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Abstract

Background: hyaluronan biopolymer is used in dermatology but the underlying mechanism and the impact of its molecular
weight have not yet been investigated in skin wound healing. The aim of our work was to study the role of HA molecular
weight in the proliferative phase of wound healing and to understand how this physiological biopolymer acts to promote
wound healing on a human keratinocyte in vitro model.

Methodology and Findings: wound healing closure was evaluated using scratch test assay, cell proliferation by counting
cell with haemocytometer, expression of CD44 and ZO-1 (protein present in tight junctions specific of epithelia) using flow
cytometry, and P2X7 receptor activation on living using a cytoflurometric method. Our study showed that medium
hyaluronan fragment (MMW-HA, between 100 and 300 kDa) induced a significant increase in wound closure, increased ZO-1
protein expression and induced a slight activation of P2X7 receptor, contrary to high (between 1000 and 1400 kDa) and low
(between 5 and 20 kDa) molecular hyaluronan fragments that had no healing effects. Basal activation of P2X7 receptor is
already known to stimulate cell proliferation and this activation in our model plays a pivotal role in MMW-HA-induced
wound healing. Indeed, we showed that use of BBG, a specific inhibitor of P2X7 receptor, blocked completely the beneficial
effects of MMW-HA on wound healing.

Conclusion: taken together, our results showed for the first time the relationship between P2X7 receptor and hyaluronan in
wound healing, and that topical use of MMW-HA (fragment between 100 and 300 kDa) could represent a new therapeutic
strategy to promote healing.
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Introduction

Hyaluronan (HA), the major component of the ECM, is the

only linear non-sulfated glycosaminoglycane composed of alter-

nating b-1,4-glucuronic acid and b-1,3-N-acetylglucosamin [1;2].

HA molecular weight varies from 105 to 107 Da before being

progressively degraded into smaller fragments in the ECM [3]. HA

was first isolated from the vitreous humour of bovine eyes [4]. It is

also present in synovial fluid [5] and is distributed ubiquitously in

vertebrate tissues. The major physiological roles of high molecular

weight HA in human body are to lubricate articulations and to

maintain the cohesion and structure of epithelium. HA performs

many pivotal structural and physiological functions in skin repair

following injury [3;6]. Wound healing consists of 3 processes:

inflammation, proliferation and remodelling. During the inflam-

matory phase of wound healing, hyaluronan accumulates in the

wound bed. Its major function is the modulation of inflammatory

cell and dermal fibroblast activities, e.g. cellular migration,

proinflammatory cytokine synthesis and the phagocytosis of

invading microbes [6]. Low molecular weight HA binds to

TLR4 to induce inflammatory responses stimulating IL-6, TNFa
and IL-1b [7]. Proliferative step is a set of complex biological

responses requiring extracellular matrix (ECM) and cytoskeletal

remodelling, signal cascades, and gene regulation to induce

fibroblast and keratinocyte migration and proliferation. The levels

of HA synthesized by both fibroblasts and keratinocytes are

elevated during re-epithelialization. HA binds to cell via several

receptors: CD44, RHAMM and ICAM. CD44 is recognized as

the major receptor of HA [8;9]. The interaction of HA with CD44

induces many physiological events, such as cell migration and

proliferation [10;11]. CD44 is localised in lipid raft domains which

are plasma membrane domains that contain high levels of

cholesterol and sphingolipids. Proteins such as receptors involved

in cell signalling are enriched in lipid rafts [12]. P2X7 receptor,

contained in lipid rafts, is a purinergic receptor; it was first cloned

from rat brain [13] and, subsequently, has been found to be

expressed in microglia, neurons, and astrocytes [14–16]. P2X7

receptor was activated by extracellular ATP and its analogues

[17;18] and blocked specifically by Brillant Blue G (BBG) [19–21].

Our laboratory showed that HA of molecular weight superior to
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100 kDa modulates the activation of P2X7 receptor via binding to

CD44 in ophthalmic cells [22;23]. P2X7 receptor has been

reported to play a role in cell-to-cell contact [19] and cell

proliferation [24]. Moreover P2X7 receptor activation seems to be

associated to corneal wound healing [25], Mankus et al showed

that P2X7 receptor activation enhanced cell migration [26].

The aim of our work was to study the role of HA molecular

weight in the proliferative phase of wound healing and understand

how this physiological biopolymer acts to promote wound healing

on a human keratinocyte in vitro model. We evaluated wound

healing closure, cell proliferation, expression of CD44 and ZO-1

(protein present in tight junctions specific of epithelia), and P2X7

receptor activation after incubation of cells with a native HA and

two different fragments of HA.

Results

Scratch Wound Assay
To study wound healing, we use three different HA molecular

weight (table 1). Results showed that, only MMW-HA induced a

statistically significant effect on wound healing: the wound healing

factor is three times higher compared to control (Figure 1). HMW-

Table 1. Molecular weights of hyaluronan used.

Nomenclature Molecular weight polydispersity Average molecular weight

High Molecular Weight Hyaluronan (HMW-HA) 1000,MW,1400 kDa 1090 kDa

Medium Molecular Weight Hyaluronan (MMW-HA) 100,MW,300 kDa 166 kDa

Low Molecular Weight Hyaluronan (LMW-HA) 5,MW,20 kDa 20 kDa

doi:10.1371/journal.pone.0048351.t001

Figure 1. Scratch wound assay. Monolayer was wounded by manual scratch with a pipette tip. Solutions containing different HA at 0.2% in
culture medium with 2.5% of FCS were distributed at Day 0 and cultures were kept at 37uC for 24 hours (Day1). A: control, B: HMW-HA, C: MMW-HA,
D: LMW-HA. Histogram above represents width of the wound measured for each wound at D0 and D1. Results are expressed as a ratio of D1 on D0.
Wound healing area: Results are expressed as a ratio of D1 on D0 after image analysis; % of wound area represents the ration of wound area at D1/
wound area at D0. We show that only MMW-HA induced a significant wound healing compared to control and other HA (***: p,0.001 compared to
culture medium, n = 3). The wound healing factor is three times higher compared to control.
doi:10.1371/journal.pone.0048351.g001
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HA and LMW-HA had no effect on wound healing compared to

control. % of wound area was 77.70%, 59.24%, 5.83% and

43.58% respectively for culture medium, HMW-HA, MMW-HA

and LMW-HA.

Cell Proliferation
The results show that from Day 5, MMW-HA increased

significantly cell proliferation compared to control. High and low

molecular weight hyaluronan had no significant effect on cell

proliferation (Figure 2).

Tight Junction: ZO-1 Expression
As shown in figure 3, ZO-1 expression was strongly increased

when the cells were incubated with MMW-HA (mean fluores-

cence = 36418.6) compared to control (mean fluores-

cence, = 17951.3). HMW-HA and LMW-HA had no effect on

ZO-1 expression compared to control.

Hyaluronan Receptor: CD44 Expression
As shown in figure 4, the three HA had no effect on CD44

expression compared to control.

P2X7 Receptor Activation
In cells where P2X7 receptor is activated, we can observe a

green fluorescent signal. As shown in figure 5, incubation of cells

with MMW-HA induced a slight activation of P2X7 receptor

compared to control and this activation was inhibited by BBG, a

specific inhibitor of P2X7. HMW-HA and LMW-HA had no

effect on P2X7 receptor activation compared to control.

Cell Viability
HMW-HA, MMW-HA and LMW-HA didn’t induce any

decrease in cell viability (figure 6).

Figure 2. Cell proliferation. Cells were cultured in medium with
2.5% FCS containing HA HMW-HA or MMW-HA or LMW-HA at 0.2%.
Proliferation was analyzed by counting cells during 6 days. circle: cell
culture medium, triangle: HMW-HA, square: MMW-HA, lozenge: LMW-
HA. Our results show that from day 5 only MMW-HA induced a
significative increase on cell proliferation compared to control, HMW-
HA and LMW-HA have no effect on cell proliferation (***: p,0.001
compared to culture medium, n = 3).
doi:10.1371/journal.pone.0048351.g002

Figure 3. ZO-1 protein expression. ZO-1 expression was evaluated using flow cytometry after incubation with HMW-HA or MMW-HA or LMW-HA
at 0.2% for 24 hours. Results showed a strong increase in ZO-1 expression after MMW-HA incubation. A: cell culture medium, B: HMW-HA, C: MMW-
HA, D: LMW-HA (n = 3). Data show that MMW-HA increase the expression of ZO-1 protein compared to control.
doi:10.1371/journal.pone.0048351.g003
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P2X7 Activation and Wound Healing
To know if P2X7 receptor plays a role in wound healing

induced by MMW-HA, cells were incubated with BBG at 20 mM

for 20 minutes before MMW-HA incubation. Results showed that

preincubation with specific inhibitor of P2X7 (BBG) blocked the

beneficial effects of MMW-HA on wound healing (figure 7). % of

wound area was 80.03%, 37.08% and 67.38% respectively for

culture medium, MMW-HA without BBG and MMW-HA with

BBG.

Discussion

In clinics, some sticking plasters are composed of HA for its

hygroscopic properties (hydrated HA can contain up to 1000-fold

more water than its own weight). High molecular weight HA has

the ability to absorb water and then it keeps the wound in a moist

environment favourable to healing. Nevertheless, HA has also

biological properties that could explain its role in wound healing.

We found that from a physiobiological point of view, MMW-HA

induced a much better healing rate than LMW-HA and HMW-

HA. Indeed, we demonstrate that native HA, in spite of its

essential hygroscopic role, is not the best HA to promote wound

healing, and smaller molecular weight (300 kDa) HA seem to play

an important biological role in wound healing. Studies have shown

that HA modulate cell proliferation [10;27], depending on the

molecular weight. Hyaluronidases, that are responsible for the

degradation of hyaluronic acid, stimulate cell proliferation [28]

leading to the conclusion that high molecular weight HA must be

degraded to induce cell proliferation. The importance of HA

degradation for cell proliferation was confirmed by a recent study

showing that high molecular weight HA decreases astrocytes

proliferation, but its degradation into smaller fragments induces

astrocytes proliferation and activation [29]. We observed that

HMW-HA didn’t induce cell proliferation, showing that hyal-

uronidases may not be present in our cell model. On the contrary,

MMW-HA induced cell proliferation compared to control. LMW-

HA had no effect on cell proliferation but this was not surprising

since low molecular weight HA is pro-inflammatory [7;30]. So, the

use of this HA could potentiate inflammation in wound leading to

tissue damage. Considering these data, we focused our attention

on MMW-HA.

Cell-cell junction/adhesion is an important factor for wound

healing. Tight junctions play a central role in close cell-cell

adhesion in simple epithelia and endothelia, connecting neigh-

bouring cells in a controlled manner. It is composed of

transmembrane proteins including claudin family proteins,

occludin like proteins, junctional adhesion molecules (JAMs) and

plaque proteins such as ZO-1 [31]. Besides, it plays a crucial role

in the formation of the epidermal diffusion barrier. The expression

of the tight junction proteins ZO-1 has recently been studied in a

human skin organ culture model [32], showing ZO-1 expression

early during wound healing. In our model, incubation of cells with

MMW-HA induced an increase in ZO-1 expression. Not only

MMW-HA stimulated cell proliferation and wound healing, but it

also increased the expression of tight junctions, showing that the

rebuilt epithelium monolayer possessed functional properties.

To understand how MMW-HA promotes wound closure and

cell proliferation, we studied CD44 expression and P2X7 receptor

activation. The results we obtained show that incubation of cells

with MMW-HA has no significative effect on CD44 receptor

expression (major receptor of HA). This indicates that the healing

Figure 4. CD44 protein expression. CD44 expression was evaluated using flow cytometry after incubation with HMW-HA or MMW-HA or LMW-
HA at 0.2% for 24 hours. Results showed a very slight effect on CD44 expression level after MMW-HA incubation. A:control, B: HMW-HA, C: MMW-HA,
D: LMW-HA (n = 3). Results show that CD44 expression is not modified with HA regardless the molecular weight.
doi:10.1371/journal.pone.0048351.g004
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we observed with MMW-HA is not linked to the modulation of

CD44 receptor expression, but probably due to other cell

signalling pathway. Recently, several studies have highlighted

the possibility that HA binding to CD44 induces its redistribution

into lipid rafts, with multiple signal molecules being recruited and

assembled to facilitate the transduction of signals [33;34]. Among

the receptors present in lipid raft, there is the P2X7 purinergic

receptor. First, P2X7 receptor was identified as a cytolytic receptor

[13], but it was later shown that basal activation of P2X7 increased

mitochondrial calcium and promoted cell proliferation [35;36].

P2X7 receptor activation has a dual role: cell proliferation after

basal activation and cytolysis after high activation. The role of

P2X7 receptor activation in wound healing was first highlighted in

cornea [25]. The same authors showed that in P2X72/2 mice,

there was a downward trend in the rate of epithelial wound repair

[37]. Our results show that MMW-HA induced a slight activation

of P2X7, and this slight activation was not accompanied with a

loss of cell viability. This basal P2X7 activation plays a pivotal role

in MMW-HA-induced wound healing since BBG, a specific

inhibitor of P2X7 receptor activation, inhibited wound closure

promoted by MMW-HA. These results showed that when P2X7

receptor is blocked, MMW-HA lost its healing properties.

According to our results, MMW-HA (166 kDa) seems to be the

best healing agent compared to LMW-HA and HLW-HA.

Besides, HA with molecular weight inferior to 200 kDa has been

shown to stimulate b-defensin-2 on human skin cells [38]. b-

defensin-2, a peptide produced by different epithelial cells, exerts a

strong antimicrobial activity against Gram-negative bacteria and

Candida albicans, together with a good bacteriostatic activity

against Gram-positive bacteria [39]. MMW-HA combines prolif-

erative stimulating effects and indirect antimicrobial activity.

These both properties confer to MMW-HA an interesting role in

wound healing.

Our study allowed us to better understand the mechanism by

which hyaluronan acts in wound healing (see above summary

diagram, figure 8).

We demonstrated that native HA is not the best biopolymer to

stimulate wound healing and cell proliferation, but rather HA at

166 kDa represents an interesting therapeutic strategy as it

promotes in vitro the rebuilt of a functional epithelium monolayer.

We highlighted for the first time the relationship between HA at

166 kDa and P2X7 receptor basal activation in wound healing.

Together, these results show that topical use of medium molecular

weight hyaluronan in sticking plasters should be taken into

consideration to promote tissue repair and wound healing.

Materials and Methods

Reagents
Chemicals, cell culture reagents and fluorescent dyes were

purchased from Sigma-Aldrich (Saint-Quentin-Fallavier, France),

Eurobio (Les Ulis, France) and Invitrogen (Cergy Pontoise,

France), respectively. Different HA were obtained by biotechnol-

ogy processes (Laboratoire Soliance, Pomacle, France): one native

HA (HMW-HA) around 1 MDa, and two smaller fragments, one

medium molecular weight HA (MMW-HA) around 150 kDa and

one low moleculear weight HA (LMW-HA) around 15 kDa.

Molecular weights were calculated according to European

Figure 5. P2X7 receptor activation. Cells were pre-incubated or not
with a specific inhibitor of P2X7 (BBG) at 20 mM for 20 minutes before
incubation with HMW-HA or MMW-HA or LMW-HA at 0.2% for 24-hours.
P2X7 activation was evaluated by YO-PRO-1 dye uptake. A: cell culture
medium, B: positive control, C: HMW-HA without specific inhibitor of
P2X7 (BBG), D: HMW-HA with specific inhibitor of P2X7 (BBG), E: MMW-
HA without specific inhibitor of P2X7 (BBG), F: MMW-HA with specific
inhibitor of P2X7 (BBG), G: FMW-HA without specific inhibitor of P2X7
(BBG), H: LMW-HA with specific inhibitor of P2X7 (BBG). Incubation with
MMW-HA induces slight increase in P2X7 activation compared to
control and other HA (n = 18). Moreover preincubation of cell with
specific inhibitor of P2X7 (BBG) inhibits MMW-HA effect on P2X7
receptor.
doi:10.1371/journal.pone.0048351.g005

Figure 6. Cell viability. Cells were preincubated or not with specific
inhibitor of P2X7 (BBG) at 20 mM for 20 minutes before incubation with
MMW-HA at 0.2% for 24-hours. Cell viability was evaluated by neutral
red test after incubation with MMW-HA. Grey: without specific inhibitor
of P2X7 (BBG), black: with specific inhibitor of P2X7 (BBG). Slight
activation of P2X7 we observe with MMW-HA has no effect on cell
viability (n = 18).
doi:10.1371/journal.pone.0048351.g006

Hyaluronan and Wound Healing

PLOS ONE | www.plosone.org 5 November 2012 | Volume 7 | Issue 11 | e48351



Pharmacopoeia guidelines 6.3. Hyaluronan was used at 0.2%; this

concentration was tested according our previous study [23] which

are showed that hyaluronan at this concentration had an effect on

corneal cells.

Experimental Procedures
Cell culture. HaCat cells (human skin keratinocytes, [40])

were cultured under standard conditions (moist atmosphere of 5%

CO2 at 37uC) in Dulbecco’s minimum essential medium (DMEM)

supplemented with 10% foetal calf serum (FCS), 2 mM L-

glutamine, 50 IU/ml penicillin, and 50 IU/ml streptomycin.

The medium was changed every three days. Confluent cultures

were removed by trypsin incubation, and then cells were counted.

They were seeded in culture microplates at a density of 250,000

cells per mL.

Cells were pre-incubated or not with a specific inhibitor of

P2X7 (brilliant Blue G- BBG) at 20 mM for 20 minutes before

incubation with HMW-HA or MMW-HA or LMW-HA at 0.2%

for 24-hours.

Scratch wound assay. According to Buonomo’s method

[41–43], the cells were seeded into 6-well culture microplates, and

culture was kept at 37uC for 72 hours. The medium culture was

removed and the cells were rinsed with phosphate buffer saline

(PBS) and incubated with culture medium without FCS during 24

hours. After 24 hours, medium was removed and the cells were

washed and wounded by manual scratch with a pipette tip. The

cells were rinsed with PBS and pictures of the wounds were taken

using Nikon Coolpix camera. Solutions containing different HA at

0.2% in culture medium with 2.5% of FCS were distributed.

Cultures were kept at 37uC for 24 hours. At D1 (+24h), medium

was removed and the cells were washed before taking pictures of

each wound. % of wound area was measured using Aphelion Dev

image processing and analysis software developed by ADCIS S.A.

Cell proliferation. Cells were seeded with different HA at

0.2% in culture medium at 80,000 cells per mL into 48-well

culture microplates. Each day, the cells were removed with trypsin

and counted for 6 days with haemocytometer.

Tight junction: ZO-1 expression. ZO-1 expression was

evaluated using flow cytometry [44]. Cells were seeded into 6-well

culture microplates, culture were kept at 37uC for 24 hours. The

cells were incubated with different HA at 0.2% in medium with

2.5% of FCS for 24 hours. After 24 hours, medium was removed

and the cells were washed and removed by trypsin. The cells were

fixed with 1% paraformaldehyde in PBS. The cells were washed

with PBS, and incubated for 30 minutes at 4uC with ZO-1

polyclonal antibodies (ZYMED Laboratories) diluted to 1/100.

After washes in cold PBS supplemented with 0.5% of bovine

serum albumin (BSA), the cells were incubated for 30 minutes at

4uC with a goat anti-rabbit immunoglobulin-Alexa FluorH488

diluted to 1/2000. After wash in cold PBS supplemented with

Figure 7. Scratch wound assay. Monolayer was wounded by manual scratch with a pipette tip and cells were preincubated with BBG at 20 mM for
20minutes before HA incubation. Different solutions containing different HA at 0.2% in culture medium with 2.5% of FCS are distributed (Day0) and
culture was kept at 37uC for 24 hours (Day1). A: control without specific inhibitor of P2X7 (BBG), B: MMW-HA with without specific inhibitor of P2X7
(BBG), C: MMW-HA with without specific inhibitor of P2X7 (BBG). % of wound area represents the ration of wound area at D1/wound area at D0. We
show that cell preincubation with BBG blocks beneficial effect of MMH-HA on wound healing (***: p,0.001 compared to culture medium, n = 3).
doi:10.1371/journal.pone.0048351.g007
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0.5% of BSA, the cells were analysed by C6 Flow CytometerH
(Accuri Cytometers, St. Ives, UK).

Hyaluronan receptor: CD44 receptor expression. Flow

cytometry were used to evaluate CD44 expression [45]. According

to Pauloin’s method [23], cells were seeded into 6-well culture

microplates, culture were kept at 37uC for 24 hours. The cells were

incubated with different HA at 0.2% in culture medium with 2.5%

of FCS. After 24 hours, culture medium was removed and the cells

were washed and removed by trypsin. Culture cells were incubated

for 45 minutes at 4uC with CD44 monoclonal antibodies (Sigma-

Aldrich) diluted to 1/500. After three washes in cold PBS

supplemented with 0.5% of BSA, the cells were incubated 30

minutes at 4uC with a goat anti-mouse immunoglobulin-FITC

(Dakocytomation, Glostrup, Denmark) diluted to 1/2000. After

three washes in cold PBS supplemented with 0.5% of BSA, the

cells were fixed with 1% paraformaldehyde in PBS. The cells were

analysed by C6 Flow CytometerH (Accuri Cytometers, St. Ives,

UK).
P2X7 receptor activation: YO-PRO-1 test. YO-PRO-1, a

DNA probe [46], enters cells after P2X7 receptor activation [13].

For this test, cells were seeded into 96-well culture microplates and

kept at 37uC for 24 hours. The cells were incubated with different

HA at 0.2% in culture medium with 2.5% of FCS. After 24 hours,

culture medium was removed and the cells were washed with PBS.

According to our laboratory’s protocol [47;48], 2 mM YO-PRO-1

solution was distributed in the microplate. After 10 minutes at

room temperature in the dark, pictures of cells were taken using a

Nikon Coolpix camera connected to a fluorescence microscope

Leı̈ca DMIRB.
Cell viability. Neutral red (Fluka, Buchs, Switzerland) uptake

assay is a cell viability assay, based on the ability of viable cells to

incorporate neutral red [49], which is a weak cationic dye that

readily penetrates cell membranes by non-ionic diffusion, accu-

mulating in lysosomes, where it binds with anionic sites in the

lysosomal matrix. Lysosomal membrane integrity is closely

correlated with cell viability and it is evaluated with neutral red

fluorescence. Cells were seeded into 96-well culture microplates,

culture were kept at 37uC for 24 hours. The cells were incubated

with different HA at 0.2% in culture medium with 2.5% of FCS.

After 24 hours, culture medium was removed and the cells were

washed. Neutral red solution (50 mg/ml) was added to living cells.

After a 3-hour incubation time at 37uC, the cells were washed with

PBS to remove any remaining unincorporated dye. The dye was

then released from the cells using lysis solution (1% acetic acid,

50% ethanol and 49% pure water). The plate was agitated on a

microplate shaker for 20 minutes and the fluorescence signal was

scanned (lexc = 540 nm; lem = 600 nm) [50], using a cytofluo-

rometer (SafireH, TecanTM, France) which allows fluorometric

detection from 280 to 870 nm with high sensitivity (pg-fg/ml) and

specificity. This technique allows the use of fluorescent probes on

living cells and detects the fluorescent signal directly in the

microplate in less than 1 minute (for a 96-well plate).

Statistical analysis. Each test was performed in triplicate.

The fluorescent measurement was expressed as relative fluores-

cence units or as fluorescence percentage of the control, and

statistical analysis were performed using one-way ANOVA

followed by Dunnett’s test (a risk = 0.05). Error bars on graphs

represent standard deviation. The significance is compared to

control (culture medium). Statistical analysis was performed using

Sigma Stat 2.0 software (Chicago, IL, USA).
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