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Abstract: African swine fever virus (ASFV) is currently causing devastating outbreaks in Asia
and Europe, and the ASFV strain Georgia (ASFV-G) is responsible for these outbreaks. ASFV-G is
highly virulent and continues to be maintained in these outbreak areas, apparently without suffering
significant genomic or phenotypic changes. When comparing the genome of ASFV-G to other isolates,
a thus-far uncharacterized gene, X69R, is highly conserved and, interestingly, is similar to another
ASFV uncharacterized gene, J64R. All sequenced ASFV isolates have one or both of these genes,
X69R or J64R, suggesting that the presence of at least one of these genes may be necessary for ASFV
replication and or virulence. The X69R gene is present in the ASFV-G genome while J64R is absent.
To assess the importance of X69R in ASFV-G functionality, we developed a recombinant virus by
deleting the X69R gene from the ASFV-G genome (ASFV-G-∆X69R). ASFV-G-∆X69R had the same
replication kinetics in primary swine macrophage cultures as the parental ASFV-G, indicating that the
X69R gene is not essential for ASFV-G viability or efficient replication in the main target cell during
in vivo infection. In addition, swine intramuscularly inoculated with a low dose (102 HAD50) of
ASFV-G-∆X69R developed a clinical disease indistinguishable from that induced by the same dose of
the virulent parental ASFV-G isolate. Viremia values of ASFV-G-∆X69R did not significantly differ
from those detected in animals infected with parental virus. Therefore, deletion of the X69R gene
from ASFV-G does not affect virus replication or virulence in swine.
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1. Introduction

The virus family Asfarviridae contains only one member, African swine fever virus (ASFV), which is
the etiological agent of African swine fever (ASF). ASFV has a large, double-stranded DNA genome
of around 180–190 kilobases that encodes for over 150 open reading frames (ORFs). ASF has been
endemic in several sub-Saharan African countries and Sardinia (Italy) for decades. Recently, epizootics
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of ASFV have occurred throughout parts of Europe and Asia, stemming from a single introduction of
ASFV in the Republic of Georgia in 2007. Quickly, ASFV spread into the Caucasus region, and further
into Armenia, Ukraine, Azerbaijan, and Russia. This spread continued, and now is causing outbreaks
that have spread as far west as Poland, affecting both the domestic and wild pig populations [1].
In 2018, the virus was identified in China, and within only a few months every province of China
was affected. In 2019, ASFV continued to spread into neighboring countries that included Vietnam,
Cambodia, Mongolia, Laos, Timor Leste, Philippines, Indonesia, and Korea. In 2019, there was a single
controlled outbreak of ASF in the Luxemburg region of Belgium, increasing the risk of continued
spread throughout Europe. In early 2020, ASF was detected in Papua New Guinea, elevating concerns
in Australia as the virus continues to infect naïve pig populations. All of these European and Asian
outbreaks are due to a single ASFV strain that is highly contagious and lethal in domestic pigs.
The rapid, seemingly uncontrollable spread of ASFV has the potential to cause significant death in
commercial swine populations, resulting in substantial economic losses in the swine industry and
worldwide protein availability shortages [2].

Currently, there is no commercial vaccine available to prevent ASF [1]. Development of
experimental, live-attenuated ASF vaccines have relied on the production of recombinant field
isolates by genetic manipulation, in which one or more genes were deleted from the field isolate [3–12].
Therefore, to understand the role of individual viral genes in virulence and how their possible
manipulation could be used to develop experimental vaccines is of critical and urgent importance.

Whole genome sequencing has revealed that there are variations in genome size among different
ASFV isolates. Like poxviruses, the diversity within the ASFV genome is localized primarily in the
left and right terminal genomic regions [13,14]. It is predicted that ASFV forms head to tail catamers,
similar to vaccinia virus, which could explain the exchange of nucleic acids in these regions [15]. ASFV
variable regions comprise the left 35 kb and the right 15 kb ends of the genome, and deletions in
these areas have occurred during adaptation of the virus in vitro [16]. These two regions contain the
multigene families (MGFs), comprised of five different families of genes with similar sequence patterns.
The multigene families of genes have similar sequence characteristics, and the number and sequence
of the multifamily genes is variable in various genomes. In the left variable region, there are two
orthologous genes that do not belong to any MGF, X69R, and J64R. However, both genes have been
found singularly to be absent in some ASFV genomes, with one or the other gene remaining. Due to
this observation, it is possible that X69R and J64R could overlap functionality. This, along with the fact
that at least one copy of either X69R or J64R gene is present in almost all ASFV isolates, indicates that
the function of X69R or J64R may be essential for virus replication or virulence. It has been reported
that X69R facilitates virus replication in an in evaluated in an in vitro system [17]. Neither X69R nor
J64R has been experimentally characterized in terms of their role in virulence in domestic swine.

Here we demonstrate that deletion of the X69R gene does not affect virus viability or
replication in vitro. Importantly, deletion of the X69R gene from the genome of the ASFV
Georgia2010 isolate (ASFV-G-∆X69R) does not significantly alter virus replication or virulence in swine.
ASFV-G-∆X69R inoculated intramuscularly with 102 HAD50 produced a clinical disease in domestic
pigs indistinguishable from that induced by similar doses of the virulent parental ASFV-G isolate. In
addition, viremia values during ASFV-G-∆X69R infection do not drastically differ from those detected
in animals infected with parental virus.

2. Materials and Methods

2.1. Cell Cultures and Viruses

Defibrinated swine blood was used for the isolation of primary swine macrophages, as previously
described [18]. Mononuclear leukocytes were separated by flotation over a density gradient (specific
gravity = 1.079). The monocyte/macrophage cell fraction was collected and cultured in Primaria flasks
(Falcon, Franklin Lakes, NJ, USA) using standard macrophage media, as previously described, at 37 ◦C



Viruses 2020, 12, 918 3 of 13

under 5% CO2. Adherent cells were detached from the plastic by using 10 mM EDTA in phosphate
buffered saline (PBS), and were then reseeded into 6- or 96-well dishes at a density of 5 × 106 cells per
mL for use in the described assays.

ASFV Georgia (ASFV-G) field isolate was kindly provided from the Laboratory of the Ministry of
Agriculture (LMA) in Tbilisi, Republic of Georgia by Dr. Nino Vepkhvadze [16].

Comparative growth curves between ASFV-G-∆X69R and parental ASFV-G were performed in
primary swine macrophage cell cultures. Preformed monolayers were prepared in 6-well plates and
infected at an MOI of 0.01 (based on HAD50 previously determined in primary swine macrophage
cell cultures). After 1 h of adsorption at 37 ◦C under 5% CO2, the inoculum was removed, and the
cells were rinsed two times with macrophage media. Two mL of macrophage media was added and
incubated for 2, 24, 48, 72, and 96 h at 37 ◦C under 5% CO2. At the indicated times post-infection, the
cells were frozen at ≤−70 ◦C, and the thawed lysates were used to determine titers by HAD50/mL
in the primary swine macrophage cell cultures. Virus titration was performed in 96-well plates of
primary swine macrophages. The presence of virus was assessed by hemadsorption (HA), and virus
titers were calculated as previously described [19].

2.2. Construction of the Recombinant Viruses

Recombinant ASFV-G-∆X69R was generated by homologous recombination between the parental
ASFV genome and a recombination transfer vector (Figure 1) [18,20]. The recombinant transfer vector
(p72mCherry∆x69R) contains a left recombination arm that is 1000 bp upstream of open reading
frame (ORF) X69R, identical to ASFV-G nucleotide positions 18,227–19,226, followed by the previously
described p72 promoter and mCherry Gene [21]; this is followed by a right recombination arm that
is situated approximately 1000 bp downstream of X69R, identical to ASFV-G nucleotide positions
19,437–20,436. The recombinant transfer vector was obtained by DNA synthesis (Epoch Life Sciences,
Sugar Land, TX, USA). Macrophage cell cultures were infected with ASFV-G and transfected with
the transfer vector. Infection and transfection efficiency were evaluated by the visual observation of
mCherry. The purification of the recombinant ASFV-G-∆X69R was obtained by successive rounds of
limiting dilution purification.

2.3. Microarray Analysis

The microarray data of ASFV ORFs were obtained from a previous study [22], where the data
is available at the GEO repository under the series record GPL26,793. Background signal correction
and data normalization of the microarray signals and statistical analysis were performed using the
LIMMA package. The signal intensities of the ASFV ORF RNA were averaged from both Cy3 and Cy5
channels. The pattern of expression of the well-characterized ASFV early protein p30 (CP204L) and the
late protein p72 (B646L) has been previously described, and was used here as a representation of early
and late transcription profiles [15,16].

2.4. Complete Sequencing of ASFV Genomes Using Next-Generation Sequencing (NGS)

Macrophage cells were seeded as described and infected with ASFV; once the cytopathic effect was
evident throughout the monolayer, DNA was isolated as described previously from cells infected with
ASFV [21]. The extracted DNA was then used to completely sequence the virus DNA as previously
described [21]. In brief, the viral DNA was sheared using enzymatic reactions assessed for the
distribution of size fragmentation, then ligation of identifying barcodes using an adapter sequence was
added to the DNA fragments. We then used this DNA library for next-generation sequencing (NGS)
using the NextSeq (Illumina, San Diego, CA, United States). Sequence analysis was performed using
CLC Genomics Workbench version 20 software (CLCBio, Waltham, MA, USA).
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2.5. Animal Experiments

Animal experiments were performed under biosafety level 3 conditions in the animal facilities at
Plum Island Animal Disease Center (PIADC), following a strict protocol approved by the Institutional
Animal Care and Use Committee (IACUC; 225.01-16-R_090716). ASFV-G-∆X69R was assessed for its
virulence relative to the parental ASFV-G virus, using 80–90 pound commercial breed swine. Five pigs
were inoculated intramuscularly (IM) with 102 HAD50 of ASFV-G-∆X69R and compared with an
additional group inoculated with similar dose of ASFV-G. Clinical signs (anorexia, depression, fever,
purple skin discoloration, staggering gait, diarrhea, and cough) and changes in body temperature
were recorded daily throughout the experiment. No particular scoring system was used, since clinical
presentation of the disease in animals infected with the highly virulent ASFV strain Georgia can follow
different patterns, from sudden death to a longer evolution, combining (although not obligatorily
coexisting) different signs. IACUC protocol establishes specific points to proceed with humanitarian
euthanasia after lack of mobility, severe anorexia, presence of neurological signs, or three consecutive
days of very high body temperature.

3. Results

3.1. X69R Gene Is Conserved Across Different ASFV Isolates

Sequence alignment from ASFV genomes that contain the X69R or J64R gene was performed.
The multiple sequence alignment revealed a high degree of similarity among isolates. Results indicated
that there are two main groups of ASFV isolates, based on the X69R gene sequence, with one group
being similar to the current circulating strain of ASFV-G and another group obtained from sequenced
isolates from Uganda and Kenya. When comparing the X69R sequence at the protein level between the
two groups using ASFV-G and Kenya1950, X69R shared 69% nucleotide identity and 82% amino acid
similarity (Figure 1A). It should be mentioned that genetic differences have been found among X69 genes
from different isolates derived from the Georgia2007 isolates [23]. When comparing the multiple sequence
alignment of the J64R translated product, this protein is almost 100% conserved among sequenced
isolates (Figure 1B). When the two group alignments, X69R to that of J64R, were combined, the two
proteins were 55% identical or 74% similar (Figure 1C), suggesting the possibility of a shared function
between X69R and J64R, and possibly explaining why in some isolates only one of these proteins exist.
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X69R gene is only present in ASFV isolates Georgia2007/1, wb Bs01, China2018/anhuix, Malawi Lil-
20/1, Kenya1950, R35/Uganda, R25/Uganda, R8/Uganda, and J64R R7/Uganda. The J64R gene is 
present in ASFV isolate Ba71, while X69R is absent. The alternative presence of orthologous X69R 
and J64R genes in several ASFV isolates suggests the possibility that these genes could have an 
overlapping, unknown function. Interestingly, there are no known ASFV isolates completely lacking 
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Figure 1. Multiple sequence alignment of the indicated African swine fever virus (ASFV) isolates for
proteins. (A) X69R, (B) J64R, or (C) both X69R and J64R genes. Matching residues are represented as
dots. The degree of conservation is presented below the protein sequence, and the conserved residue
is presented on the bottom, indicating the degree of conservation for particular amino acids in the
protein sequence.

Of interest is the distribution of X69R and J64R in different ASFV isolates. Both genes are present in
ASFV isolates Ba71V, Ourt88/3, NHV, Lisbon 60, E75, Benin97/1, and Pretoria/96/4. However, the X69R
gene is only present in ASFV isolates Georgia2007/1, wb Bs01, China2018/anhuix, Malawi Lil-20/1,
Kenya1950, R35/Uganda, R25/Uganda, R8/Uganda, and J64R R7/Uganda. The J64R gene is present in
ASFV isolate Ba71, while X69R is absent. The alternative presence of orthologous X69R and J64R genes
in several ASFV isolates suggests the possibility that these genes could have an overlapping, unknown
function. Interestingly, there are no known ASFV isolates completely lacking the J64R and/or X69R
genes, suggesting that at least one copy of the gene is necessary for virus replication in vitro or in vivo,
or virulence in the natural host.

3.2. X69R Is Transcribed as an Early Viral Gene

To determine whether the X69R gene is actually transcribed during the infectious cycle, a time
course experiment was performed to analyze the kinetics of RNA transcription in primary swine
macrophages infected with ASFV strain Georgia. Swine macrophage cultures were infected with an
MOI = 10 (to ensure the highest possible rate of cell infectivity in the cell culture); ASFV-G and cell
lysate samples were taken at 3, 6, 9, 12, 15, and 18 hpi, completing approximately one virus replication



Viruses 2020, 12, 918 6 of 13

cycle. The presence of X69R RNA was detected by DNA microarray analysis that was previously
performed [22], as described in Material and Methods. Transcription of X69R was reliably detected
at all time points, with signal-to-noise ratios (SNRs) of 18 or larger (an SNR of 3 is the threshold of
reliable microarray detection); expression gradually decreased from 6 to 9 hpi, and then peaked at
12 hpi, followed by an increase from 12 to 18 hpi, like the trend observed during the period of 3 to
9 hpi (Figure 2). The pattern of expression of the well-characterized ASFV early protein p30 (CP204L)
and the late protein p72 (B646L) has been previously described and is used here as a representation of
early and late transcription profiles [6,24]. Therefore, the ASFV X69R gene encodes for a protein that is
highly expressed early in the virus replication cycle.
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Figure 2. Time course of X69R gene transcriptional activity. Averaged microarray signal intensities
(photons per pixel) of ASFV X69R, CP204L, and B646L open reading frame (ORF) RNA prepared from
ex vivo pig macrophages infected with ASFV at 3, 6, 9, 12, 15, and 18 hpi.

3.3. Development of the ASFV-G-X69R Deletion Mutant

To determine the role of the ASFV X69R protein during ASFV infection in vitro and in vivo,
a recombinant virus lacking the X69R gene was designed. Deletion of X69R was achieved by replacing
the complete ORF with p72mCherry, following standard methodologies based on homologous
recombination to generate recombinant ASFV viruses. The designed recombinant virus, ASFV-G-∆X69R,
was constructed from the highly pathogenic ASFV Georgia isolate (ASFV-G). A 403-bp region was
deleted (between nucleotide positions 19,227–19,629) from the ASFV-G genome and replaced with a
1226 bp cassette containing p72mCherry (see Material and Methods) (Figure 3). The recombinant virus
was obtained after nine successive limiting dilution purification events on monolayers of primary
swine macrophage cell cultures. The virus population obtained from the last round of purification was
amplified in primary swine macrophage cell cultures to obtain a virus stock.
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Figure 3. Schematic for the development of ASFV-G-∆X69R. The transfer vector contains p72 promoter
and the mCherry cassette, along with the flanking left and right arms of the transfer vector, designed to
have flanking ends to both sides of the deletion/insertion cassette. The resulting ASFV-G-∆X69R virus
with the cassette inserted is shown on the bottom; the insert cassette is a direct replacement for the
ORF X69R.

To confirm that the only genetic modification was the deletion of X69R and that the integrity
of the rest of the ASFV-G genome was maintained, full genome sequence of ASFV-G-∆X69R was
obtained by NGS on an Illumina NextSeq 500. The genome analysis confirmed the accuracy of
the introduced modification and the absence of any additional significant mutations. In addition,
NGS confirmed the absence of any residual X69R gene from parental ASFV-G genome as contaminant
of the ASFV-G-∆X69R stock.

3.4. Replication of ASFV-G-∆X69R in Primary Swine Macrophages

To evaluate the role of the X69R gene, the in vitro growth characteristics of ASFV-G-∆X69R were
assessed in cell cultures of primary swine macrophages, the primary target cells during virus replication
in swine, and compared them to parental ASFV-G in a multistep growth curve. The cell cultures were
infected with these viruses at an MOI of 0.01, and samples were collected at 2, 24, 48, 72, and 96 hpi.
A low MOI was used to ensure that the growth curve kinetics would cover as many replication cycles
as possible, in order to increase the chance of detecting subtle differences in the comparative replicative
abilities between ASFV-G-∆X69R and the parental virus. Results demonstrated that ASFV-G-∆X69R
displayed an almost identical growth kinetic when compared to that of the parental ASFV-G virus
(Figure 4). Therefore, deletion of the X69R gene does not significantly affect the ability of the virus to
replicate in primary swine macrophage cultures.
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Figure 4. In vitro growth characteristics of ASFV-Georgia-∆X69R (filled symbols) and parental (empty
symbols) ASFV-Georgia (ASFV-G). Primary swine macrophage cell cultures were infected (MOI = 0.01)
with each of the viruses, and virus yield was titrated at the indicated times post-infection. Data represent
means and SD from three independent experiments. Sensitivity of virus detection: >1.8 log10 HAD50/mL.
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3.5. Assessment of ASFV-G-∆X69R Virulence in Swine

To evaluate the effect of the deletion of the X69R gene on ASFV-G virulence, groups of five
80–90 pound pigs were inoculated intramuscularly (IM) with 102 HAD50 of either ASFV-G-∆X69R or
ASFV-G. Since ASFV Georgia is a highly virulent virus, with a very low 100% lethal dose, we decided
to use a relatively low dose in order to increase the possibility of detecting subtle differences in
virulence between ASFV-G-∆X69R and the parental virus. A small reduction in virulence would
be experimentally missed more easily if high doses were used. As expected, animals infected with
ASFV-G exhibited an increased body temperature (>104 ◦F) by day 4 post-infection, followed by the
appearance of clinical signs associated with the disease, including (although not obligatorily coexisting)
high fever, anorexia, depression, purple skin discoloration, vomit, diarrhea, and neurological signs
(Table 1 and Figure 5). Signs of the disease were aggravated progressively over time, and animals
were euthanized in extremis by day 5–6 post-infection, following established regulations in the
PIADC IACUC protocol. Interestingly, animals receiving 102 HAD50 of ASFV-G-∆X69R presented
a disease evolution practically undistinguishable from those inoculated with ASFV-G: onset of the
disease occurred by day 5 post-infection, and animals were severely sick and euthanized by day 6–7
post-infection. Both the time of presentation and severity of the clinical signs related with the disease
completely resemble those present in animals inoculated with the parental virus. Therefore, deletion
of the X69R gene does not significantly alter the virulence of the highly virulent ASFV-G isolate.

Table 1. Swine survival and fever response following infection with ASFV-G-∆X69R and
parental ASFV-G.

Fever

Virus (102

HAD50)
No. of

Survivors/Total
Mean Time to
Death (±SD)

No. of Days to
Onset (±SD)

Duration No.
of Days (±SD)

Maximum
Daily Temp.,
◦F (±SD)

ASFV-G X69R 0/5 6.6 (0.55) 5.4 (0.55) 1.2 (0.45) 106.12 (0.28)
ASFV-G 0/5 5.6 (0.55) 4.2 (0.84) 1.2 (0.45) 105.6 (0.54)
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Analysis of viremia in animals infected with ASFV-G presented expected high titers
(107–108.5 HAD50/mL) on day 4 post-infection, remaining high until day 7 post-infection, when all
animals were euthanized. ASFV-G-∆X69R-infected animals had viremias with values ranging from
104 to 108 HAD50/mL by day 4 post-infection, reaching titers similar to those of animals infected with
ASFV-G by day 7 post-infection, which was the last sampling time before animals were humanely
euthanized (Figure 6). Therefore, ASFV-G-∆X69R virulence, in terms of clinical presentation and
virological data, produces a disease indistinguishable from that induced by its highly virulent parental
virus, ASFV-G.
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4. Discussion

The majority of the 150 to 200 proteins encoded in the ASFV genome have not been experimentally
characterized. Identifying viral proteins that are important for in vitro and in vivo virus replication,
and importantly, in virus virulence in swine, is critical to developing novel countermeasures to control
the disease. Discovery of ASFV gene function via genetic manipulation has enabled the production
of experimental live-attenuated ASFV vaccine candidates by different research groups [3–9,25].
Interestingly, just a small number of virus genes have been successfully deleted from the ASFV genome,
producing a novel recombinant virus (e.g., 9GL, UK, TK, MGF, NL, CD2, Lectin, DP148R, I177L,
and C962R) [4–8,18,24–32]), and another small number of genes were determined to be essential for
virus replication (e.g., EP152R, p30, p54, and p72) [27,33–35]. The absence of experimental information
restricts the knowledge for most ASFV proteins to ORF analysis by functional genomics, predicting the
functions of these ORFs.

In this study, we showed that X69R, a previously uncharacterized ASFV ORF, encodes a protein
that is transiently expressed at early times during infection of swine primary macrophages, infected at
a high MOI to ensure the synchronic infection of most of the cells in the culture. We also demonstrated
that X69R is a non-essential gene, since its deletion from the ASFV-G genome does not significantly
alter virus replication in swine macrophage cultures. These experiments were performed using a rather
low MOI, with the purpose of ensuring that growth kinetics will require more than one replication
cycle before the end of the experimental period. The additive effect of evaluating several successive
replication cycles would enhance the possibility of detecting subtle differences between the replicative
abilities of these viruses, which may not be appreciated in a single step growth curve like that performed
at a high MOI.

Importantly, deletion of the X69R gene is not critical for ASFV virulence in swine, as the deletion
mutant ASFV-G-∆X69R had similar pathogenesis as the parental ASFV-G. Animals inoculated at
very low doses (102 HAD50) developed a disease indistinguishable from those receiving the parental,
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fully-virulent virus. The use of a relatively low dose increases chances of detecting small differences in
virulence between ASFV-G-∆X69R and ASFV-G, a virus with an unusually low 100% lethal dose.

We and others [35] have found sequence similarity between X69R and J64R genes, suggesting
the possibility that these genes may play a similar function. Multiple findings support the potential
critical role of these genes, including the fact that in all of the ASFV isolates, at least one of these genes
is present (actually, both genes are present in a few other isolates), and interestingly, no sequenced
isolate simultaneously lacking both of these genes has been identified. Therefore, the similarity
between X69R and J64R proteins, and the fact that at least one of the genes is always present in
the genome, suggests the possibility that one of these genes could be necessary for ASFV virulence,
or at least for the process of virus replication. To our surprise, we were able to delete X69R and the
resulting virus, ASFV-G-∆X69R, had similar replication rates both in vitro and in vivo, and presented
an undistinguishable pathogenesis to that of the parental ASFV-G. In this regard, it is interesting to
note that it has been reported that X69R protein, when individually expressed in ASFV-susceptible
cells, increased the rate of virus replication [17].

It is interesting that neither X69R or J64R were detected in the ASFV proteome, [36] and that
neither of them was detected as being part of the virus particle [37–39], obscuring the potential function
of these genes. In addition, the molecular function of X69R or J64R has yet to be discovered. Further
studies will have to be conducted to identify the exact molecular functions of either of these proteins,
in order to determine the evolutionary role of why one of them has always been present in all field
ASFV genomes evaluated so far (with no field isolates of ASFV lacking both the X69R and J64R
protein). With the evolutionary advantage of viruses typically having a compacted genome, it is always
surprising when the deletion of an ORF is non-essential, or at least does not affect to some degree the
processes of both virus replication and virulence in the natural host. However, in the case of ASFV,
and in particular with ASFV-G that exhibits experimentally 100% mortality at such a low viral dose,
it is possible that the deletion of one gene may not drastically change the virulent phenotype. On the
other hand, it is interesting to stress that there are situations where the deletion of one gene in ASFV is
not possible, as some proteins have been shown to have essential functions. In addition, in rare cases,
the deletion of one gene has shown to produce full attenuation of ASFV-G virulence in swine [5,6].
The lack of information of the essentiality of ASFV genes in either replication or in virus virulence is a
significant gap in knowledge for basic ASFV virology, which requires further research to understand
the necessary components to cause disease.

Therefore, these preliminary studies do not indicate that deletion of X69R in the context of the
highly virulent Georgia2010 isolate affects virus replication or virulence in IM-infected swine. Further
studies using a more natural route of infection (oronasal infection/cohabitation with infected donors),
or by using a less virulent parental ASFV isolate will be required to entirely exclude a potential role of
X69R in ASF pathogenesis. It is also possible that deletion of X69R gene may have a more pronounced
phenotype in different hosts that are susceptible to ASFV infection, such as soft ticks or other Suidae,
such as wild boar, and perhaps in one of these hosts a phenotype may be identified. Further studies in
other hosts would be required to determine if this is the case. It is also possible that the function of
X69R overlaps with other proteins in ASFV, and simultaneous deletion of these additional unknown
proteins would be required in order to give a more pronounced phenotype and fully disclose the
functional role of X69R. However, determining that the X69R gene can be deleted and showing that it
is non-essential in virus replication and disease production is an important step for determining the
potential minimal essential genome for ASFV. Improving our current understanding for the proteins
required for the pathogenesis of ASFV and the viral molecular mechanisms that occur during infection
can allow for the construction of better rational vaccine designs.
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