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Abstract: To automatically evaluate the ergonomics of workers, 3D skeletons are needed. Most
ergonomic assessment methods, like REBA, are based on the different 3D joint angles. Thanks to the
huge amount of training data, 2D skeleton detectors have become very accurate. In this work, we test
three methods to calculate 3D skeletons from 2D detections: using the depth from a single RealSense
range camera, triangulating the joints using multiple cameras, and combining the triangulation
of multiple camera pairs. We tested the methods using recordings of a person doing different
assembly tasks. We compared the resulting joint angles to the ground truth of a VICON marker-based
tracking system. The resulting RMS angle error for the triangulation methods is between 12° and 16°,
showing that they are accurate enough to calculate a useful ergonomic score from.

Keywords: skeletonization; triangulation; range cameras; multi-camera; ergonomic evaluation; REBA

1. Introduction

The importance of good ergonomics for workers is hard to overstate. Bad body
postures can lead to musculoskeletal disorders (MSDs) which have a large impact on
both the workers lives and the economy. To prevent MSDs, the ergonomics must be
monitored so that problems are detected early. Most ergonomic assessment methods are
done manually. But they could be also performed automatically, based on the joint angles
of the 3D skeletons.

Three of the most used [1] ergonomic assessment methods—RULA [2], REBA [3] and
OWAS [4]—can be calculated largely based on the joint angles. We will use REBA (Rapid
Entire Body Assessment) as an example use case because it demonstrates the use of many
different joint angles. To correctly calculate the joint angles, they must be calculated in 3D
space because they are distorted when they are projected onto a 2D image. Therefore, 3D
skeletons are needed.

In this work, we calculate 3D skeletons based on camera measurements. In our
approach, we first determine the 2D skeletons in the camera images using a convolutional
neural network, more specifically Detectron2 [5]. The 2D skeletons can then be converted
into 3D skeletons in different ways:

• Using the depth image from a single RealSense range camera.
• Triangulating the joints using multiple cameras.
• Combining the triangulation of multiple camera pairs.

The first method has the advantage that there would be no need for camera overlap.
However, the second and third method could be used with standard 2D cameras (no depth
perception required). We will test each method and evaluate their accuracy.

2D skeleton detectors—like the one used in the first step—have an abundance of
training data as there are many large and varied annotated single-view datasets available
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(e.g., COCO [6] and MPII [7]).As a result they can achieve very high accuracy and robustness.
Multi-view skeleton detectors are trained on multi-view datasets, which are generally
smaller in size and recorded in controlled environments where both the background and
the subjects have limited visual diversity [8].

We describe and test 3D skeletonization techniques based on the depth data of a single
RealSense or on the triangulation between two or three cameras. We evaluate the resulting
joint angles by comparing them to an accurate VICON marker-based tracking system.
Those joint angles are elemental to the calculation of ergonomic scores, e.g., with the
REBA [3] method. To our knowledge, this is the first time these methods are systematically
compared to a marker-based method.

The joint angle errors are smallest when combining triangulations and largest when
using the RealSense depth image. A notable result is that the three key angles—angles that
have the most effect on the ergonomic score: trunk, shoulder and knee flexion—are the
most accurately reconstructed angles.

2. Related Work

Two decades ago, the research field of computer vision-based human motion capture
was still in an early stage of development [9]. While high accuracy pose tracking techniques
existed, the hardware was expensive and the recording procedures were elaborate. As a
result they were in practice only used by well-equipped labs and Hollywood studios. The
markerless methods depended on many assumptions about the environment and subject.
The main technique to achieve depth images was stereo vision, which suffered from low
frame rates due to the high computing cost.

The introduction of depth sensors, specifically the low-cost Microsoft Kinect V1 in
2010 and Kinect V2 in 2013 boosted the research in pose tracking. (The correct names of the
first and second generation Microsoft Kinect sensors are Kinect for Xbox 360 and Kinect for
Xbox One. For clarity and conciseness, they are commonly called Kinect V1 and Kinect V2
respectively). More datasets with depth and annotated keypoints became available [10],
facilitating further research in the field. The Kinect V1 algorithm uses trained classifiers
to segment different body parts in the depth image and then derive the keypoints from
them [11].

Detection and segmentation improved quickly over the years with the improvement
of convolutional neural networks. Cao et al. made a big step forward in speed and accuracy
of keypoint detection with their OpenPose detector [12]. A similar keypoint detector
is implemented in the open source neural network platform Detectron2 [5]. This is the
detector we use to detect 2D keypoints.

In the field of 3D human pose estimation there is much research on single view 3D
estimation [13–15]. They have the advantage that they can be used in many applications,
as only a simple camera is needed. This flexibility, however, comes at the cost of signifi-
cantly lower accuracy compared to multi-camera techniques. Because 2D images have too
much ambiguity to robustly estimate a person’s 3D pose, we will use multiple views in
our application.

We are not the first to triangulate 2D detections into 3D keypoints. Belagiannis et al. [16]
and Amin et al. [17] first detect body parts followed by algebraic triangulation with cali-
brated cameras. They use the N-view triangulation method of Hartley and Zisserman [18].
We used a different method [19], it offers the geometric triangulation error δ directly. We use
δ when combining triangulations, it is a more appropriate error metric than the reprojection
error. Dong et al. [20] first detect 2D poses using a cascaded pyramid network [21] and
convert them to 3D using triangulation and also a pictorial structure model.

Our work differs from the existing literature that uses triangulation in several ways:

• We use simple algebraic triangulation, where many methods use neural networks for
triangulation [22] or require training of weights [23].



Sensors 2022, 22, 1729 3 of 15

• Our method can be seen as a simplified version of [24]. But in our algorithm the
two parts—detection and triangulation—are completely independent, so the detector
can be upgraded to the best state of the art.

• Most methods assume no extrinsic calibration to allow for moving cameras [25,26].
We have fewer uncertainties by using calibrated static cameras.

Not many state-of-the-art papers analyze the joint angle errors. The cited manuscripts
use one of following two error metrics:
• PCP (percentage of correct parts) [27] or the closely related PCK (percentage of cor-

rect keypoints) [28] and PCKh [7]. It expresses how many of the keypoints were
correctly detected.

• MPJPE (mean per joint position error) is the mean Euclidean distance between all
keypoints and their respective ground truth locations.
Similar to our work, Choppin et al. [29] determined the joint angle errors of two 3D

skeletonization methods, compared to a marker-based tracking system. But they only
evaluated the performance of a Kinect V1 and did not use multiple cameras.

3. Algorithms for 3D Skeleton Reconstruction

Our three techniques for 3D keypoint calculation are laid out in Figure 1.

Camera i Camera j

2D skeleton 
detection

2D skeleton 
detection

Monochrome images

Triangulation
Extrinsic 

calibration

2D keypoints

3D keypoints from 
single triangulation

Combine triangulations

3D keypoints from
combined triangulation

Other 
triangulations

2D skeleton 
detection

Monochrome
image

2D keypoints

Look up depth

Depth
map

Range camera

3D keypoints
from depth

4.1

3.1

3.2

4.1

3.1

3.3

3.4

Figure 1. Block diagram of the 3D skeletonization algorithms with section numbers: based on range
camera depth (left), based on single or combined triangulation (right).

3.1. 2D Skeletonization

Detectron2 [5] is used in post-processing to determine the 2D skeletons based on the
visual images. It detects the position of 18 keypoints as defined in the COCO standard [30]
along with their confidence value. This detection is done on each frame for all three cameras.
The used skeleton model is shown in Figure 2.

3.2. 3D Coordinates from RealSense Depth

The first method to convert the 2D keypoints into 3D, is the naive approach. We
reconstruct the 3D skeleton based on the data of a single RealSense sensor. Using a single
sensor has the advantage that the fields of view do not need to overlap.

For each 2D keypoint, the corresponding depth is taken from the depth map that the
RealSense camera generated. Because the keypoints are detected with sub-pixel resolution,
they have non-integer coordinates. The depth is taken from the closest corresponding
depth-pixel. By not using bilinear interpolation, we avoid introducing extra errors caused
by pixels on edges or invalid pixels.
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Because the keypoints have non-integer coordinates, the closest depth-pixel is chosen.
From those depth values and the known intrinsic calibration of the RealSense we calculate
the 3D coordinates of the keypoints.
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Figure 2. The used skeleton model.

3.3. 3D Coordinates from Triangulation

A second method to obtain 3D coordinates for the 2D keypoints is by using trian-
gulation. This technique requires a full overlap of the cameras, but it does not need
range cameras.

The poses of all cameras are known from the extrinsic calibration in Section 4.3. A
2D keypoint (P1) is reprojected from its camera, according to the pinhole camera model
as illustrated in Figure 3. This reprojection is a straight line extending from the camera.
The corresponding 2D keypoint (P2) is also reprojected from a second camera. Assuming
perfect calibration and skeletonization, the two reprojection lines should intersect. But in
reality they do not intersect. Instead, we find the 3D keypoint (P) where the distance ε
between the two reprojection lines is smallest.

3.4. Combining Triangulations

Because three cameras are used, three different triangulations can be done: one for
each pair of cameras. We can combine the three results into an superior result by a weighted
average. For each point triangulated between camera i and camera j, the weight Wij is
calculated as:

Wij =
ci · cj

(εij + εm)2 (1)

with εij the reprojection error, the crossing distance between the reprojection lines as
illustrated in Figure 3. And ci is the detection confidence for that keypoint in the Detectron2
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result of camera i. To avoid extreme weights due to very small crossing distances, εm is
added. This is a minimum crossing distance with a chosen value of 1 mm.

We find the resulting point P by weighted average:

P =
∑ Wij · Pij

∑ Wij
(2)

Figure 3. Illustration of the triangulation method for a single point.

4. Experimental Setup

We will test the three proposed methods in a lab experiment to determine the accuracy
of the calculated 3D skeletons. The measurement layout is described in Section 4.1 and
the ground truth measurements in Section 4.2. We explain the used extrinsic calibration
method in Section 4.3 and go over the recorded scenario in Section 4.4.

4.1. Used Hardware and Measurement Layout

The measurements are done using three RealSense range cameras, two D455’s and one
D435. They perform on-chip stereo depth calculations, deliver aligned monochrome and
depth images, and produce good results under various lighting conditions. Considering
also the low price (less than €220 for a D455), they are a good candidate to be used in a
real-world application.

Three RealSense cameras are placed pointing inward as shown in Figure 4. They are
connected using a triggering cable, one camera is the master and two cameras are slave.
The subject moves in the area between the cameras so that they are seen by all cameras.

The images of all left cameras are recorded, as well as the depth images, at 30 fps with
a resolution of 1280 × 720. Depth is stored in 16-bit PNG files and the visual images are
stored in 8-bit monochrome JPEGs.

4.2. VICON Ground Truth

The measurements are performed in the M²OCEAN lab of the University of Antwerp.
It is equipped with 8 VICON MX T10 infrared cameras to track retroreflective markers.
Markers are taped to a volunteering test subject precisely by a student physiotherapist.
The marker trajectories are recorded at 100 fps. Using the VICON NEXUS software the
trajectories are labeled manually and the skeleton model is inferred. Both the skeleton
keypoints and the marker trajectories are then exported in a readable format.

To produce a useful ground truth, the data undergoes following steps:

• Downsample the data from 100 fps (VICON) to 30 fps (RealSense).
• Reorder the keypoints that the COCO and VICON skeleton model have in common.
• Reconstruct the remaining keypoints. For instance, the nose, eyes and ears of the

COCO model are reconstructed from the four head markers.
• Synchronize the recording to the RealSense data by shifting it based on the cross-

correlation of the y-coordinate.
• Find and apply a rigid transformation to match the world coordinate system.
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subject
RealSense

D455

Hardware synchronization

Figure 4. Physical setup of the experiment.

4.3. Extrinsic Calibration

The method of extrinsic calibration can be chosen freely as long as an accurate method
is used. We chose to use a variation of our calibration methods, but based on the fact that
the three cameras see each other. It uses bundle adjustment with a the same cost function
as in our earlier work [31,32]. We chose this method over our other methods because the
fields of view have a large overlap and because it does not require a special procedure
between recordings. So even if the cameras are moved between captures, the calibration
can still be determined.

In post-processing, the camera centers are manually marked in a single image for each
camera. To facilitate this, each camera has a recognizable white monocle mounted around
the left camera, as shown in Figure 5. The relative pose of the cameras is found by an
iterative optimization that minimizes the L2 reprojection error of the marked points.

(a) (b)

Figure 5. (a) The white monocle mounted on the camera. (b) The white ring is easily distinguishable,
even in low resolution images.

The relative poses are known up to a scale factor. We calculate the scale as follow-
ing average:

scale =

〈
dmeasured
dcalculated

〉
(3)
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where dmeasured is the distance from one camera center to another as it is measured by the Re-
alSense camera and dcalculated is the distance between the calculated relative camera positions.

The accelerometer data of the D455 cameras is used to determine the world orientation
with respect to the floor plane, as gravity causes a constant vertical acceleration. An
estimated height of the first camera is provided manually.

4.4. Recorded Scenario

The goal of the experiment is to test the accuracy of the obtained joint angles. We
chose to use a single human subject because the joint angles do not depend on the stature of
the subject but rather on the adopted pose. Moreover, the used 2D skeletonization network
has proven its performance on a varied population of people. The subject goes through a
varied series of motions, resulting in challenging poses and a wide range of joint angles.

The tasks that the subject executed are chosen to produce poses that are relevant for
workers in industry. The volunteer first picks up a nut and bolt and then fastens it to the
structure at one of the four heights: 0.25 m, 1.15 m, 1.75 m, and 2.1 m. The test subject is free
to perform the actions as they wish, so no specific pose is dictated. A number of resulting
poses are shown in Figure 6a–g. A sequence of 3600 frames (120 s at 30 fps) is recorded
and processed.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. Different actions and poses of the subjects. Some actions can be performed in different
poses. (a,b) Pick up a nut and bolt. (c,d) Fasten nut and bolt at 0.25 m, (e) at 1.15 m, (f) at 1.75 m, (g) at
2.1 m. (h) Subject with VICON markers.

5. Experimental Results

Our application—calculating REBA scores—depends only on the angles between the
skeleton joints. So accuracy of the joint angles is an important factor in our end result.
Most joints have multiple degrees of freedom. From such joints, different joint angles
are calculated (e.g., flexion, twist, bend), each with a single degree of freedom. From the
skeleton, 11 different joint angles are calculated. The joint angles are listed on the horizontal
axis in Figure 7 and their definition and calculation are detailed in Appendix A. Six of those
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angles are calculated for both the left and the right side. Because of symmetry, the left and
right angles are combined in the results.

5.1. Angle Errors

There are different metrics to quantify how well the calculated angles match the true
angles. A first one is to inspect the error, calculated as the difference between the results
and the VICON ground truth. Figure 7 shows the box plots of those angle errors. Outliers—
values more than 1.5 interquartile ranges above the upper quartile or below the lower
quartile—are omitted from the chart for clarity. We report the RMS errors. This is a good
metric because it gives more weight to large errors. The ergonomic score is based on the
different joint angles falling within certain angle ranges. So different angles can result in
the same score. As a result, small angle errors will have almost no impact on the resulting
ergonomic score.

It is apparent that the more cameras that are used, the higher the resulting accuracy.
The total RMS angle error based on the naive depth technique is quite high: 30°. The single
and combined triangulation results are significantly better: 16° and 12° respectively.
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Figure 7. Error of calculated angles compared to the VICON ground truth. The key angles (joint
angles with a high impact on the REBA score) are shown in fuchsia.

5.2. Angle Correspondence

A second metric to evaluate the accuracy is to plot the results versus the ground truth.
This way, the different kinds of errors are visualized. To quantify the goodness of fit in
a single number, we report the coefficient of determination R2 for each plot. It is calculated
assuming the true relation between the compared values: y = x.

R2 = 1− ∑i(yi − xi)
2

∑i(yi − y)2 (4)

In Equation (4), xi and yi are the angles plotted on the horizontal and vertical axes
respectively, y is the arithmetic mean. Note that by definition R2 can also be negative.

In Figure 8 we compare the calculated angles to the ground truth of the VICON. We
show a selection of 5 of the 11 angles, but the R2 values for all angles are listed in Table 1.
The angles calculated from the RealSense depth vary wildly from their true values. Only
the key angles—flexions of the knee, shoulder and elbow—could be somewhat useful. For
the other angles there is little correlation to the actual value.
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Figure 8. A selection of five joint angles compared to angles from the VICON data. From top to
bottom: calculated from RealSense depth, single triangulation and combined triangulation.

The results improve when using the triangulation between two cameras. The accuracy
of the key angles has increased considerably. Combining triangulations results in a further
increase in those specific angle accuracies. The other joint angles do not seem to correspond
well to the ground truth.

Table 1. R2 values for joint angles calculated using different methods. The three key angles and their
values are shown in bold font.

RealSense Single Combined
Joint Angle Depth Triangulation Triangulation

neck flexion –0.62 –0.50 –0.34
neck twist –0.15 –0.26 –0.04
neck bend –0.03 –0.03 –0.10
trunk flexion 0.19 0.89 0.95
trunk twist –0.93 –0.55 –0.35
trunk bend 0.06 0.31 0.45
knee flexion 0.70 0.85 0.93
shoulder flexion 0.43 0.86 0.91
shoulder raise –0.02 –0.15 –0.11
arm abduction 0.00 0.04 0.28
elbow flexion 0.06 0.13 0.38

Table 1 confirms the trend that the accuracy increases from using only the depth to
using combined triangulations. It also shows that none of the methods produces trunk
twist, shoulder raise, and neck angles that correspond well to the VICON ground truth.



Sensors 2022, 22, 1729 10 of 15

This has two causes: on the one hand, our methods may be less accurate in the shoulder
region. On the other hand, there seems to be a mismatch in the shoulder region between our
skeleton model and the VICON one that could not be corrected in the skeleton conversion
step. The VICON model has more flexible shoulders, while our skeleton detection produces
more rigid shoulders.

6. Discussion

There are a number of known limitations when using our method to determine the
joint angles for ergonomic evaluation like REBA. The skeleton detector we used produces
skeletons in the COCO format, the hands and feet are not detected. So no ankle or wrist
angle can be calculated. When needed, this can be solved by using a different skeleton
detector that includes those joints. Our method only generates joint angles, so no other
information is provided like e.g., force/load score, coupling score, and activity score that
are used by REBA. When interpreting the automatically calculated scores, those factors
must be taken into consideration.

One of the novelties of our work is that we evaluate the joint angles directly. This
makes it hard to compare it directly to many other camera based methods, because the
large majority uses position error metrics instead of angles. Even though joint angle errors
are the most indicative metric for ergonomics, lost methods use MPJPE ([13–15,22–25]),
PCP ([16,17,20,24,26–28]) or PCK ([13,15,22,28]).

As explained in Section 2, we evaluate the accuracy of the joint angles and not of the
joint positions, as this is the most meaningful metric in the context of analyzing ergonomics.
Choppin et al. [29] report a median RMS joint angle error of 12.6° for measurements with a
Kinect V1. This seems comparable to our results, but was based on measurements where
the subjects were facing the camera. As Plantard et al. [33] showed, the Kinect V1 is quite
sensitive to the viewing angle: the accuracy decreases considerably with increasing viewing
angles. Our results have higher RMS angle errors for the RealSense depth method (30°)
and the single triangulation method (16°), but in our experiment we recorded the subject
from all different angles.

Xu et al. [34] used a Kinect V2 to measure the shoulder joint angles of a person sitting
in front of the camera and compared this to a motion tracking system. Their results had
similar RMS errors—ranging between 8.5° and 38.5°—but with a static subject in a fixed
position in front of the camera.

Abobakr et al. [35] estimated the 15 angles needed to calculate the RULA score directly
in a deep convolutional network. On their real world measurements they had an RMS error
over all joint angles of 4.85°. Their approach requires the training of a dedicated network,
but offers a very good accuracy.

Li et al. [36] obtained a smaller RMS error of 4.77°. However, they used only images
taken from an ideal viewpoint, so no random orientations were included. Their method
require such viewing points—where the joint angles are parallel to the image plane—as
they use 2D angles instead of 3D angles. The image should be taken by someone going
around the workplace, taking pictures of different poses of interest, so this method is not
intended to be used in a fully automatic system that observes workers over long periods
of time.

7. Conclusions

In this paper, we constructed 3D skeletons from camera measurements and compared
them to a VICON marker-based tracking system. The 2D skeleton keypoints are detected
in the monochrome image. To convert those 2D skeletons to 3D skeletons, we have tested
three methods: using the depth directly from the RealSense depth sensor, triangulating the
points from two cameras, and combining the triangulations of all three cameras. We have
evaluated the different method based on the accuracy of the joint angles, as those angles
are essential for most applications like ergonomic evaluation.



Sensors 2022, 22, 1729 11 of 15

Using the RealSense depth has the advantage that only a single sensor unit is needed.
But it also has an important disadvantage: the accuracy of the 3D skeleton is limited.
Compared to the VICON measurements, the RMS angle error is 30°. This will not be
enough to calculate more than a rough estimate of the ergonomic score.

To better deal with occlusions, we combine two cameras to triangulate the correspond-
ing keypoints. This requires an extra camera, but neither camera needs to be a depth sensor.
The RMS angle error for the single triangulation is 16°. Those joint angles are accurate
enough to obtain a good estimate of the ergonomic score.

Even with two cameras there can be still quite a number of occlusions. We therefore
combine the three triangulations of the camera pairs. A weighted average is calculated
based on the detection confidence of the 2D keypoint detector and on the triangulation
quality. The combined triangulation method has an RMS angle error of only 12°. The
results suggest that the accuracy could be improved further by adding even more cameras.
However, the small gains in accuracy might not justify the additional hardware and
increased demand for computing power for the skeletonization.

Not all joint angles have the same error. For all three methods the trunk, knee and
shoulder flexion have a significantly higher accuracy than the other angles. Those key angles
have a larger effect on the REBA score.
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Appendix A. Angle Calculations

Appendix A.1. Definitions

In Figure A1 the used skeleton format is shown. Tables A1 and A2 list the number and
name of each keypoint and auxiliary keypoint.

In our calculations, we notate points with letters, like N and B. Vectors are written
like
−→
NB. To calculate the joint angles, we often use following functions.
The angle between two vectors:

angle
(−→

AB,
−→
CD
)
= cos−1

( −→
AB

‖−→AB‖
·
−→
CD

‖−→CD‖

)
(A1)

The angle between three points:

angle(P, Q, R) = angle
(−→

PQ,
−→
QR
)

(A2)

https://www.fwo.be/media/1024095/fwo-manual-ethics-checklist.pdf
https://www.fwo.be/media/1024095/fwo-manual-ethics-checklist.pdf
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The orthogonal projection of vector
−→
AB onto a plane with normal −→n :

project
(−→

AB,−→n
)
=
−→
AB−

(−→
AB · −→n

) −→n
‖−→n ‖2 (A3)

Appendix A.2. Angle Calculation

We first define two help vectors, representing the forward direction at the shoulders
and at the hips respectively:

−→
Ds =

−→
CB×−−→SlSr (A4)

−→
Dh =

−→
Y ×−−→Hl Hr (A5)
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Figure A1. The used skeleton format.
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Table A1. Joint names.

Index Joint Name Notation

1 nose N
2 neck base B
3 left shoulder SL
4 left elbow EL
5 left wrist WL
6 right shoulder SR
7 right elbow ER
8 right wrist WR
9 left hip HL

10 left knee KL
11 left ankle AL
12 right hip HR
13 right knee KR
14 right ankle AR
15 left eye EyL
16 right eye EyR
17 left ear EaL
18 right ear EaR

Table A2. Auxiliary points.

Index Joint Name Notation

19 hip center C

The REBA method needs joint angles as input, chose to calculate them as follows:

• Neck angle = angle(C, B, N)− 48°

• Neck twist = 90°− angle
(

project
(−→

BN,
−→
CB
)

,
−−→
SlSr

)
• Neck bending = angle

(
project

(−−−→
EalEar,

−→
Ds

)
,
−→
CB
)
− 90°

• Trunk angle = 90°− angle
(−→

CB,
−→
Dh

)
• Trunk twist = angle

(
project

(−−→
Hl Hr,

−→
CB
)

, project
(−−→

SlSr,
−→
CB
))

• Trunk bending = angle
(

Y, project
(−→

CB,
−→
Dh

))
• Knee angle = angle(Hl , Hk, Al)

• Shoulder angle = angle
(

project
(−−→

ElSl ,
−→
Ds ×

−→
CB
)

,
−→
CB
)
· sgn

(−−→
SlEl ·

−→
Ds

)
• Elbow angle = angle(Sl , El , Wl)

Joint angles on the right-hand side of the body are calculated analogously.
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