and the absorption bandwidth covered the entire Ku
band. Figure 13c shows the possible electromagnetic wave absorption mechanism of the
Fe3O4@PPy composite material [101]. Xiang Luo et al., prepared polyaniline-coated Fe3O4
dendritic Fe3O4@PANI composite by the hydrothermal method (Figure 13d). PANI can
optimize impedance matching and form conductive networks to optimize the absorbing
performance. When the matching thickness is 1.3 mm, the RLmin value of −53.08 dB is
obtained at 3.04 GHz, and it has a wide EAB (4.1 GHz) [102]. Figure 13f provides the
absorbing mechanism of dendritic Fe3O4@PANI composite material, which is mainly di-
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vided into three aspects: dielectric loss, magnetic loss, and good conductive network.
The Fe3O4@PANI interfacial polarization occurs at heterogeneous interfaces and dipole
polarization occurs at electric fields, which constitute dielectric loss. The natural resonance
and exchange resonance of Fe3O4 itself constitutes a magnetic loss. The dendritic struc-
ture forms a good conductive network, which makes the electromagnetic wave reflect
and scatter. The three ways work together to convert the incident electromagnetic wave
into heat energy as much as possible in the composite material to consume the incident
electromagnetic wave.
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Table 5. The electromagnetic absorption performance of surface-coated Fe-based composites.

Samples Methods ƒE (GHz) Thickness
(mm)

Filling
Ratio (wt%)

RLmin
(dB) Reference

Fe-C nanofibers Electrospinning 4.2 3 - −44 [71]
GO@CIPs Wet stirring 5.1 1.9 72 −56.4 [78]

Fe@C Situ reduction 11.6 1.48 50 −71.47 [79]
Al @CIPs Ball milling 10.5 1.6 70 −27.2 [81]

Fe@Ag Liquid-phase reduction etc. 7.53 3.36 25 −58.69 [83]
Fe/ZnO Low-temperature wet chemical 15.55 1.59 50 −48.28 [92]

CIP@MnO2 Redox reaction 6.32 10 40 −63.87 [96]
Fe3O4@PPy Corrosion, etc. 13.3 2.0 50 −41.9 [101]

Fe3O4@PANI Hydrothermal 3.04 1.3 60 −53.08 [102]

5. Conclusions

On the basis of the present research, the preparation methods, absorption properties
and absorption mechanism of representative Fe-based absorbing materials in recent years
are summarized and discussed. Firstly, this paper briefly describes the electromagnetic
wave absorption mechanism; secondly, the preparation methods and absorbing properties
of the Fe wave absorbers with various morphologies were introduced from spherical, flake,
linear and other morphologies. Then, the preparation and absorbing properties of the
Fe-based composite absorbing materials are introduced by blending and surface coating.
Finally, representative electromagnetic wave absorbers of each type are introduced, and the
electromagnetic wave absorption mechanism of Fe-based absorbing materials is introduced.
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As a magnetic metal, Fe has low cost, high saturation magnetization, Snoek’s limit,
and Curie temperature, demonstrating excellent electromagnetic wave loss ability, so
it is commonly used in the field of electromagnetic absorption. Only using the energy
of conventional Fe magnetic absorbing materials cannot meet the need ideal absorbing
materials. Therefore, various morphologies and structures of Fe magnetic particles have
attracted people’s attention, and complex morphologies and nanostructures have been
designed to enhance the performance, such as preparing pure Fe into porous and hollow
spheres to increase reflection and scattering propagation paths, milling CIP spheres into
flakes to reduce saturation magnetization values and improve aspect ratios, preparing
pure Fe into nanowire-like structures with small size and large specific area, and other
morphologies in dendritic and cubic shapes, which can exhibit excellent electromagnetic
wave absorption properties. However, pure Fe of a single component will be limited by
impedance matching and stability. Therefore, it will be a good solution to combine Fe
magnetic particles with other materials to prepare composite materials.

The simplest way is to mix Fe magnetic particles with other materials to prepare
composite materials, so as to combine the advantages of both to improve the absorption
performance. Then, dielectric materials and metal materials such as carbon, a semiconduc-
tor, and conductive polymer are selected to cover the surface of pure Fe to form a core-shell
structure. On the one hand, it can prevent the oxidation of pure Fe, on the other hand, it
has rich heterogeneous interface, forms good conductive network, improves the anisotropy
ratio, promotes magnetic-dielectric synergy and improves impedance matching to improve
the comprehensive absorbing performance. In future research, multifunctional Fe-based
absorbing materials will be the focus of research, such as thermal absorbing materials
applied in a high temperature environment, anti-corrosion absorbing materials applied
in an acid-base environment, absorbent flexible wearable devices used in medical care,
and sensing fields. At the same time, the broadband absorption of electromagnetic waves
will be the focus of research, and the broadband absorbing material is the key problem of
the country, which is of great significance for the construction of the broadband stealth
weapon platform.
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Nomenclature

Fe Iron
EM Electromagnetic
EMWAMs Electromagnetic wave absorbing materials
Z0 Free Space Impedance
Zin Input Impedance
E Electromagnetic field strength
H Magnetic field strength
µ0 Free space permeability
ε0 Free space dielectric constant
R Reflection coefficient
α Attenuation parameter
µ′ Permeability real part
ε′ Dielectric constant real part
µ′′ Imaginary part of permeability
ε′′ Imaginary part of dielectric constant
RLmin The minimum reflection loss
RL The reflection loss
SEM Scanning electron microscope
FCI Flake-shaped carbonyl iron
CIP Carbonyl-iron particles
GO Graphene oxide
PPy Polypyrrole
PANI Polyaniline
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