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Abstract: The present study aims to investigate the loco-regional tolerability and injection parameters
(i.e., flow rate and administration volume) of an in situ forming depot (ISFD) in Göttingen minipigs,
to secure both the therapeutic procedure and compliance in chronic medical prescriptions. The
ISFD BEPO® technology (MedinCell S.A.) is investigated over 10 days, after a single subcutaneous
injection of test item based on a DMSO solution of diblock and triblock polyethylene glycol-polylactic
acid copolymers. Injection sites are systematically observed for macroscopic loco-regional skin
reactions as well as ultrasound scanning, enabling longitudinal in vivo imaging of the depot. Ob-
servations are complemented by histopathological examinations at 72 h and 240 h post-injection.
Overall, no treatment-emergent adverse effects are macroscopically or microscopically observed at
the subcutaneous injection sites, for the tested injection flow rates of 1 and 8 mL/min and volumes
of 0.2 and 1 mL. The histopathology examination confirms an expected foreign body reaction, with
an intensity depending on the injected volume. The depot morphology is similar irrespective of the
administration flow rates. These results indicate that the ISFD BEPO® technology can be considered
safe when administered subcutaneously in Göttingen minipigs, a human-relevant animal model for
subcutaneous administrations, in the tested ranges.

Keywords: loco-regional skin tolerability; in situ forming depots; subcutaneous injection; flow rate;
minipig; sustained release drug delivery

1. Introduction

Over the past few decades, the field of smart and controlled delivery systems has
been continuously expanding, investigating approaches from the nano to the macrometric
scale [1] and from nondegradable implants to bioresorbable systems [2,3]. Most of these
drug delivery strategies are designed to improve the bioavailability and pharmacokinetics
of target therapeutic molecules, with a view to reducing dosing frequency compared to
immediate release dosage forms and, consequently, improving treatment compliance [4].
Among the available formulation approaches, in situ forming depots (ISFD) are particularly
attractive as they are designed to bio-resorb and are often easier to administer compared to
preformed delivery systems [5]. The common feature of ISFD is the formation of a solid
depot encapsulating a drug upon administration [5,6]. They are classified according to the
solidification mechanism, i.e., in situ cross-linking [7,8], in situ solidifying organogels [9]
or in situ phase separation [10,11].

Despite the growing interest of the scientific community, little is known regarding
the loco-regional toxicity potential of ISFD [5,12], even though this is a key development
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issue of every sustained-release injectable drug. Poorly tolerated injectable formulations
(e.g., local pain, discomfort, redness) may lead to a significantly lowered observance of
the treatment and its discontinuation, regardless of efficacy [13,14]. In addition, repeated
administrations of the product could be compromised if sensitization induces a loco-
regional reaction at the injection site (e.g., itching, skin eruption). Interestingly, in addition
to the biocompatibility of the formulation components, factors linked to the injection
procedure are being increasingly evaluated for their influence on loco-regional tolerability,
in particular, with classic aqueous-based injectable products, such as insulin or heparin.
Critical factors include the type of device, the selected injection site and the injection flow
rate [15–17]. Similar investigations are necessary with ISFD systems to demonstrate their
safe use for the patient and understand if the injection criteria, particularly the injection flow
rate, influences the formation of the depot and subsequent loco-regional tolerability [18,19].

MedinCell proprietary ISFD technology [20], trademarked as BEPO®, is composed of
(1) a mixture of one diblock and one triblock copolymer of poly(ethylene glycol) (PEG) and
amorphous poly(D,L-lactic acid) (PDLLA), (2) a biocompatible organic solvent and (3) an
active pharmaceutical ingredient (API). The API may be either in solution or in suspension
in the polymeric vehicle, which is designed to be water insoluble. Upon administration,
the solvent will diffuse out of the system and be replaced by bodily fluids, causing the
copolymers to precipitate and form a solid depot, which physically entraps the API. The
therapeutic agent will be released by a combination of diffusion through the polymeric
matrix and progressive degradation of the copolymers. BEPO® technology allows an
unprecedented flexibility in the control of the release, which may span from days to months
by tailoring its composition [21,22], such as e.g., the size of the copolymers, the solvent
type or the ratio among the formulation components. This ISFD technology is currently
undergoing advanced clinical trials for both systemic drug delivery using the subcutaneous
(SC) route, and local delivery within the intra-articular space.

The present article depicts the results from an experimental study designed to as-
sess the loco-regional skin tolerability of the ISFD BEPO® technology. Different volumes
of a model BEPO® vehicle (copolymer mixture dissolved in solvent, without API) were
administered subcutaneously to Göttingen minipigs at different flow rates. The minipig
was selected as it has been shown that its SC space is similar to that of humans in terms
of tissue structure and biomechanics [23,24]. The test item selected for this study was
composed of hydrophobic copolymers with a relatively high molecular weight (10–12 kDa).
The resulting product with a high copolymer concentration in dimethyl sulfoxide (DMSO)
was expected to reach a very high dynamic viscosity (>500 mPa.s). This polymeric compo-
sition was designed to give relatively slow degradation kinetics, allowing a monitoring
and comparison of the different reactions with minimal variations in the depot polymeric
composition during the study period. Typical injection speed for a marketed product
being around 3–6 mL/min (administration of 0.5 mL to 1 mL in 10 s) [25], a wide range
of manual injection speeds were selected, with a slow and a fast injection rate targeting
1 mL/min and 10 mL/min. In addition to the flow rate, two volumes of test item (i.e.,
0.2 and 1 mL) were injected to assess a potential effect of increased depot volume on injec-
tion site tolerability [26,27] and depot morphology in the SC [28]. Loco-regional tolerability
was assessed over 10 days by macroscopic observation and subsequent histopathology
evaluation of the injection sites. It is assumed that intolerance due to the administration
procedure would be noticeable within less than two weeks. Ultrasound imaging was used
to complete the evaluation by providing information on the morphology of the depot and
the surrounding tissues.

2. Results
2.1. Characterization of the Test Item

Test item characterization was performed immediately following batch preparation.
Table 1 presents the viscosity values of the test item and the injection force needed at both
flow rates (n = 3) as well as the Endotoxin level in the prepared batch.
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Table 1. Test item characterization results.

H Viscosity
Injection Force

Endotoxin Level
1 mL/min Flow Rate 10 mL/min Flow Rate

Test item 625 mPa.s
(5) *

2.5 N
(0.6) *

19.0 N
(0.2) * <2.339 EU/mL

* Standard deviation.

In the tested shear rate range, the test item displayed a Newtonian behavior with a
constant viscosity at each point measured (see Figure S1). Hence, the calculated viscosity
value is the mean viscosity measured at each shear rate test time-point. The test item
was confirmed to have a high viscosity, i.e., above 600 mPa.s. Regarding injectability, the
difference between the injection force values at the two tested flow rates was statistically
significant (p < 0.0001, n = 6). The injection force at 1 mL/min was of 2.5 N compared to
19 N at 10 mL/min. Both injection force values were below 20 N, which is considered the
limit for a comfortable manual administration of an injectable drug product [29]. Thus,
the experimental conditions were considered appropriate for in vivo injection. In addition,
endotoxin levels were measured below 2.339 EU/mL based on the highest injected volume
(i.e., 1 mL). This result is significantly below the determined limit and comply with the
USP-calculated limit, confirming the low pyrogenic potential of the prepared product.

2.2. In Vivo Administration of the Test Item

Each animal received the full scheduled dose at each injection site. Injection durations
were recorded and flow rates calculated according to the volume administered (0.2 or 1 mL).
Table 2 summarizes the mean flow rates and the corresponding deviation from the target
value for each treatment group.

Table 2. Experimental injection flow rates. Deviations were calculated from the targeted injection flow rates (i.e., 1 mL/min
or 10 mL/min).

Target 1 mL/min Target 10 mL/min

Flow Rate Deviation Flow Rate Deviation

Group 1–0.2 mL 1.0 mL/min
(0.0) * −2% 5.6 mL/min

(1.4) * −44%

Group 2–1 mL 1.0 mL/min
(0.0) * −2% 8.0 mL/min

(1.0) * −20%

* Standard deviation.

Slow injections (1 mL/min) were performed as planned. No deviation from the
targeted injection duration was observed in any of the groups. In contrast, substantial
deviations were observed for the highest flow rate (10 mL/min). As a result, the maximum
injection flow rate experimentally reached in this study was 8 mL/min.

2.3. Macroscopic Observation of Loco-Regional Skin Tolerance

No treatment-linked loco-regional adverse effects were observed in the animals, re-
gardless of the test item volume and the injection flow rate. Figure 1 is a compilation
of representative pictures from both injection sites for a 1 mL-treated animal during the
10-day follow-up of the study. Representative pictures of the 0.2 mL treated group are
presented in Figure S2.
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Figure 1. Macroscopic loco-regional tolerance assessment. Representative images of injection sites from 1 mL treated group
along the study.

From 24 h post-injection, both groups displayed a localized induration which persisted
over the 10-day observation period.

2.4. Ultrasound Imaging

Representative ultrasound images of the injection site from each treatment group are
presented in Figure 2. The images were similar regardless of the injection flow rate. Full
imaging along the sagittal and transverse planes is presented in Figure S3. The test item
was confirmed as being properly injected into the subcutaneous space, except for one depot
of 0.2 mL injected at the fast flow rate, which was partially injected intramuscularly. These
data were excluded from further analysis.

Figure 2. Longitudinal ultrasound imaging of (A) 0.2 mL and (B) 1 mL test item injection site over the course of the study.
Images were acquired between 13 and 15 MHz along the sagittal plane, parallel to the needle insertion orientation. Bolus
are highlighted in red post-injection and indicated by an arrow at later time points.

For each injection, the depot is predominantly fusiform and hypoechoic immediately
after injection. From 24 h onward, an increase in echogenicity was observed, which is
characteristic of ISFD phase inverting systems [30].

Dimensions of the depot were measured from both sagittal and transverse depot
images. The depot volumes at each injection site are presented in Figure 3a. With both
0.2 and 1 mL injection volumes, a sudden volume increase was observed at 24 h post-
injection followed by a steady decrease down to the initial injected volume at 72 h post-
injection. From this time point, the depots progressively expanded again. There was no
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significant difference between the measurements from the injection sites at two different
injection flow rates (p = 0.9824, n = 73).

Figure 3. Variation of depot volume over the course of the study (10 days): (a) the calculated volumes from both injections
are displayed at both injection sites: site 1 as full line; site 2 as dotted line; (b) the degree of depot swelling is presented for
both volumes as the mean of the two injection sites.

In Figure 3b, depots degree of swelling is presented as the mean of both injection sites
(i.e., site 1 injected at 1 mL/min and site 2 injected at 10 mL/min). At 24 h post-injection,
the mean swelling was +106% for a 0.2 mL test item injection and +57% for a 1 mL test
item injection, representing an estimated volume of 0.4 and 1.6 mL, respectively. Maximum
swelling was recorded at 240 h post-injection. For the 0.2 mL test item injection volume, a
swelling ratio of +295% was reached corresponding to an approximate volume of 0.8 mL,
an expansion of about four times the initial volume after 10 days. In parallel, the 1 mL test
item injection volume swelled up to approximately 1.8 mL (+77% swelling degree), which
is not significantly different from the 24 h data.

2.5. Histopathologic Evaluation

Injection sites were collected at either 72 h or 240 h post-injection to evaluate the short
and longer-term evolution of a potential loco-regional reaction triggered by the injection
procedure. The 72-h time point was appropriate to observe any acute inflammatory reaction
related to the injection procedure, while the 240-h time point allowed to characterize the
chronic inflammatory reaction produced by the depot.

Animals 1 and 2 (Group 1) and 5 and 6 (Group 2) were sacrificed at 72 h post-injection.
The remaining animals were sacrificed at 240 h. All histopathological findings were
observed in the subcutis. Only one injection in animal 4 (0.2 mL test item treatment injected
at 10 mL/min) was partially located in the abdominal wall. As the general shape of the
depot was similar to other depots, it was not excluded from the microscopic evaluation.
Representative histopathology slides are compiled in Figure 4.

At 72 h post-injection, a “pseudocyst” was observed in the SC space of seven of the
eight investigated injection sites (Figure 4A) for both 0.2 and 1 mL injections. The pseudo-
cyst or inflammatory cyst was a well-circumscribed cystic space with no epithelial lining
marked out by inflammatory elements such as fibrosis or inflammatory cells. The observed
empty spaces presumably originated from the test item dissolution during histology pro-
cessing. At 72 h post-injection, pseudocysts were limited by a thin fibrous capsule admixed
with few inflammatory cells, mainly macrophages, and the occasional presence of multin-
ucleated macrophages (Figure 4C). In this connective tissue surrounding the cavities or
the pseudocysts, various combinations of mixed inflammatory cell infiltrates, hemorrhage
and/or necrosis were occasionally observed, mainly in animals that had received 1 mL test
item injections. The severity of these changes was low (from minimal to mild). All changes
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at 72 h post-injection were observed independently of the injection flow rate and/or the
injected volume.

At the 240-h time point, all animals had a well-defined subcutaneous encapsulated,
often multilocular, nodule. This nodule was composed of empty spaces limited by fibrous
cords combined with mixed inflammatory cells, among which numerous multinucleated
giant macrophages were observed. Overall, these nodules are considered to be areas of
granulomatous inflammation. In one instance (0.2 mL test item injected slowly), chronic
inflammation was observed in the surrounding connective tissue. The severity of these
changes was graded as moderate for most injection sites, and as marked on one occasion.

Overall, reactions were similar in nature between animals treated with 0.2 mL and 1 mL
of test item. Similarly, the rate of administration had no influence on the nature and severity
of the loco-regional changes, as shown in Figure 5.

Figure 4. Representative H&E histopathology of injection sites: (A) test item injection site at 72 h and (B) test item injection
site at 240 h. A focus on the fibrous capsule is presented (C) at 72 h, and (D) at 240 h. ES: poorly defined empty spaces in
the subcutis. Green arrow: fibrous capsule. Black arrow: inflammatory cells, including multinucleated macrophages. Red
arrow: empty spaces.

Figure 5. H&E histopathology of 1 mL test item depots at 240 h, administered at (A) slow and (B) fast injection flow rate.

Full histopathology grading is available in Table S1.
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3. Discussion

The ISFD BEPO® technology is based on the combination of a drug substance with an
injectable vehicle solution made of a diblock and a triblock PEG–PLA copolymer solubilized
in an organic solvent. This long acting injectable technology forms a solid depot in situ
allowing sustained delivery of an API over several days to several months [21]. The aim
of the present study was to evaluate the influence of the injection flow rate and injection
volume of a BEPO® vehicle on the loco-regional skin tolerance.

Currently, little is known regarding the loco-regional tolerability of ISFD in the sub-
cutaneous environment [5,12]. Due to the large variety of ISFD (i.e., different formation
mechanism, applications, polymeric and solvent components, route of administration),
it is difficult to generalize the available results. DMSO is an FDA-approved pharmaceu-
tical excipient for parenteral administration, including the subcutaneous route. As for
the copolymers, the tolerability of PEG–PLA copolymers has already been described in
subcutaneous [31,32] and intravenous [33,34] administrations. However, data are lacking
regarding their use in ISFD by phase inversion. Most published studies focus on PLGA-
based ISFD [12,35–38]. Nonetheless, more than the components of the ISFD technology,
the procedure to conduct a preclinical loco-regional toxicity study is not yet standardized.
The few studies with PLGA ISFD using DMSO as solvent for subcutaneous administration
have been conducted in a variety of species, going from monkey [39] to rat [40]. In our
case, we favored the use of Göttingen minipig to assess subcutaneous reactions as this
species has the closest resemblance to human subcutis [24,41]. Moreover, to the best of our
knowledge, the administration procedure of ISFD has not yet been investigated. This lack
of harmonized methodologies and historical data is showing the need for a tolerability
study for a specific copolymer and solvent combination and its associated route and pro-
cedure of administration. In the present study, we decided to inject a highly viscous test
item (>600 mPa.s) in the subcutaneous space of Göttingen minipigs using two different
injection flow rates (1 and 10 mL/min) and volumes (0.2 mL and 1 mL), allowing to screen
challenging parameters.

The endotoxin levels within the test item complied with the USP-calculated limit
based on the highest injected volume (i.e., 1 mL). This result confirmed the low pyrogenic
potential of the prepared product. In parallel, the in vitro characterization of the test item
demonstrated that the highest targeted injection flow rate (10 mL/min) was consistent
with an acceptable range of force required for manual injection in vivo (i.e., <20 N [29])
with the selected device (i.e., 1 mL Luer Lock Soft-Ject syringe equipped with 21G 5/8”
needle). However, by reaching the limit of a comfortable manual injection, the probability of
deviation from the targeted injection flow rate was increased. To comply with a 10 mL/min
injection, the operator had to complete the administration in a short amount of time (i.e.,
within one second for a 0.2 mL injection and six seconds for a 1 mL injection) while being
confronted with an important break-loose force. The observed deviation at 10 mL/h for
the 0.2 mL injection was of −44%, with injection durations ranging from 1 to 3 s, while
the one for the 1 mL injection was of −20%, with injections within 6 to 8 s. Therefore, the
highest manual injection rate that a well-trained operator could achieve during this animal
study was up to 8 mL/min instead of 10 mL/min.

From a macroscopic point of view, all injections were well tolerated regardless of the
injection volume and flow rate. Indurations were noticed throughout the 10-day study.
Because of the very thin skin and hypodermis at the plica inguinalis site, the presence of
the depots was evident upon palpation, suggesting that the induration mainly resulted
from the polymeric precipitate formed in the SC space. In addition, ultrasound images
allowed the confirmation of the presence of a hyperechoic structure (i.e., the depot), with a
volume evolving similarly to the induration recorded, supporting the observation that the
local response was mainly linked to the presence of the polymeric depot.

Ultrasound imaging was performed and confirmed that the injections were properly
delivered into the subcutaneous tissue. From a morphological point of view, the injected
test item formed an oblate ellipsoid depot upon precipitation that stretched along the
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sagittal axis (i.e., a similar direction to needle insertion) and remained visible throughout
the 10-day study. The presence of the depot at the last time point was expected because
of the specific polymeric composition of the tested BEPO® vehicle. These observations
also confirm the relevance of the ellipsoid volume formula to determine the depot volume.
With ultrasound imaging, the injected test item was hypoechoic immediately after injection
and for the first 24 h, suggesting the presence of liquid within the depot (e.g., solvent,
fluids from the tissues or mixture both). Overall, the depot morphology was similar with
slow and fast injection flow rates. Qualitatively, the depot became more hyperechoic
48 h post-injection. According to the literature, this change in echogenicity reflects the
copolymer precipitation during the depot formation [30,42,43].

Measurements of the depot dimensions along the sagittal and longitudinal plains
were expected to be a direct measurement of the formed depot. Depot swelling was
observed with both 0.2 and 1 mL injection volumes and peaked at 24 h and 240 h post-
injection, regardless of the injection flow rate. Swelling is a common feature of ISFD,
especially due to the water uptake upon solvent exchange [44–46]. In addition, BEPO®

depots are known to often exhibit a porous internal structure [21] characteristic of a rapid
solvent exchange process. Consequently, they might be prone to fluid uptake due to
the more or less interconnected network of pores. Moreover, the extent and kinetics of
swelling are suspected to depend on the polymeric composition of the depot, as it has
previously been highlighted in works on polyester polymers [42,46]. In consequence, the
first volume increase (i.e., at 24 h) could be associated to the fast solvent/non-solvent
phase exchange while the progressive expansion up to 240 h could be the result of the
particular polymeric composition exploited in this study combined with a porous internal
network characteristic of BEPO®-based products. Interestingly, the depots formed with
lower injection volumes (i.e., 0.2 mL) tended to expand more than those with an injection
volume of 1 mL, proportionally to the initial volume injected. At the later time point (i.e.,
240 h post-injection), 1 mL depots swelled up to 1.8 times their initial volume. In contrast,
0.2 mL depots swelled more with a 4-fold increase in volume. A potential explanation for
this volume-dependent swelling behavior could be that a maximum local expansion of the
subcutaneous environment surrounding the depot was reached with the higher volume.
This mechanical restriction would thus allow for a greater expansion of the smaller than
the larger volume.

To complete this study, histopathological examination of the injection sites was per-
formed at either 72 h or 240 h post-injection, to evaluate the short and longer-term evolution
of a potential loco-regional reaction, while assessing the impact of the injection flow rate.
Pseudocysts were observed at 72 h post-injection at both injection sites, whereas nodules
were recorded at 240 h post-injection. In both morphological changes, empty spaces were
observed: unique and large cavities in the case of pseudocysts, smaller and multilocular
cavities in the case of nodules. These cavities most probably represent the location of the
polymeric depots, which dissolved during tissue processing, hence their empty appearance.
At early time points, only a few multinucleated macrophages were observed within the
pseudocyst. Later, the cavity was gradually replaced by a mature granulomatous inflamma-
tion comprising fibrosis, inflammatory cells and many multinucleated giant macrophages.
These pseudocysts and nodules represent a continuum characteristic of an expected foreign
body reaction (FBR) [47,48]. FBR is an innate biological response taking place in two
phases: (1) an acute phase for immediate injury response lasting from hours to days with
blood and tissue fluid proteins accumulating around the foreign material and migration
of neutrophils and (2) a chronic phase with macrophage proliferation for foreign material
engulfment, creation of foreign body giant cells (FBGC), and proliferation of fibroblasts
to form a fibrous capsule around the depot [14,49,50]. In this study, fibrosis was recorded
from 72 h post-injection, which means that the FBR chronic phase response was already
active. It can be suspected that the acute phase was initiated immediately after injection.
It can also be supposed that the involved fluid accumulation in this phase accentuated
the early swelling behavior observed at 24 h. At 240 h post-injection, the non-negligible
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presence of multinucleated giant macrophages, i.e., FBGC, confirms that macrophages
have entered a “frustrated phagocytosis” phase, as they are unable to degrade the depot
individually [47,48,51]. This prolonged FBR was expected given the particular polymeric
composition of the test item. As a matter of fact, the vehicle was designed to represent a
slow degradation rate (i.e., it had a high polymeric content and copolymers with a long
hydrophobic chain length).

4. Materials and Methods
4.1. Materials

Diblock mPEG-PDLLA and triblock PDLLA-PEG-PDLLA copolymers were synthe-
sized by CM Biomaterials (Tucker, GA, USA). USP grade DMSO (Procipient®) was pur-
chased from Gaylord Chemical (Los Angeles, CA, USA). The diblock used in this study
was composed of mPEG of 2 kDa and PDLLA of 9.8 kDa average molecular weight. The
triblock used was composed of PEG of 1 kDa and PDLLA of 9.8 kDa. The in vivo study
was conducted by CitoxLab Scantox A/S (Lille Skensved, Denmark) in compliance with
the ARRIVE guidelines [52] and EU Directive 2010/63/EU for animal experiments.

4.2. Preparation of the Test Item

The BEPO® vehicle was prepared by weighing the necessary amounts of TB and DB
copolymers to reach a final concentration of 40% (weight/weight) in a glass vial, with a
1:1 TB:DB ratio. After addition of the proper amount of DMSO, the vial was sealed and
left under agitation on a roller mixer at room temperature. Complete dissolution of the
copolymers was assessed visually by obtaining a clear, translucent and viscous solution.
The solution was then sterilized by filtration through a 0.2 µm PTFE filter, and immediately
aliquoted into sealed clear sterile vials.

For the in vivo phase, one aliquot of each test item was sent to CitoxLab Scantox A/S
at +2–8 ◦C. Another aliquot was kept at MedinCell labs (Jacou, France) for characterization.

4.3. Characterization of the Test Item
4.3.1. Dynamic Viscosity Determination

Test item dynamic viscosity was determined using a Rheometer MCR301 (Anton Paar
GmbH, Graz, Austria) associated with a Peltier temperature system (P-PTD 200, Anton
Paar GmbH, Graz, Austria) connected to the Rheocompass v1.25.422 software (Anton
Paar GmbH, Graz, Austria). The measuring system used was a Cone-Plate of 50 mm
diameter and 1◦ angle (CP50-1, truncation: 104 µm). Approximately 700 µL of product was
poured onto the Peltier plate before lowering the measuring system. Measurements were
performed using a rotational method at +25 ◦C. The shear rate was controlled from 10 s−1

to 1000 s−1 in a logarithmic ramp, with 10 points/decade and 5 s per point.

4.3.2. Assessment of Injectability

The injection forces required at the targeted flow rates of 1 and 10 mL/min were de-
termined by using a Texturometer FTPlus friction tester (Ametek STC, Berwyn, PA, USA)
piloted by the NEXYGENPlus 3.0 software (Ametek STC, Berwyn, PA, USA). Flow rates
were set as follows: 10 mL/min was found to be the fastest achievable manual injection
speed from tests performed by several technicians; 1 mL/min was considered the slow-
est acceptable flow rate for an injection duration compliant with the animal well-being
and study procedure, taking into account the volumes to be administered. Tests were
performed with the same syringe, needle type and brand as those used during the in vivo
administration (i.e., 1 mL Luer Lock Soft-Ject syringe equipped with 21G 5/8” needle).
An excess of test item was filled into the syringe before locking the needle. Priming was
performed by adjusting the injection volume to 500 µL. A compression method was used
at room temperature (+20 ◦C ± 5) with a preload stress of 0.2 N. Test speed was calculated
according to the syringe tube length, to convert the targeted flow rate from mL/min to
mm/min. The full force profile for the test item delivery at each injection flow rate was
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recorded using the pressure sensor of the Texturometer. The injection force was determined
as the mean sustained force applied to the plunger to expel the test item from the device.

4.3.3. Bacterial Endotoxins Test

Bacterial endotoxins were dosed in the pre-clinical batch to assess the pyrogenicity
of the product. Quantification was performed by Nelson Labs (Heverlee, Belgium) by
dissolution of 200 mg of product into 1 mL of Acetonitrile. The test article was assayed in a
microtiter plate in duplicate, at a 100-fold dilution in Limulus amoebocyte lysate (LAL)
reagent water. The microtiter plate was pre-incubated in a plate reader at 37 ± 1 ◦C for
≥ 10 min. After incubation, kinetic QCL-reagent (0.1 mL) was added to each well, and
the absorbance at 405 nm was assessed and recorded every 150 s for a total of 40 data
points, or until the concentration reached 0.2 absorbance units. The experimental value
was determined using a standards curve that was prepared in parallel.

According to USP chapter <85> bacterial endotoxins test (BET) [53], endotoxin limit
was calculated as

Endotoxin limit = K/M, (1)

with K being the threshold human pyrogenic dose per kg of body weight to be administered
parenterally (=5 EU/kg) and M the maximum recommended bolus dose to be administered
by kg of body weight. In this study, M equaled to 1 mL/10 kg (estimate 4–5 months old
minipig body weight), leading to an endotoxin limit of 50 EU/mL.

4.4. In Vivo Study Design

Two volumes of the test item were administered to assess the influence of the injection
volume on injection site tolerability. A volume of 0.2 mL was considered the lowest amount
to be manually filled into a 1 mL syringe with sufficient precision. A volume of 1 mL was
set as the highest injectable volume, using the same injection device.

4.4.1. Injection Site Selection

The study was performed in 8 female Göttingen SPF minipigs purchased from Elle-
gaard Göttingen Minipigs A/S (Dalmose, Denmark). The age of the animals ranged from
4 to 5 months old, with a body weight of ca. 10 kg at arrival. The plica inguinalis was
selected as the subcutaneous injection site because of known similarities with human skin
in terms of thickness and the lack of panniculus carnosus, resulting in similar mechanical
constraints [23,54,55]. Injection sites were tattooed one week before dosing as displayed in
Figure 6.

Figure 6. Marking of injection sites in the plica inguinalis of a minipig.

Animals were randomized in 2 groups of 4 animals:

• Group 1: 0.2 mL of test item (Animals #1 to #4);
• Group 2: 1 mL of test item (Animals #5 to #8).

To limit inter-animal variability, each animal received two injections of the same dose,
at different flow rates:

• Site 1: target 1 mL/min injection flow rate;
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• Site 2: target 10 mL/min injection flow rate.

The animals were sacrificed at either 72 h (first two animals from each group) or 240 h
(last two animals from each group) post-injection, and injection sites were recovered for
further analysis.

4.4.2. Injection of the Test Item

The test item was supplied as ready-to-use. Samples were removed from the fridge
and kept at room temperature the day before dosing to ensure that test item had completely
thawed before injection (DMSO melting point = +18–19 ◦C). Animals were injected under
general anesthesia with intramuscular ketamine (6.25 mg/kg of 50 mg/mL) and midazolam
(1.25 mg/kg of 5 mg/mL) to maximize the consistency and reproducibility of injections,
ketamine and midazolam being a common cocktail used as premedication of Göttingen
minipigs. The test item was injected subcutaneously using a 1 mL Luer Lock Soft-Ject
syringe (Henke Sass Wolf GmbH, Tuttlingen, Germany) equipped with a 21G 5/8” needle
(BD Microlance, Becton Dickinson, Franklin Lakes, NJ, USA). The skin was pinched, and
the full length of the needle was inserted with an angle between 45◦ and 90◦. Injection
duration was recorded using a timer to calculate the experimental injection flow rate at each
injection site. After each injection, the needle was left under the skin for 5 s before removal
to minimize leakage of the product. On the day of necropsy, the animals were examined
externally and then anaesthetized by an intramuscular injection (about 0.3 mL/kg), with
a mixture of Zoletil 50 Vet. (Virbac S.A., Carros, France), 20 mg xylazine/mL (6.25 mL),
100 mg ketamine/mL (1.25 mL) and 10 mg butorphanol/mL (2.5 mL). The animals were
sacrificed by exsanguination and the injection sites explanted for histopathology analysis.

4.5. Assessment of Loco-Regional Skin Tolerance

Macroscopic observations were performed daily on unanesthetized animals laying on
their backs, allowing a scoring of the injection sites. Loco-regional reactions, in particular
hematoma, erythema, swelling such as oedema (soft swelling) or induration (hard swelling),
scab, wound and scar, were recorded. Palpation was only allowed beyond 24 h post-
injection to avoid interferences with the depot formation. On the day of dosing, the
observations were recorded before and immediately after the injection.

4.6. Ultrasound Imaging

Ultrasound imaging was performed using a LOGIQ E9 (GE Healthcare, Chicago, IL,
USA) with an ML6-15 transducer in B-mode at a frequency ranging from 13 to 15 MHz.
Scanning was performed both pre- and post-injection, and then subsequently at 24 h,
48 h, 72 h, 144 h and 240 h post-injection. Non-sedated animals were scanned from 24 h
post-injection until study termination. Imaging was performed along the sagittal and
transverse planes to allow for measurements of the depot. Measurements were collected
using Horos™ v3.3.6 software (Horos Project, New York, NY, USA). Depot volume was
estimated using the ellipsoid volume formula:

Vdepot = π/6 × length × width × height, (2)

Swelling degree (%) was also determined using the formula:

Swelling degree = (Vdepot − Vinjected)/Vinjected × 100%, (3)

Findings were interpreted by two independent experts in ultrasound imaging.

4.7. Histopathologic Evaluation

Injection sites (depots and surrounding tissues) were entirely explanted at either 72 h or
240 h post-injection and prepared for histological processing. Skin samples were fixed in
10% buffered formalin, embedded in paraffin and cut at a nominal thickness of approx-
imately 5 µm, stained with Hematoxylin and Eosin (H&E) and then examined under a
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light microscope. Histological alterations were graded using a 5-level scale (minimal, mild,
moderate, marked and severe).

4.8. Statistical Treatment

All data are reported as a mean with standard deviation. Statistical significance of the
different data sets (p < α = 0.05) was also investigated. Unpaired t-test and one-way analysis
of variance (one-way ANOVA) were used for mean data comparison of injectabilities and
ultrasound measurements comparison, respectively. Statistical treatment was performed
using XLSTAT software (Addinsoft, Bordeaux, France).

5. Conclusions

This in vivo study in Göttingen minipigs allowed the demonstration of the loco-
regional safety of a test item based on ISFD BEPO® technology when injected subcuta-
neously at different flow rates and volumes. Injection site tolerability of the depot was
evaluated by macroscopic and histopathological examination of the injection sites. Ul-
trasound imaging was also performed to support macroscopic observations and allow
longitudinal depot measurements. Together, these experiments showed an acceptable
loco-regional response to the injected polymeric test item, designed to be an extreme case
study (i.e., a vehicle of very high viscosity and slow degradation kinetics), following low
as well as high injection flow rates. The formation of a well-circumscribed subcutaneous
nodule was observed along with a typical FBR for all injections. The scoring of the injection
site reactions was volume-dependent and no cases of treatment-emergent adverse events
were reported, ruling out any matter of concern from a histopathological perspective. It
can thus be considered that the ISFD PEG–PDLLA based-product is well tolerated when
injected subcutaneously at volumes ranging from 0.2 mL to 1 mL and injection flow rates
up to 8 mL/min.

Based on the loco-regional tolerance data noted in the Göttingen minipigs, a human-
relevant animal model for subcutaneous administration, we consider the ISFD BEPO®

technology likely to be safe in human patients.
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