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We recorded horizontal ocular-following responses to
pairs of superimposed vertical sine wave gratings
moving in opposite directions in human subjects. This
configuration elicits a nonlinear interaction: when the
relative contrast of the gratings is changed, the response
transitions abruptly between the responses elicited by
either grating alone. We explore this interaction in pairs
of gratings that differ in spatial and temporal frequency
and show that all cases can be described as a weighted
sum of the responses to each grating presented alone,
where the weights are a nonlinear function of stimulus
contrast: a nonlinear weighed summation model. The
weights depended on the spatial and temporal
frequency of the component grating. In many cases the
dominant component was not the one that produced
the strongest response when presented alone, implying
that the neuronal circuits assigning weights precede the
stages at which motor responses to visual motion are
generated. When the stimulus area was reduced, the
relationship between spatial frequency and weight
shifted to higher frequencies. This finding may reflect a
contribution from surround suppression. The nonlinear
interaction is strongest when the two components have
similar spatial frequencies, suggesting that the
nonlinearity may reflect interactions within single spatial
frequency channels. This framework can be extended to
stimuli composed of more than two components: our
model was able to predict the responses to stimuli

composed of three gratings. That this relatively simple
model successfully captures the ocular-following
responses over a wide range of spatial/temporal
frequency and contrast parameters suggests that these
interactions reflect a simple mechanism.

Introduction

Ocular-following responses (OFRs) are short-latency
tracking eye movements evoked by the motion of a
visual stimulus (Gellman, Carl, & Miles, 1990; Miles,
Kawano, & Optican, 1986). The characteristics of the
OFR (e.g., amplitude, latency) seem to be closely linked
with many aspects of neuronal activity at early stages
of visual processing (V1, MT, MST; for review, see
Masson & Perrinet, 2012; Miles, 1998; Miles & Sheliga,
2010). This offers the hope that a relatively simple
model might describe the visual processing that drives
OFRs. However, even these reflexive movements cannot
be explained as a linear summation over spatiotemporal
channels: when two gratings move in opposite directions
there is a “winner-take-all”–like behavior, in which
small changes in contrast lead to rapid changes in
response towards that produced by the dominant
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component alone (Matsuura et al., 2008; Sheliga,
FitzGibbon, & Miles, 2008; Sheliga, Kodaka,
FitzGibbon, & Miles, 2006). This effect may then be
related to similar effects that has been seen in cortical
neurons (areas MT/MST; Kumbhani, Saber, Majaj,
Tailby, & Movshon, 2008; Miura, Inaba, Aoki, &
Kawano, 2014). Here we explore how this behavior
depends on the properties of the stimulus in an effort
to find a simple rule that describes such interactions
over a broad range of spatiotemporal inputs. We hope
it will eventually provide a route to predicting OFRs to
arbitrary one-dimensional stimuli.

When these highly nonlinear interactions were first
observed, it was assumed that the dominant spatial
component was the one that produced the strongest
response when presented alone. However, one study
hinted at a possibility that certain spatial frequencies
(SFs) had more weight than others: two equal-contrast
gratings moving in opposite directions resulted in eye
movements in the direction of motion of the higher SF
grating (Sheliga et al., 2006).

Here we describe a series of experiments in which we
used vertical sine wave gratings (hereafter “gratings”)
having a wide range of SFs and temporal frequencies
(TFs). In Experiment 1, two gratings differed in
contrast and SF, but not TF. Contrast, SF, and TF were
manipulated in Experiment 2. Experiment 3 replicated
the conditions of Experiment 1, except for a four-fold
decrease in an overall stimulus size. Experiment 4
used a stimulus composed of three moving gratings,
to test whether the rules revealed in Experiments 1–3
still held. In brief, we found the weight given to a
single component depended on its SF and TF, but
this dependence was different from that seen in the
OFRs to single gratings (i.e., the weight did not simply
reflect response amplitude). This finding suggests that
the interactions preceded the stage at which motor
responses to visual motion were generated.

Preliminary results of this study were presented in
abstract form elsewhere (Sheliga, Quaia, FitzGibbon, &
Cumming, 2018).

Material and methods

Many of the techniques are described only briefly,
because they are similar to those used in this laboratory
in the past (e.g., Sheliga, Chen, FitzGibbon, & Miles,
2005). Experimental protocols were approved by the
Institutional Review Committee concerned with the
use of human subjects. Our research was carried out
in accordance with the Code of Ethics of the World
Medical Association (Declaration of Helsinki), and
informed consent was obtained for experimentation
with human subjects.

Subjects

Three subjects took part in this study: two
were authors (BMS and EJF) and the third was
a paid volunteer (TH) naïve as to the purpose
of the experiments. All subjects had normal or
corrected-to-normal vision. Viewing was binocular.

Eye-movement recording

The horizontal and vertical positions of the right
eye were recorded with an electromagnetic induction
technique (Robinson, 1963). A scleral search coil was
embedded in a silastin ring (Collewijn, Van Der Mark,
& Jansen, 1975), as described by Yang, FitzGibbon, &
Miles (2003).

Visual display and stimuli

Dichoptic stimuli were presented using a Wheatstone
mirror stereoscope. In a darkened room, each eye saw
a computer monitor (HP p1230 21-in. CRT; HP, Palo
Alto, CA) through a 45° mirror, creating a binocular
image 521 mm straight ahead from the eyes’ corneal
vertices, which was also the optical distance to the
images on the two monitor screens. Each monitor was
driven by an independent PC (Dell Precision 490; Dell,
Round Rock, TX), but the outputs of each computer’s
video card (PC NVIDIA Quadro FX 5600, NVIDIA,
Santa Clara, CA) were frame-locked via NVIDIA
Quadro G-Sync cards. The monitor screens were
each 41.8° wide and 32.0° high, had 1024 × 768-pixel
resolution (i.e., 23.4 pixels/° directly ahead of each eye),
and the two were synchronously refreshed at a rate of
150 Hz. Each monitor was driven via an attenuator
(Pelli, 1997) and a video signal splitter (Black Box
Corp., AC085A-R2; Black Box Corp., Lawrence, PA),
allowing presentation of black/white images with 11-bit
grayscale resolution (mean luminance: 20.8 cd/m2).
Visual stimuli—single or two to three vertical sinusoidal
luminance gratings (fully overlapping)—were seen
through a ∼22° × ∼22° (512 × 512 pixels) rectangular
aperture centered directly ahead of the eyes. The stimuli
seen by the two eyes were always the same: we used the
stereoscope at the outset of the project because we were
not sure if we would need binocular manipulations to
understand these responses.

Experiment 1: Different SF pairs
Horizontally moving gratings of eight different SFs

(range: 0.08–1.25 cpd) composed the stimulus set of
Experiment 1. Gratings shifted ⅛-wavelength each
video frame, that is, with a TF of 183

4 Hz. Any given
stimulus was either a single grating or a sum of two
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Figure 1. SFs of sine wave gratings used in Experiments 1, 2, and
3, shown as diamond symbols arranged along the SF axis. Solid
thin lines (numbered from 1 to 5) connect SFs that form
two-component stimuli of Experiments 1 and 3; dotted thin
lines (numbered 6 and 7) connect SFs forming two-component
stimuli of Experiment 2.

gratings—component gratings—moving in opposite
directions. In a two-component stimulus, the Michelson
contrast of one grating was always kept at 12%, whereas
that of the other was 7%, 12%, or 21%. (Numbers
from 1 to 5 in Figure 1 label the two-component
stimuli used in Experiment 1.) The phases of the two
components on the first video frame of a trial were
randomized independently. A single block of trials had
62 randomly interleaved stimuli: 32 single-grating and
30 two-component conditions.

Before Experiment 1 was conducted in all subjects,
we ran numerous pilot experiments in subject BMS.
Those experiments employed gratings over a wide
range of SFs (0.04–1.3 cpd) that formed 35 different SF
pairings. This large dataset was used to select the most
informative pairings to use in the remaining subjects.

Experiment 2: Variation in SF and TF
In Experiment 2, gratings of three different SFs

(0.14, 0.32, or 0.72 cpd) were presented either in
isolation or as a two-component stimulus (pairings
6 and 7 in Figure 1). In the two-component stimuli,
one component (0.32 cpd) could be given one of three
Michelson contrasts (∼7%, 12%, or ∼21%) but had
constant TF of motion: 183

4 Hz in pairing 6 and 25 Hz
in pairing 7. The contrast of the other component was
always 12%, while its TF could be set to one of three
values: 3⅛, 183

4 , or 30 Hz for 0.72-cpd grating in pairing
6 and 61

4 , 12
1
2 , or 25 Hz for 0.14-cpd grating in pairing 7.

As before, the initial phases were randomized. A single
block of trials had 60 randomly interleaved stimuli: 24
single-grating and 36 two-component conditions.

Pilot experiments in one subject (BMS) tested wider
SF (0.05–0.72 cpd) and TF (from 3⅛ to 371

2 Hz) ranges.
Once again, this extended dataset allowed us to better
formulate the conditions for Experiment 2 run in all
subjects such that they would cover the most relevant
portions of stimulus space.

Experiment 3
In Experiment 3, the total area covered by visual

stimuli was reduced four-fold to ∼11° × ∼11° (256 ×
256 pixels). Otherwise, the stimulus conditions were the
same as in Experiment 1.

Experiment 4
Experiment 4 studied stimuli composed of three

components, where the motion direction of one grating
(G2) was opposite to that of the other two (G1 and
G3). One component was 0.26 cpd in all subjects—close
to the optimal SF for driving the OFR (G1; optimal).
The second component had a much lower SF: 0.09 or
0.08 cpd (low). The third component had one of two
much higher SFs, chosen (for each subject individually)
such that it either had the same weight (as determined
in Experiment 1) as the low SF component (highW),
or produced a response amplitude when presented
alone similar to that of the low SF component (highA).
The TF was 183

4 Hz for all gratings. The optimal SF
always moved in the same direction as one of the other
two components, and these two gratings each had a
Michelson contrast of 12%. The component moving in
the direction opposite to the other two gratings could
have Michelson contrast of ∼7%, 12%, or ∼21%. At
the beginning of a trial, the phases of all components
were randomized. A single block of trials had 68
randomly interleaved stimuli: 20 single-grating, 24
two-component, and 24 three-component conditions.

Procedures

Experimental paradigms were controlled by
three PCs, which communicated via Ethernet
(TCP/IP protocol). The first PC used a Real-time
EXperimentation software (Hays, Richmond, &
Optican, 1982), which provided the overall control of
the experimental protocol, acquisition, display, and
storage of the eye movement data. Two other PCs
used the Psychophysics Toolbox extensions of MatLab
(Brainard, 1997; Pelli, 1997) and generated the visual
stimuli.

At the start of each trial a fixation target (dia. 0.25°)
appeared at the screen center. After the subject’s eye
had been positioned within 2° of the fixation target
and no saccades had been detected (using an eye
velocity threshold of 18°/s) for a randomized period
of 600–1,000 ms the fixation target disappeared and
the first frame of the (randomly selected) stimulus
appeared. Its first horizontal motion step commenced
one video frame (6.7 ms) later. The motion lasted
for 200 ms; the screen then turned to uniform gray
(luminance, 20.8 cd/m2) marking the end of the trial. A
new fixation target appeared after a 500 ms intertrial
interval, signaling a new trial. The subjects were asked to
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refrain from blinking or shifting fixation except during
the intertrial intervals, but were given no instructions
relating to the motion stimuli. If no saccades were
detected for the duration of the trial, then the data were
stored; otherwise, the trial was aborted and repeated
within the same block. Data collection usually occurred
over several sessions until each condition had been
repeated an adequate number of times to permit good
resolution of the responses (through averaging).

Data analysis

The calibration procedure provided eye position
data which were fitted with second-order polynomials
and later used to linearize the horizontal eye position
data recorded during the experiment. Eye-position
signals were then smoothed with an acausal sixth-order
Butterworth filter (3 dB at 30 Hz) and mean temporal
profiles were computed for each stimulus condition.
Trials with micro-saccadic intrusions (that had failed
to reach the eye velocity cutoff of 18°/s used during
the experiment) were deleted. We used position
difference measures to minimize the impact of
directional asymmetries and boost the signal-to-noise
ratio. Position difference measures were calculated
by subtracting the mean horizontal eye position
for a given stimulus from the mean horizontal eye
position to the same stimulus moving in the opposite
direction. Because this work measures OFRs to
pairs of gratings moving in opposite directions, we
arbitrarily gave a positive sign to this value for one of
the components, and a negative sign for the other.1 The
mean eye velocity was estimated by subtracting position

difference measures 10 ms apart (central difference
method) and evaluated every millisecond. Response
latency was estimated by determining the time after
stimulus motion onset when the mean eye velocity first
exceeded 0.1°/s. The initial OFRs to a given stimulus
were quantified by measuring the changes in the mean
horizontal eye position signals—OFR amplitude—over
the initial open loop period, that is, over the period up
to twice the minimum response latency. This window
always commenced at the same time after the stimulus
motion onset (“stimulus-locked measures”) and, for a
given subject, was the same in all experiments reported
in this article: 69–138, 74–148, and 66–132 ms for BMS,
EJF, and TH, respectively. Bootstrapping procedures
were used for statistical evaluation of the data and to
construct 68% confidence intervals of the mean in the
figures (these intervals were smaller than the symbol
size in many cases and, therefore, not visible on most
graphs).

Results

Data for one SF pairing in subject BMS is shown in
Figure 2, as an example. Figure 2A displays averaged
OFR velocity traces for different stimulus conditions.
The black solid line is the OFR velocity trace in
response to a 12%-contrast 0.22 cpd drifting grating
when it was presented in isolation (labeled G1). Each
dashed line is the OFR velocity trace induced by a single
0.36 cpd grating (labeled G2)—darker blue traces refer
to higher contrast stimuli, which produced stronger
OFRs. The OFR traces to two-component stimuli—G1

Figure 2. Experiment 1. Subject BMS. (A) Mean eye velocity profiles over time to pure sine wave gratings (G1 or G2) and
two-component stimuli (note lines of different color and style; see the legend). Each trace is the mean response to 77–89 stimulus
repetitions. The abscissa shows the time from stimulus onset; horizontal thin dotted black line represents zero velocity; the horizontal
thick black line beneath the traces is the response measurement window. (B) Mean OFR amplitude (the same experiment as in A).
Dependence on G2 contrast. G1 contrast was 12%. Symbols: data; dashed line: Equation 1 fit.
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and G2 moving in opposite directions—are shown
by red dotted lines. A combination of 12% contrast
G1 and 7% contrast G2 produced the OFRs in the
direction of G1 motion and only slightly smaller than
that to 12% contrast G1 in isolation (cf. light-red dotted
and solid black lines). This change in amplitude is much
smaller than the one predicted by the linear summation
of the two responses (i.e., by summing light blue dashed
and solid black lines). A combination of 12% contrast
G1 and 21% contrast G2 produced the OFRs in the
direction of G2 motion and only marginally smaller
than those obtained to motion of 21% contrast G2 in
isolation (cf. dark red dotted and dark blue dashed
lines), namely, the outcome of the competition between
gratings differing in contrast is nonlinear, as described
by Sheliga et al. (2006). Earlier studies described this
pattern as winner-take-all behavior. Note that both
gratings produce responses of similar magnitude when
presented at 12% contrast, yet the response to the sum
of these gratings (medium red dotted line) lies closer to
the response to G2 (0.36 cpd). Thus, which component
dominates cannot simply be predicted from the OFR
responses to single gratings, indicating that the grating’s
SF per se plays a role.

Figure 2B summarizes the responses in Figure 2A
with displacement measures—the change in eye
position during the open-loop period. These OFR
amplitudes to two-component stimuli (red circles)
were fit (r2 = 0.995; red dashed line) by the following
equation:

R = R1 ∗ (WR ∗C1)n + R2 ∗C2
n

(WR ∗C1)n +C2
n , (1)

where R1 and R2 are the OFR amplitudes produced by
each component in isolation, and C1 and C2 are the
contrasts of each component. In this Experiment, R2
is always negative, because the second grating moves
in the opposite direction to the first one. The two free
parameters, WR and n, summarize the interaction. n
characterizes the steepness the transition between R1
and R2. WR stands for weight ratio; Equation 1 can be
rewritten as

R = R1 ∗ (W1 ∗C1)n + R2 ∗ (W2 ∗C2)n

(W1 ∗C1)n + (W2 ∗C2)n
, where

WR = W1

W2
(2)

In this instance, the WR is equal to 0.81, that is,
0.36 cpd grating is given more weight than 0.22 cpd
one and dominates the interaction (quantifying the
observations made, while examining mean velocity
traces in Figure 2A). Although it is not surprising
that fits were very good (three modelled data points
and two parameters), this function also provided an
excellent account when more contrast levels were used

(see Appendix B). It is for this reason that we were able
to rely on just three contrast ratios to estimate WR and
n for a given grating pair.

In our earlier report (Sheliga et al., 2006), we
described these interactions using a different equation:

R = R1 ∗C1
n1 + R2 ∗C2

n2

C1
n1 +C2

n2 (3)

where R1, R2, C1, and C2 have the same meaning as
in Equation 1, and n1 and n2 are two free parameters.
Although Equations 1 and 3 are clearly different, there
are situations in which both equations produce identical
fits. One of these situations is when the contrast of one
component is kept constant, as in the current study. In
this case it can be shown that:

WR = C
n1
n2

−1
1 and n = n2 (4)

where C1 is the contrast used for the fixed contrast
component, and n2 is fit to the component that changes
contrast. A second situation is where WR ≈ 1, in
which case both models give very similar description
for the same patterns (i.e., they each provide a good
fit to data generated by the other model), even when
both contrasts are varied (hence, both models provide
equally good descriptions of the data in Sheliga et al.
(2006), see below). We ran a series of simulations to
identify conditions where the two models were most
distinguishable, which we found to be true when both
components varied in contrast and the WR was far
from 1. We ran one such condition (0.07/0.59 cpd
pairing) in subject BMS and found that Equation 1
provided a better description of data than Equation 3
(p = 0.0028, see Figure A1 in Appendix A).
Furthermore, the differences between the data
and the Equation 1 fit were not statistically
significant (p = 0.14). We proceeded, therefore,
with using Equation 1 to describe interactions in
two-component stimuli.

Experiment 1: Varying SF

We examined how two parameters of Equation 1—
WR and n—depended on component SF. Figure 3A–C
shows WR (color-coded small squares; see color bar
to the right of panel C) as a function of SF1 and
SF2 in a two-component stimulus2 for 3 subjects.
Each of five SF pairings contributed two symbols
to the plot—symmetrically located across the main
diagonal—and their WR values were the inverse of
one another. This is because swapping the labels SF1
and SF2 and substituting 1

WR is an identity mapping.
Extensive pilot experiments in one subject (Appendix
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Figure 3. Experiment 1. Dependence of parametersWR (A–E) and n (D–F) (from Equation 1) on the SF of the components. (A–C)WRs
as a function of SF of sine wave gratings in two-component stimulus (color-coded small squares; see the color bar to the right of C;
the background color (black) is irrelevant and was chosen to makeWRs of different colors clearly visible. (D–F) Values of n
(color-coded small squares; see a color bar to the right of F) as a function of SF of sine wave gratings in two-component stimulus; the
background color is arbitrary as in A–C.

B) showed that the value of WR was well-described by
a separable function of SF, relatingWi to SFi:

Wi = F1 (SFi) ∗ F2 (SFi) , i = 1, 2 (5)

Equation 5 was constructed from the product of two
functions: an exponential (Equation 6) and an inverted
cumulative Gaussian function (Equation 7):

F1 (SF ) = eλW ∗log2(SF ) (6)

F2 (SF ) = 1 − 1
2

∗ (1 + er f
(

μHC − log2SF
sqrt(2) ∗ σHC

)
(7)

where λW, μHC, and σHC are three free parameters.
Note that the absolute scaling of Equation 6 is
unconstrained, becauseWi is only ever used to calculate
the weight ratio, WR = W1

W2
, for a given pair of SFs.

WRs of three subjects, shown in Figure 3A–C, were
very well fit by Equation 5: r2 = 0.998, 0.995, and
0.996 for subjects BMS, EJF, and TH, respectively.
Figure 3D–F plots n (color-coded small squares; see
color bar to the right of Figure 3F) as a function of
SF1 and SF2 in a two-component stimulus3 for three
subjects. Once again, each SF pairing contributed two
symbols to the plot, with the same value in symmetrical

locations around the main diagonal (the value of n
does not depend on the order of SF1 and SF2). Pilot
experiments, which tested much higher number of SF
pairings (Appendix C), allowed to suggest a model,
describing the dependence of n upon SF1 and SF2,
which was then tested in 3 subjects. There are two
notable features in the model. First, n is largest close
to the identity line (when the SF ratio is close to 1)
and falls off smoothly as the SF ratio increases. We
described this with a Gaussian of the log SF ratio:

n = An ∗ e−
[
log2

(
SF1
SF2

)]2
2∗σn2 + 1 (8)

One is added because values of n less than one would
lead to low contrast stimuli dominating. Second, n
decreases more rapidly with the SF ratio at high and
low frequency, with the slowest decline for pairs where
the geometric mean SF is ∼0.25 cpd, close to the
optimal SF for driving the OFR with single gratings.
We capture this feature by allowing the value of sigma
in Equation 8 to be a Gaussian function of the log of
the product of SFs:

σn = Aσn ∗ e
−

[
μσn− log2(SF1∗SF2 )

2

]2

2∗σ2σn (9)
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Figure 4. Experiment 2. Dependence ofWR (A–C) and n (D–F) on the TF of the components. Thin colored vertical lines: 68%
confidence intervals of the mean (bootstrapping). In many cases these intervals were smaller than a symbol size (especially, forWR
data) and, therefore, not visible on the graphs.

Thus, n in Equation 1 seems to depend on both the
ratio and the product of component SFs:

n = F3
(
SF1
SF2

;SF1 ∗ SF2
)

+ 1 (10)

Equation 10 provided a good fit for the relationship
between SF1, SF2 and n (shown in Figure 3D–F) using
four free parameters: r2 = 0.999, 0.976, and 0.993 for
subjects BMS, EJF, and TH, respectively.

Experiment 2: Varying TF and SF

In Experiment 2, we manipulated the TF of
components, in addition to SF and contrast. In a
pairing, the TF of one component varied, whereas it
was fixed for the other component. Data were collected
from six SF1TF1, SF2TF2 pairings, and for each pairing
we recorded the OFRs to three contrast combinations
(see Methods). The fitted values of WR and n are
shown in Figure 4A–C and 4D–F, respectively, and
one can clearly see that, for a given SF pairing, the
values of WR and n show further sizeable changes,
depending on the TF of the components. Our pilot
data suggested (Appendix D) that the changes in WR

can be well described by a simple interaction between
SF and TF, where WR is a Gaussian function of TF
(Equation 11), but the TF at which WR peaks (i.e.,
optimal TF) depends on SF (Equation 12):

F4 (SF ;TF ) = e
− [G(SF )−TF ]2

2∗σ2TFw (11)

G (SF ) = ATFw ∗ e−λTFw∗log2(SF ) (12)

We choose an exponential in Equation 12 because
it is well-behaved as SF becomes large. We can now
summarize all the factors influencing a component’s
weight by combining Equations 5 and 11 (adding three
free parameters):

Wi = F1 (SFi) ∗ F2 (SFi) ∗ F4 (SFi;TFi) , i = 1, 2
(13)

Our pilot data showed (Appendix D) that n is a
separable function of SF and TF, well-described with a
Gaussian function of TF:

F5 (TF ) = e
− [μTFn−TF ]2

2∗σ2TFn (14)
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Subject λW μHC

σHC

(log2 units) An Aσn μσn

σσn

(log2 units) σ TFw ATFw λTFw μTFn σ TFn

1.1 The single set of free parameters for Experiments 1 and 2
BMS 0.30 1.00 0.35 4.78 1.94 0.20 1.03 13.8 10.1 0.16 22.8 17.1
EJF 0.27 0.81 0.57 4.13 2.33 0.08 2.00 12.7 8.60 0.18 20.7 10.9
TH 0.32 1.04 0.37 3.60 1.89 0.21 1.03 13.7 9.14 0.21 19.2 15.2

1.2 Free parameters for Experiment 3
BMS 0.23 1.31 0.37 3.97 2.55 0.28 0.94
EJF 0.16 1.08 0.42 3.65 2.48 0.28 1.16
TH 0.22 1.78 0.76 2.87 1.75 0.29 0.94

1.3 The single set of free parameters for Experiments 1, 2, and 3
Experiments

1 and 2
Experiment

3
Experiments

1 and 2
Experiment

3
μHC μHC μσn μσn

BMS 0.30 0.99 1.28 0.35 4.66 1.99 0.19 0.29 1.06 14.0 10.1 0.16 21.8 15.9
EJF 0.27 0.81 1.06 0.56 4.04 2.19 0.10 0.33 1.79 12.8 8.35 0.19 20.8 11.3
TH 0.32 1.04 1.51 0.38 3.65 1.81 0.17 0.77 1.35 13.7 9.07 0.21 19.7 15.5

1.4 The single set of free parameters for Experiments 1, 2, 3, and 4
Experiments
1, 2, and 4

Experiment
3

Experiments
1, 2, and 4

Experiment
3

μHC μHC μσn μσn

BMS 0.31 1.00 1.29 0.38 5.02 1.26 0.16 0.29 1.38 13.9 9.83 0.17 24.7 17.7
EJF 0.26 0.80 1.06 0.56 3.94 1.76 0.05 0.68 2.36 12.7 8.64 0.18 21.3 11.2
TH 0.30 1.07 1.41 0.36 7.05 1.51 0.09 1.69 2.11 14.0 9.43 0.20 47.1 32.8

Table 1. Best-fit values of free parameters in Experiments 1, 2, 3, and 4

Combined with Equation 10, this allowed us
to summarize the factors influencing n for any
spatiotemporal component:

n = F3
(
SF1
SF2

;SF1 ∗ SF2
)

∗
2∏

i=1

F5 (TFi) + 1 (15)

Experiments 1 and 2: Testing the model

Extensive pilot experiments allowed us to identify
a good descriptive model with a modest number of
free parameters (six describing WR, six describing n;
see Table 1.1). We then used the model to test five SF
pairs (0.08–1.25 cpd) with the same TF (Experiment
1) and six SF/TF combinations (Experiment 2, TFs
from 3⅛ to 30 Hz). OFRs to these 11 pairings were
measured in three subjects. The model was then fit
to each subject’s data. The results of Experiments 1
and 2 are shown in Figures 5 and 6, respectively, with
responses to two-component gratings shown with red
circles, and the model fit shown with dashed red lines.
The fits were very good: r2 = 0.994, 0.991, and 0.989
for subjects BMS, EJF, and TH, respectively. Figure 7
shows the fitted functions used for each subject, which

are for the most part similar. The greatest intersubject
variation seems to be in the effect of geometric mean
SF on how rapidly n falls off with SF ratio (Figure 7F).

Experiment 3: The effect of stimulus size

In Experiment 3 we repeated Experiment 1, but
the total area covered by visual stimuli was reduced
four-fold: from 22° × 22° to 11° × 11°. Equations 5
and 10 were fit again to these data and provided an
excellent description (Figure 8; red dashed lines): r2
= 0.993, 0.993, and 0.984 for subjects BMS, EJF, and
TH, respectively. Table 1.2 lists the best-fit values of
free parameters. Because we did not vary TF in this
experiment, Equations 13 and 15 were not used. Many
of the fitted parameters were very similar to those
obtained in Experiments 1 and 2. Indeed, we found
that we could constrain five parameters to be the same
as those used for Experiments 1 and 2, with almost
no change in fit quality (r2 = 0.994, 0.992, and 0.986
for subjects BMS, EJF, and TH, respectively), shown
by grey dotted lines in Figures 5, 6, and 8. The two
parameters that were substantially changed by stimulus
size were μHC and μσn: both moved to higher SF for the
smaller stimulus (see Table 1.3).
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Figure 5. Experiment 1. Mean OFR amplitude. Dependence on contrast of grating 2 (G2). Grating 1 (G1) had a contrast of 12%.
Symbols, data; red dashed lines, model fits in which one fit was used (per subject) to describe all the data in Experiments 1 and 2;
gray dotted lines, fits of a single model applied to Experiments 1, 2, and 3 (almost indistinguishable from red lines). Each row shows
data for one subject, each column shows data for one SF pairing (identified by a circled number on top of each column, see Figure 1).
Subjects BMS (145–155 trials per condition), EJF (85–111 trials per condition), and TH (106–120 trials per condition).

The change in model fits with stimulus size could
reflect two processes. First, this could reflect differences
in the relative strength of interactions between
components. Second, it could simply be that changes
in stimulus size alter the relative effectiveness of
different SFs, even when presented alone. To explore
this, we examined the responses to single gratings in
Experiments 1 and 3 (12% contrast), as a function of
SF. Figure 9 shows that there is a clear shift in the
SF tuning curve towards higher frequencies for the
smaller stimulus. We fit the tuning with a Gaussian
function of log SF (e.g., Sheliga et al., 2005; Sheliga,
Quaia, Cumming, & Fitzgibbon, 2012). Table 2 lists
the fitted parameters, where it is clear that there is a
substantial change in the location of the peak SF, but
little change in the standard deviation. Constraining the
standard deviations to be the same in both Experiments,

led to a marginal decrease in r2 values, and those
fits are shown by solid (Experiment 1) and dashed
(Experiment 3) grey lines. For both stimulus sizes,
the peak SF of these tuning curves is very similar
to the μσn parameter used to describe responses to
two-component gratings in Equation 9. Thus, size
seems to influence this parameter through its effect
on single gratings. If, instead of allowing μσn to be a
free parameter in Equation 9, we constrain it to be
the peak of the SF tuning to single gratings, we get
almost no change in r2s (0.993, 0.991, and 0.987 for
subjects BMS, EJF, and TH, respectively). Overall then,
this allows us to describe the interactions between
components in 16 stimuli (32 values) with just 12 free
parameters.

Furthermore, a closer inspection of Tables 1.3 and
2 reveals that in each subject the change in μHC (fit
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Figure 6. Experiment 2. Variation in SF and TF. Each panel plots the mean OFR amplitude as a function of the contrast of grating 2
(G2). Grating 1 (G1) had a contrast of 12%. Symbols, data; red dashed lines, fits of single model applied to Experiments 1 and 2; gray
dotted lines, fits of model applied to Experiments 1, 2, and 3. Rows show data for one subject, columns show data for one SF/TF
pairing (SF pair identified by a circled number on top, see Figure 1). Subjects BMS (65–72 trials per condition), EJF (89–113 trials per
condition), and TH (107–125 trials per condition).

with Equation 7) owing to changes in stimulus size is
very similar to the shift of the peak of the OFR SF
tuning curve. If instead of allowing μHC to be a separate
free parameter in each experiment we constrain it to
be proportional to the peak of the SF tuning to single
gratings, we get little change in r2s (0.988, 0.984, and
0.987 for subjects BMS, EJF, and TH, respectively). The
constant of proportionality is then just one parameter
for both experiments, allowing us to describe all the
data with 11 free parameters.

Experiment 4: Stimuli with three components

Here we consider whether the model that we
developed above, that described interactions in stimuli

with two components, can be extended to more complex
stimuli. That is, would a more general equation

R =
∑K

i=1Ri ∗ (Wi ∗Ci)n∑K
i=1 (Wi ∗Ci)n

, i = 1, 2, 3...K (16)

be accurate? In Experiment 4, we recorded the OFRs
to stimuli composed of three grating components,
all moving horizontally, but such that the direction
of motion of one of them was opposite to that of
the other two. These data allow us to address two
slightly different questions. First, does Equation 16
describe the interactions observed for each individual
three-component stimulus? Second, do the values Wi
and n depend on the SF and TF of the components in
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Figure 7. The relationships between stimulus parameters (SF, TF) and the model fits for each subject. (A–E) show the relationship
between SF/TF andW for Experiments 1 and 2. (H–J) show this for Experiment 3 (smaller stimulus) where a rightward shift of peak SF
can be seen. (F, G) The relationship between SF/TF and n for Experiments 1 and 2. (K) The relationship between SF/TF and n for
Experiment 3 (smaller stimulus) where a rightward shift of peak SF geometric mean can be seen. (A) Equation 5: the function relating
SF toW; product of Equations 6 and 7. (B) Equation 6: the high-pass component of the function relating SF toW is described with an
exponential. (C) Equation 7: the lowpass component of the function relating SF toW is described with a Cumulative Gaussian. (D and
E) A simple interaction between SF and TF:W is a Gaussian function of TF (D; Equation 11), but the TF at whichW peaks (i.e., optimal
TF) depends on SF (E; Equation 12). (F) Equation 9: the effect of geometric mean SF on how rapidly n falls off with SF ratio.
(G) Equation 14: n is a Gaussian function of TF. Data of different subjects are shown using lines of different style and color; see figure
legend.
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Figure 8. Experiment 3: as in Experiment 1, but with a smaller stimulus. Each panel plots the mean OFR amplitude as a function of the
contrast of grating 2 (G2). The contrast of grating 1 (G1) was 12%. Symbols. data; red dashed lines, model fits; gray dotted lines, fits of
single model applied to Experiments 1, 2, and 3. Rows show data for one subject, columns show one SF pairing (identified by a circled
number on top of each column, see Figure 1). Subjects BMS (97–104 trials per condition), EJF (74–92 trials per condition), and TH
(90–110 trials per condition).

Figure 9. Mean OFR amplitude as a function of SF in single gratings. Symbols, data; lines, fits. Experiment 1 (stimulus size ∼22° ×
∼22°): open symbols, solid lines. Experiment 3 (stimulus size ∼11° × ∼11°): filled symbols, dashed lines. Black lines, best-fit
Gaussians; gray lines, Gaussian fits whose best-fit standard deviation free parameter was shared by both experiments. Note an almost
complete overlap of black and gray fits for each subject.
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Experiment 1 Experiment 3

Subject Amplitude (°) Offset (cpd)
Standard deviation
(log2 cpd units) r2 Amplitude (°) Offset (cpd)

Standard deviation
(log2 cpd units) r2

BMS 0.12 0.22 1.59 0.993 0.08 0.34 1.44 0.989
EJF 0.08 0.18 1.52 0.985 0.06 0.29 1.46 0.964
TH 0.10 0.23 1.49 0.994 0.05 0.34 1.32 0.908

Table 2. Best-fit values of free parameters of SF tuning curves in Experiments 1 and 3

the same way? When considering the second question,
several of the equations (Equations 6, 7, 11, 12, and 14)
can be applied without modification. Equation 9 can
simply be rewritten in a way that applies to the general
case:

σn = Aσn ∗ e
−

⎡
⎣μσn−

log2(∏k
i=1 SFi)
k

⎤
⎦
2

2∗σ2σn , k = 2 or 3 (17)

Equation 8, where n depends on the ratio of two SFs,
does not readily apply to more than two components.
However, a given SF ratio can also be described in
terms of the variance of log2(SF):

n = An ∗ e
−

⎛
⎜⎝

√ ∑k
i=1 [log2(SFi )−log2(SF )]2

k−1

⎞
⎟⎠
2

2∗σ2n , k = 2 or 3 (18)

a form that can be applied to any number of
components. This then provides us with a way to test
our model with three component stimuli.

In our stimuli, the three components always consisted
of the optimal SF (in the sense of producing the
strongest response alone), one lower SF and one higher
SF. The high SF took one of two values: highA which
produced OFRs of the same response amplitude as the
low SF component (left column in Figure 10) or highW,
which had the same weight as the low SF component
(according to the model), shown in the right column of
Figure 10.

Figure 10 shows the OFRs to two- and three-
component stimuli (red and green symbols, respectively)
with the predictions of our model (dashed red and
dotted green lines). These predictions were not fit to
these data—we simply used the model and parameters
derived from the two-component case to predict
responses. Nonetheless, they accounted for most of
the variance, with r2 = 0.965, 0.975, and 0.908 for
subjects BMS, EJF, and TH, respectively. We also fit our
complete model to all of the data in Experiments 1–4,
and this is shown by grey dashed and dotted lines: r2 =
0.990 for all subjects (Figure 10). The fitted parameters
are listed in Table 1.4. Clearly, the model provides an
excellent account of responses to stimuli containing
three components. One particularly telling case is the

lower left quadrant for each subject. Here, the low and
optimal frequencies moved in the same direction. The
high frequency moved in the opposite direction and
produced a smaller response when presented alone—it
was chosen to have a high weight according to the
model. Consequently, any competition that reflected
the total driving signal in each direction would be
dominated by the optimal + low pair. However, when
the high frequency component is added (highA), it
has a powerful effect—compare the purple triangle
with the green triangles. Similarly, comparing all three
components (green triangles) with optimal + highA (red
circles) shows that adding the low frequency component
(low) makes almost no difference. In this comparison,
the low and high SF components here produced similar
responses when presented alone, yet the effect of adding
them to the other two components is very different.

Discussion

We explored the interaction between different
grating components generating OFRs and discovered
that a relatively simple model—a nonlinear weighed
summation model—describes the interaction over
a wide range of SFs and TFs. For any given pair,
the interaction is described by two parameters
(Equation 1): WR describes the relative weight given to
the two components, and n describes how steeply the
response changes with relative contrast. Large values
of n correspond to the winner-take-all–like outcome
described in Sheliga et al. (2006), which we replicate
when the components have similar SF. For widely
different SFs n approaches 1, which describes a linear
summation.

The relative weight of two components

For any given pair of gratings, their relative weight
is sufficient to describe their interaction in Equation 1
(parameter WR). Importantly, we found that this WR
was a separable function of SF1, SF2, implying that
the weight assigned to a component is determined
by its SF, not a more complex pairwise interaction.
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Figure 10. Experiment 4. Responses to the sum of three gratings (low, optimal [Opt], and high SF). Each panel plots the mean OFR
amplitude as a function of grating 2 (G2) contrast, whose motion direction was opposite to that of the other two components (G1 and
G3). Those components each had 12% contrast. Red dashed lines and maroon inverted filled triangles, predictions for
two-component stimuli (data shown with red circles and maroon inverted open triangles, respectively); green dotted line, predictions
for three-component stimuli. These predictions we made using the model fit to Experiments 1–3, with no additional fitting. All other
symbols, data. Black vertical arrows on top of each panel show each component’s direction of motion. Clusters of four neighboring
panels show the data for one subject. In each cluster, the upper row graphs depict OFRs when the low-frequency component moved
in the opposite direction to the other two; lower row graphs depict OFR when the high-frequency component (HighA or HighW)
moved in the opposite direction to the other two. In each cluster, left column graphs are where HighA was used for the

→
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←
high-frequency component, the right column is for HighW. See Methods for further details. Maroon open/filled inverted triangles are
shown twice on each graph: in appropriate locations given the components’ contrast and the OFR amplitude—where they are often,
however, obscured by other symbols—and, for clarity, in a separate insert toward the right side of each graph. Gray open/filled
inverted triangles, gray dashed and dotted lines: model fits whose best fit values of free parameters were shared by Experiments 1–4.
Subjects BMS (90–96 trials per condition), EJF (63–81 trials per condition), and TH (85–97 trials per condition).

That is, the WR for a pair composed of SFi and SFj
is simply determined by (Wi

Wj
). Surprisingly, we found

that weight is not simply proportional to the response
elicited by that component alone. Rather, as SF is
increased beyond the optimal value for driving the
OFR, the weight continued to increase for ∼1 octave.
This finding in turn implies that the neuronal circuits
determining weights must precede the stage at which
motor responses to visual motion are generated.

Halving the stimulus linear dimensions resulted in
a substantial rightward shift of the function relating
SF to weight (compare Figures 7A and 7H). This also
produced quantitatively similar shifts in the OFR
SF-tuning curves (Figure 9), suggesting that similar
circuitry may be responsible for both changes. Surround
inhibition may play an important role here—as stimulus
size is increased, recruitment of neurons may be
counterbalanced by increased surround inhibition.
The surround inhibition may be relatively stronger for
neurons preferring a high SF, because the same physical
size corresponds with a greater multiple of RF width.
If the ability of one grating component to suppress
responses to a second component (high weight) uses
the same pathway as surround suppression, this could
explain why both functions change in the same way
with stimulus size.

We found that the weight of a grating component
also depended on the TF of its motion. For a
component of any given SF, the dependence was well
captured by a Gaussian function of TF (Figure 7D).
The peak of this function changed somewhat with
SF (Figure 7E), whereas the standard deviation
was fixed. This spatiotemporal inseparability is not
seen for OFR amplitudes elicited by single gratings
(Sheliga, Quaia, FitzGibbon, & Cumming, 2016), so
this is another way in which the factors determining
the weight are different from those that drive the
OFR. This inseparability could reflect a correlation
between SF and TF preferences in the underlying
neurons. The association of higher TF with lower
SF is reminiscent of the difference between M and P
ganglion cells (Derrington & Lennie, 1984), although
this correlation is not clear in cortical neurons (V1 or
MT; Hawken, Shapley, & Grosof, 1996; Lui, Bourne, &
Rosa, 2007). However, it is difficult to reconcile a simple
explanation like this with the fact that OFR amplitudes
for single gratings are a separable function of
SF and TF.

The nonlinear summation of contrast

Parameter n determines how steeply the OFR
amplitude changes with the contrasts of the
components, with values greater than 1, indicating a
nonlinear interaction. This nonlinear interaction is
greatest for similar SF. At first sight this might suggest
that the competition is taking place within (rather than
between) spatiotemporal channels (e.g., contrast gain
control). However, this interaction also depends on
absolute SF—dissimilar SFs interact more strongly
when they are near the peak suggesting a more complex
mechanism.

Previous work

In experiments very similar to those reported in
this paper, Sheliga et al. (2006) recorded the OFRs to
two-component grating stimuli moving in opposite
directions, in which they varied the contrasts of both
components. In principle, these data could pose a
significant challenge to our model (see Methods). We
show here that the OFRs across all conditions in that
study are well-described by a single value of n and WR:
r2 = 0.985, 0.990, and 0.987 for subjects BMS, FAM,
and JKM, respectively4 (Figure 11). Equation 3 also
provides good fits for all the data. Both models succeed
in this case, because the individual components have
similar weights.

Sheliga et al. (2016) recorded the OFRs to white
noise stimuli in human subjects. Responses were shaped
by two factors: (1) an excitatory drive that reflected
the OFRs to individual Fourier components and (2) a
suppression by higher SF channels where the temporal
sampling of the display led to flicker. The explanation
we offered there depended on the idea that flickering
components were suppressive. However, the model
we have developed here might explain the same result
without treating flicker as a special case—it may simply
reflect the summed contribution of the flickering
SFs to the denominator in Equation 1. We therefore
applied our model to one of the experiments reported
by Sheliga et al. (2016) in which a moving bandpass
stimulus was added to a flickering bandpass stimulus.
The data from the two subjects who were also the
participants of the current study are reproduced in
Figure 12.5 The central SF of the moving pattern was
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Figure 11. Data from Experiment 2 of Sheliga et al. (2006), who recorded the OFRs to two-component sine wave grating stimuli
moving in opposite directions. The OFR amplitudes for four sets of experimental conditions are shown by different symbols and
colors. In each set, the contrast of one grating was fixed (G1; see Figure legend), whereas the contrast of the other was varied (G2).
Solid lines: Equation 1 fits. For each subject a single pair of parameters (WR and n) was used to describe all of the data. (A) Subject
BMS (153–171 trials per condition). (B) Subject FAM (133–150 trials per condition). (C) Subject JKM (150–177 trials per
condition).

Figure 12. Data from Experiment 1D of Sheliga et al. (2016), showing the dependence of mean OFR amplitude on flicker SF. Symbols,
data; lines, fits; small symbols, moving band-pass filtered noise only; large symbols, combined moving and flickering band-pass
filtered noise; lines, predictions from our model fit to Experiments 1–3 of this work. The moving noise stimulus was filtered with one
of two central SFs: 0.125 (filled circles, solid line fits) or 0.5 cpd (open diamonds, dotted line fits). (A) Subject BMS (174–187 trials per
condition). (B) Subject EJF (76–99 trials per condition).
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either 0.125 (open diamonds) or 0.5 (filled circles) cpd,
and it was paired with flickering samples, whose central
SFs varied from 0.0625 to 4 cpd in octave increments:
in effect, a SF tuning for flicker. Moving stimuli were
also presented in isolation (smaller in size diamond
and circle symbols), for comparison. Figure 12 shows
that the flickering stimuli with central SFs in the range
of 0.5 to 1.0 cpd were the most detrimental for both
subjects. At the time, we were puzzled that these SFs
were the most powerful, since they are higher than the
optimum SF for driving the OFR. Since we have now
demonstrated that the weight given to a component
in Equation 1 is also biased towards higher SF, we
tested whether Equation 1 offers a good description of
those results:

�R=
�RM ∗ (WR ∗CM )n + �RF ∗CF

n

(WR ∗CM )n +CF
n

=
�RM ∗ (WR ∗CM )n

(WR ∗CM )n +CF
n (19)

because flickering samples in isolation produce no
response (i.e., �RF = 0). The band-pass filtered noise
stimuli of Sheliga et al. (2016) were modelled as pure
sine waves, whose contrast and SF were set equal to the
RMS contrast and central SF of the band-pass filtered
noise stimuli used in the study. Parameters WR and n
were calculated from Equations 13 and 15 using best fit
values from Table 1.1. The predictions (no parameters
were fit to the noise data) are shown by black solid
(0.125 cpd data) and dotted (0.5 cpd data) lines in
Figure 12. Thus, the relationship between SF and
weight that we report here provides a good description
of the suppressive effects attributed to flicker in our
previous study (Sheliga et al., 2016).

A notable feature of the interaction we propose
in Equation 1 is that there is no pooling of directional
signals before competition. That is, the model predicts
the same competition between gratings moving in
the same direction, or even between moving and
stationary gratings. In these cases, the model proposed
here could capture phenomena some of us have
previously described with contrast normalization
(Quaia, Optican, & Cumming, 2017), and indeed
contrast normalization could account for the terms
in the denominator of Equation 1. The models have
different structure because they explain complementary
features of the data. The model formulation of Quaia
et al. (2017) predicts responses as a function of
contrast, fitting parameters that capture the weight of
grating components to each stimulus. For the model
we present here, the contrast response function is not
represented explicitly because the measured response
to single gratings at different contrasts are used as
inputs to the model. Our model predicts the weights
assigned to different spatiotemporal components. To

predict responses to arbitrary one-dimensional patterns
successfully, it will be necessary to combine both
models, but additional empirical data will be required
to constrain that more complete model. Nonetheless,
our success in describing responses to certain simple
broadband stimuli suggests that we have moved one
step closer to the goal of a model that describes OFRs
to any broadband stimulus. Motion cloud stimuli,
used by others (Gekas, Meso, Masson, & Mamassian,
2017; Simoncini, Perrinet, Montagnini, Mamassian,
& Masson, 2012), could be a very useful tool for
this purpose, because they provide a principled way
to control spatial and temporal bandwidths of the
components.

Keywords: visual motion, spatial and temporal
frequency tuning, nonlinear weighed summation model,
surround inhibition
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Footnotes
1Experiment 4 studied 3-component cases, but the same principle applies
– the pair moving together had one sign, the third component was given
the opposite sign.
2The background color of Figure 2A-C is irrelevant and was chosen black
in order to makeWR values of different color clearly visible.
3The background color of Figure 3D-F is irrelevant and was chosen black
in order to make n values of different color clearly visible.
4WR and n best-fit values: 1.16 and 4.4, 1.10 and 4.2, 1.19 and 4.5 for
subjects BMS, FAM, JKM, respectively.
5The overall stimulus size in Sheliga et al. (2016) was very similar to that
in Experiments 1, 2, and 4 of the current study (25°x25° vs. 22°x22°).
6Best-fit values: λW=0.31, μHC=−0.037, and σHC=0.50.
7Best-fit values: An=4.7, Aσn=2.7, μσn=−2.5, and σσn=1.4.
8Best-fit values: λW=0.33, μHC=-0.30, and σHC=0.12, σTFw= 13.4,
ATFw=11.4, and λTFw=0.12.
9Best-fit values: An=5.2, Aσn=2.2, μσn=−2.6, and σσn=1.4, μTFn= 20.5,
and σTFn=16.7.
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Figure A1. Experiment 1. Pilot experiments. Subject BMS. (A) Mean OFR amplitude in a control experiment designed to test
predictions of Equations 1 and 3. Dependence on contrast of sine wave gratings. Symbols, data; dashed line, Equation 1 fit; dotted
line, Equation 3 fit. (B) The same experiment as in A, but with an expanded ordinate showing two-component stimuli only. Black
vertical lines are 68% confidence intervals.

Appendix A

Figure A1 shows the results for one SF pairing
(0.07/0.59 cpd), in which we changed contrasts of both
components, and the WR of two components was far
from 1. Figure A1 also shows the fits provided by the
two models. Figure A1B zooms in on the relevant part
of this plot (two-component responses).
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Figure B1. Experiment 1. Pilot experiments. Subject BMS. Dependence of parameterWR (from Equation 1) upon SF of the
components. (A)WRs as a function of SF of sine wave gratings in two-component stimulus (color-coded small squares; see the color
bar to the right of B; the background color (black) is irrelevant and was chosen to makeWRs of different colors clearly visible. (B) As in
A, but the background is replaced by theWR surface (WR = W1

W2
) predicted by Equation 5 (plotted in C). The SF tuning in Equation 5 is

the product of two functions: an exponential (D;Wexp; Equation 6) and an inverted cumulative Gaussian function (E;
WcumGaus; Equation 7).

Appendix B

Figure B1A shows WR (color-coded small squares;
see color bar in Figure B1B) as a function of SF1 and
SF2 in a two-component stimulus. We found that the
value of WR was well-described by a separable function
of SF (r2 = 0.917). Figure B1C shows the function
relating Wi to SFi, and Figure B1B shows the resulting
surfaceWR = W1

W2
, with the data squares superimposed.

The function relating SF toW was constructed from the
product of two functions: an exponential (Equation 6;
Figure B1D) and an inverted Cumulative Gaussian
function (Equation 7; Figure B1E), where λW, μHC,
and σHC are three free parameters.6 μHC is the high

cutoff frequency, where the function in Figure B1E is
0.5 (mean of the Gaussian function). σHC describes the
steepness of this cutoff.

Appendix C

Figure C1 plots n (color-coded small squares; see
color bar in Figure C1B) as a function of SF1 and
SF2 in a two-component stimulus. There are two
notable features in Figure C1A. First, n is largest close
to the identity line (when the SF ratio is close to 1)
and falls off smoothly as the SF ratio increases. We
described this with a Gaussian of the log SF ratio
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Figure C1. Experiment 1. Pilot experiments. Subject BMS. Dependence of parameter n (from Equation 1) upon SF of the components.
(A) Values of n (color-coded small squares; see a color bar to the right of B) as a function of SF of sine wave gratings in
two-component stimulus; the background color (black) is irrelevant and was chosen to make n of different colors clearly visible. (B) As
in A, but the background is replaced by the surface predicted by Equation 10.

(Equation 8). Second, n decreases more rapidly with
the SF ratio at high and low frequency, with the
slowest decline for pairs where the geometric mean SF
is ∼0.25 cpd, close to the optimal SF for driving the
OFR with single gratings. We were able to describe
this feature successfully by allowing the value of sigma
in Equation 8 to be a Gaussian function of the log of
the product of SFs (Equation 9). Equation 10 provides
a good fit (r2 = 0.909) for the relationship between SF1,
SF2 and n, using four free parameters (see the resulting
surface in Figure C1B).7

Appendix D

Pilot experiments in subject BMS included seven
different SF pairings (see legend of Figure D1). In a
pairing, the TF of one component varied, whereas
the TF of the other component was fixed (6.25, 183

4 ,
or 25 Hz in different SF pairings). In total, data were
collected from 22 SF1TF1, SF2TF2 pairings, and for
each pairing we recorded the OFRs to three to five
contrast combinations (from 4 to 36%). The values of
WR and n fit with Equation 1 are shown by symbols in
Figures D1A and D1D, respectively.

The effect of TF on the WR

Figure D1A plots WR as a function of TF for
seven different pairs of SF (each pair shown with a
different color). It is clear that the weight assigned to
a component declines as the TF moves away from the
optimal. Changes in the absolute value of WR make it
difficult to determine if this is a separable function of

SF and TF. To clarify this, we exploit the fact that for
5 out of 7 SF pairings there was a condition in which
TF1 = TF2 = 183

4 Hz. Figure D1B replots the data
from Figure D1A normalized by the value of WR in
this condition. That is, for the case where TF1 = TF2
= 183

4 Hz, any differences in the WR can be attributed
to the values of SF alone. If the WR is a separable
function of SF and TF, then after this normalization
a single function should describe the effect of TF.
Although the dependence on TF is similar in these
normalized curves, there are significant differences,
especially at low TF. The error bars (68% confidence
intervals) in Figure D1B are in most cases smaller than
the data points. We find that these differences can be
well described by a simple interaction between SF and
TF (Equation 11), where WR is a Gaussian function of
TF, but the TF at which WR peaks (i.e., optimal TF)
depends on SF (Figure D1C; Equation 12). We choose
an exponential in Equation 12 because it is well-behaved
as the SF becomes large. The data over the range we
observe could equally well be described by a straight
line. We can now summarize all the factors influencing a
component’s weight by combining Equations 5 and 11;
see Equation 13. Colored solid lines in Figure D1A
show how well (r2 = 0.951) this model fits the pilot
dataset.8 Note that the fits are also very good for
pairings in which TF of neither component equaled
183

4 Hz (black dotted and grey dashed lines).

The effect of TF on n

Figure D1D plots n as a function of TF, for the
same seven SF pairings as described. For the five pairs
that included TF1 = TF2 = 183

4 Hz, Figure D1E
plots n normalized by the value for that condition.
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Figure D1. Experiment 2. Pilot experiments. Subject BMS. Dependence ofWR (A–C) and n (D, E) on TF of the components. (A)WRs as
a function of TF1. Symbols, data; lines, Equation 13 fits. (B) Same as (A), butWRs were normalized with respect to TF1 = TF2 = 183

4 Hz
condition, black filled circle. Symbols, data; lines, Equations 11 and 12 fits. Black dotted oval highlights substantial differences in WR
for the same TF, suggesting some dependence on SF values. (C) Optimal TF (i.e., at whichWR peaks) as a function of SF: Equation 12
(black solid line). Symbols, optimal TFs for 5 (out of 7) SF pairs whenWRs for each SF pair were fitted by a separate Gaussian. Data for
two remaining SF pairs (blue squares and black diamonds) were poorly constrained and, therefore, not fitted with a Gaussian. (D)
Values of n as a function of TF1. Symbols, data; lines, Equation 15 fits. (E) Normalized values of n as a function of TF1. The n values
were normalized with respect to TF1 = TF2 = 183

4 Hz condition, black filled circle; symbols, data; lines, Equation 14 fit. Thin colored
vertical lines: 68% confidence intervals (bootstrapping). In many cases, these intervals were smaller than a symbol size (especially, for
WR data) and, therefore, not visible on the graphs.
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As with the WR, the value of n falls as TF deviates
from the optimal. This effect is similar for all SF
pairings except one (0.22/0.05 cpd), shown in green.
This pair was also associated with a larger confidence
interval than the other cases (because the response
amplitudes were smaller), so we felt that a separable
function of SF and TF would suffice to describe

these data. We fit this with a Gaussian function of
TF (Equation 14). The black solid line in Figure D1E
shows this fit. Combined with Equation 10, this allows
us to summarize the factors influencing n for any
spatiotemporal component: Equation 15. Colored solid
lines in Figure D1D show how well (r2 = 0.749) this
complete model fits the whole pilot dataset.9


