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Abstract: Some of the most effective anticancer compounds are still derived from plants since the
chemical synthesis of chiral molecules is not economically efficient. Rapid discovery of lead com-
pounds with pronounced biological activity is essential for the successful development of novel drug
candidates. This work aims to present the chemical diversity of antitumor bioactive compounds
and biotechnological approaches as alternative production and sustainable plant biodiversity con-
servation. Astragalus spp., (Fabaceae) and Gloriosa spp. (Liliaceae) are selected as research objects
within this review because they are known for their anticancer activity, because they represent two of
the largest families respectively in dicots and monocots, and also because many of the medicinally
important plants are rare and endangered. We summarized the ethnobotanical data concerning their
anticancer application, highlighted the diversity of their secondary metabolites possessing anticancer
properties such as saponins, flavonoids, and alkaloids, and revealed the potential of the in vitro
cultures as an alternative way of their production. Since the natural supply is limited, it is important
to explore the possibility of employing plant cell or organ in vitro cultures for the biotechnological
production of these compounds as an alternative.

Keywords: plant anticancer compounds; in vitro production; saponins; flavonoids; alkaloids; Astra-
galus; Gloriosa; ethnobotany; conservation; Agrobacterium rhizogenes

1. Introduction

Malignant diseases are the second cause of mortality, and their treatment remains a
serious problem [1]. Some of the most powerful products in cancer therapy are still obtained
from plants because the chemical synthesis of these chiral molecules is not economical [2,3].
Identification of plants that are efficient in cancer treatment relates to ethnobotanical and
ethnopharmacological records; however, finding such information is not easy. The origin
of the word “cancer” is credited to the Greek physician Hippocrates (460–370 BC), but the
oldest description of this disease dates back to about 3000 BC in Egypt [1]. Cancer is not a
modern disease, but research shows that it was only about a third as common in medieval
Britain as in modern Britain [4]. Up to 50% prevalence of cancer is recorded at the time
of death in modern Britain, which is explained by the effects of modern carcinogens, the
spread of viruses that trigger malignancy, industrial pollutants, etc. [5]. Although cancer
has been known since ancient times and has long been studied, neither the tumor types nor
their causes are clear and well defined [6]. This is a serious challenge to the ethnobotanical
research of cancer treatment, but at the same time, the results are rewarding. Plant-specific
secondary metabolites have long been seen as a prospective approach in human therapy [7].
The interest in plant secondary metabolites from research to industry increases because
synthetic chemicals are perceived as potentially toxic [8]. Many compounds are difficult to
be synthesized via chemosynthesis, or the cost of their synthesis outweighs their commercial
availability [9,10]. Most of the plant secondary metabolites with pharmaceutical use are

Curr. Issues Mol. Biol. 2022, 44, 3884–3904. https://doi.org/10.3390/cimb44090267 https://www.mdpi.com/journal/cimb

https://doi.org/10.3390/cimb44090267
https://doi.org/10.3390/cimb44090267
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cimb
https://www.mdpi.com
https://orcid.org/0000-0001-5091-6058
https://orcid.org/0000-0001-5830-4697
https://orcid.org/0000-0001-6795-9660
https://doi.org/10.3390/cimb44090267
https://www.mdpi.com/journal/cimb
https://www.mdpi.com/article/10.3390/cimb44090267?type=check_update&version=2


Curr. Issues Mol. Biol. 2022, 44 3885

still isolated from wild or cultivated plants. Plant resources, however, are not endless.
Many of these plant species are endangered either due to their excessive collection or
their limited distribution. Sometimes there are conservational restrictions, which can limit
the commercial production of some compounds from wild populations. Some valuable
substances can only be isolated from extremely rare plants. Conservation of biodiversity is
curtailed [11–15]. A good and comparatively inexpensive method to obtain plant biomass
for sufficient bioactive compounds’ extraction is cultivation [16–18], although, for some
plants, it is difficult or takes several years. Additionally, isolating pharmaceutical products
from plants is difficult due to their extremely low concentrations. However, modern science
and practice have found a solution for these complications. It has become possible to
use plant cells to produce specific pharmaceutical products by applying biotechnological
approaches. The biotechnological approach offers a quick and efficient method of producing
highly valuable compounds [19–21]. In this context, alternative methods for producing
secondary metabolites appear as plant cell and tissue culture techniques. Starting from
callus tissue, cell suspension cultures can be established and can even be grown in large
bioreactors. In addition, the biotechnological production of these plant compounds is
more environmentally friendly. Some of the advantages of the in vitro techniques are the
propagation of the plants in aseptic controlled conditions and their large-scale production
in a year-round system without seasonal constraints [22]. The plant cell techniques provide
some highly efficient methods for isolating and extracting the secondary metabolites
within a short time compared to the wild plant populations. The simplicity of these
in vitro-produced tissue methods makes them suitable for commercial application [23].
Additionally, some metabolites can be produced by in vitro cultures, but generally, they are
not found in intact plants [24].

In this work, we aim to integrate the chemical diversity of antitumor bioactive com-
pounds and medicinal plant biodiversity conservation with a biotechnological approach.
The research objects Astragalus spp. div., (Fabaceae) and Gloriosa spp. div. (Liliaceae) were
selected firstly because they are known for their anticancer activity, secondly because they
represent two of the largest families respectively in dicots and monocots, and also because
many of the medicinally important plants are rare and endangered. The aim of this review
study is (1) to summarise the ethnobotanical data about their anticancer application, (2) to
highlight the diversity of their secondary metabolites possessing anticancer properties,
(3) to reveal the potential of the in vitro cultures as an alternative way of their production.

2. Materials and Methods

We accessed Web of Science (https://www.webofscience.com/wos/woscc/basic-
search, accessed on 1 January 2022) and PubMed (https://pubmed.ncbi.nlm.nih.gov/
advanced/, accessed on 1 January 2022). A time range of 2018–2022 was set. The following
keywords were used: “Astragalus”, “Gloriosa”, “traditional”, “ethnobotany”, “cancer”,
“secondary metabolites”, “biotechnology”, and “tissue cultures”, alone or in combination.
Some of the revised information is connected with previous research of our work groups
and published before. More than 200 articles were analyzed for this review. Publications
not included in the review are either: (1) found online only as an abstract (without access
to full text); (2) not possible to translate correctly by the authors (articles not in English,
German, Russian, Bulgarian, etc.); or combination of both criteria. Based on those, 43 of the
results given by both databases were rejected (comprising 22% of the results).

3. Results and Discussion
3.1. Characteristics of Target Astragalus Species

The genus Astragalus L. is the largest in the family Fabaceae (syn. Leguminosae),
with more than 3500 species [25]. Astragalus, excluding Astracantha (formerly Astragalus
subgenus Tragacantha), has a world total of ca. 2500 species, of which ca. 500 are in the
Americas [26]. Many of the species have conservation status “vulnerable” or “critically
endangered” [27].

https://www.webofscience.com/wos/woscc/basic-search
https://www.webofscience.com/wos/woscc/basic-search
https://pubmed.ncbi.nlm.nih.gov/advanced/
https://pubmed.ncbi.nlm.nih.gov/advanced/
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3.2. Ethnobotanical Data of Astragalus Species Used against Cancer

Astragalus mongholicus Bunge is the accepted name of A. membranaceus var. mongholi-
cus (Bunge) P.G. Xiao often referred to as A. membranaceu [28] is a key plant in Chinese
Traditional Medicine used mainly as a Qi (Chi) tonic [29,30] but also prescribed against
cancer [30]. A study found that A. membranaceus is an ingredient in 172 of the 200 analyzed
Chinese herbal formulae [31].

In Table 1 are summarized ethnobotanical data of Astragalus species medicinal appli-
cation. Various species have been used in folk medicine as an antihypertensive, diuretic,
anti-inflammatory, emollient, etc. Aerial parts, seeds, fruits, roots, or gum are utilized [32].
For instance, A. glycyphyllos, the herb decoction is administered in Bulgaria as an infusion
in cases of abdominal pain, colic, renal inflammation, menstrual disorders, and sciatica [33].
Both roots and leaves of this plant are used as a diuretic in Italy [34]. In Turkish traditional
medicine, several Astragalus species are used to cure throat diseases, diabetes, cardiac
disorders, toothache, and abdominal pain [35–40], but also against unspecified cancer [41].
The most used herbal drug derived from the genus is Radix Astragali (roots and rhizomes
of A. mongholicus (syn. A. membranaceus). The plant substance is listed in the European
Pharmacopeia [42].

Table 1. Ethnobotanical use of Astragalus species.

Astragalus (Incl. Astracantha) Species Location Health Disorders Reference

Astragalus sp. Turkey Roots cooked with milk for poultice
applied to abdomen [35]

A. amblolepis Fisch Turkey Unspecified cancer [41]

A. abolinii Popov Uzbekistan Kidney disease, hypertension,
burns, demulcent [32]

A. americanus (Hook.) M.E.Jones American countries Stomach pain and flu [32]
A. amherstianus Benth. Pakistan Galactagogue in animals [32]
A. amphioxys A.Gray America countries Rattlesnake bite [32]
A. angustifolius Lam Lebanon Astringent [32]

A. armatus Willd. Algeria Leishmaniasis, helminthiasis [32]
A. brachycalyx Fisch. ex Boiss. Iran Laxative, febrifuge, and digestive [32]
A. brachycalyx Fisch. ex Boiss Turkey Unspecified cancer [41]

A. caucasicus Pall. Turkey Diabetes [40]
A. caucasicus Pall. Caucasus, Georgia Food (tea) [43]

A. canadensis America countries Analgesic [32]
A. camptoceras Bunge Iran Cold [32]

A. cephalotes Banks. & Sol. var.
brevicalyx Eig. Turkey Diabetes, wound healing [37]

A. coluteoides Willd. Lebanon Diabetes and jaundice [32]
A. chamaephaca Freyn Turkey Mouth wounds [39]
A. crassicarpus Nutt. American countries tonic, anticonvulsive and anti-headache [32]

A. creticus Lam. Pakistan Sedative and tonic [32]

A. crenatus Schult. Iran Kidney stone, sedative, arthrodynia,
carminative [32]

A. cruentiflorus Boiss. Lebanon Diabetes and jaundice [32]

A. dasyanthus Pall. Ukraine Cardiovascular insufficiency and
chronic nephritis [44]

A. effusus Bunge Iran Cough [32]

A. fasciculifolius Boiss. Iran Cough, kidney, stomach ache, chest
infection, toothache [32]

A. fischeri Buhse ex Fisch. Iran
Toothache, backache, bone ache, kidney
ache, bone fracture, and diabetes, and

to induce abortion
[32]

A. glaucacanthos Fisch. Iran Tonic, gastric pain, headache [32]
A. globiflorus Boiss. Iran Healing deep infectious wounds [32]
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Table 1. Cont.

Astragalus (Incl. Astracantha) Species Location Health Disorders Reference

A. glycyphyllos L. Bulgaria
Abdominal pain, colic, renal

inflammation, menstrual disorders,
and sciatica

[33]

A. glycyphyllos L. Montenegro Increasing men’s sexual potency [32]

A. glycyphyllos L. Italy Diuretic, kidney ailments, gout,
and rheumatism. [32]

A. gossypinus Fisch. Iran Cough [32]

A. grahamianus Benth. Pakistan Treatment of abscesses and
as an analgesic [32]

A. gummifer Lab. Turkey Throat diseases [36]
A. gummifer Lab. Turkey Diabetes [38]

A. hamosus L. India Nervous system disorders; liver, kidney,
and spleen infection. [32]

A. jolderensis B.Fedtsch. Iran Typhoid and dermal problems [32]
A. lamarckii Boiss. Turkey Ulcer [32]
A. longifolius Lam. Turkey Cardiac disorder, diabetes [38]

A. microcephalus Willd. Turkey Unspecified cancer [41]
A. microcephalus Willd. Iran Asthma, strengthen hair [32]
A. mongholicus Bunge China Qi (Chi) tonic [29,30]
A. mongholicus Bunge China Cancer [45–47]
A. monspessulanus L. Italy Diuretic [32]

A. mucronifolius Boiss. Iran Backache [32]
A. noaeanus Boiss. Turkey Varicosis [32]

A. ovinus Boiss. Iran Stomachache [32]
A. tragalus podolobus Boiss. & Hohen. Iran Abdominal pain [32]

A. psilocentros Fisch. Pakistan Cataract and stomach problems [32]

A. rhizanthus Benth. India Digestive disorders, leucorrhea, and
urinary troubles [32]

A. rubrivenosus Gontsch. Uzbekistan Kidney disease, hypertonic disease,
burns, demulcent [32]

A. sarcocolla Dymock Jordan Incense, pains [32]
A. sieversianus Pall. Iran Menstrual disorders [32]
A. spinosus Muschl. Pakistan To treat wounds [48]

A. thomsonianus Benth. ex Bunge India Gastric troubles, swelling, and joint
pains [32]

A. tmoleus Boiss. Turkey Toothache [32]

A. tribulifolius Bunge India Diuretic agent and to lower kidney
disorders. [32]

A. tribuloides Delile Iran Urinary infection [32]

A. verus Olivier Iran Antiparasitic, antimycotic, and
immunomodulatory activities [32]

A. zanskarensis Bunge India Against worms [32]

3.3. Secondary Metabolites of Astragalus Species Anticancer Properties

In recent years, progress in phytochemical studies has been made on Astragalus species
due to their effects as immunostimulants or anticancer agents [45,47,49–58].

Many Astragalus species contain cycloartane saponins–astragalosides, which are cy-
cloastragenol derivatives. Some saponins isolated from representatives of the genus are
based on an oleanane skeleton [51,53]. The high intake of flavonoids is generally associated
with a reduced risk of neoplasms [59,60]. Over 160 different flavonoids of 90 species of
Astragalus have been isolated and identified as revised previously [52,53]. Polysaccharides
have been shown to play a role in immune modulation. Astraglucanes have been isolated
from roots and rhizomes of A. mongholicus (syn. A. membranaceus) [42] and other species.
The polysaccharide fraction contains highly branched, predominantly 1,3-β-glucans. These
products find their application as an aid in radiation antineoplastic therapy and chemother-
apy, as well as in the treatment and prevention of bacterial and viral infections [61].
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Different Astragalus extracts have been shown to increase resistance to the immuno-
suppressive effects of chemotherapy drugs while stimulating macrophages to produce
interleukin-6 and tumor necrosis factor (TNF). Human clinical trials demonstrated a sub-
stantial increase in survival rates when extracts from Astragalus plants are given to cancer
patients receiving chemo- or radiotherapies. They have also increased IgA, IgC, and inter-
feron production in humans [51]. Astragaloside IV inhibited the development of non-small
cell lung cancer by inhibiting the Akt/GSK-3p/p-catenin signaling pathway. It also in-
creased the expression of Bax (a cell death marker) while decreasing the expression of
Bcl-2 (anti-apoptotic protein). This demonstrates the importance of astragaloside IV as a
potential antitumor agent [62].

A. angustifolius is an endemic Bulgarian species that has been reported to contain
cyclosiversigenin (cycloastragenol), siversigenin (astragenol), and soyasapogenol B [51].
The antiproliferative activity of compounds isolated from A. angustifolius in cervical (HeLa),
human lung (H-446), human colon (HT-29) cancer, and human monocyte lymphoma (U937)
cell lines are examined [63], and only 3-O-[α-L-rhamnopyranosyl-(1→2)-β-D-xylopyranosyl-
(1→2)-β-D-glucuronopyranosyl]-3β,22β,24-trihydroxyolean-12-en-29-oic acid possessed
weak cytotoxicity against HeLa.

Another endemic Bulgarian plant is A. aitosensis which afforded 5,6-dehydro-6-
desoxyastragenol [51], as shown in Table 2.

Recently, a novel and unusual for the genus Astragalus group of compounds, flavoal-
kaloids, is identified in A. monspessulanus subsp. monspessulanus. Before, they were
known only as aglycones (Figure 1). One novel quercetin tetraglycoside and eight known
flavonoids are isolated as well [53]. Also, from the aerial parts of this species, two saponins
are reported [64]. Two rare flavonoids with an unusual hydroxymethylglutaric acid as a
moiety: quercetin-3-O-α-L-rhamnopyranosyl-(1→2)-[6-O-(3-hydroxy-3-methylglutaryl)-
β-D-galactopyranoside and kaempferol-3-O-α-L-rhamnopyranosyl-(1→2)-[6-O-(3-hydroxy-
3-methylglutaryl)-β-D-galactopyranoside are isolated from the aerial parts of A. monspessu-
lanus subsp. illyricus (Figure 1) [65].

Phytochemical investigation of A. glycyphyllos led to the isolation of six saponins,
and their structures are partially elucidated [66,67]. After acid hydrolysis of a saponin
mixture obtained from the aerial parts of the plant, soyasapogenol B and 3β,22β,24-
trihidroxyolean-12-en-19-one are identified [68]. Cycloartane saponins askenoside C and
F [68] and 17(R), 20(R)-3β,6α,16β-trihydroxycycloartanyl-23-carboxylic acid 16-lactone 3-O-
β-D-glucopyranoside are later isolated from the species [69]. Several known flavonoids,
including the rare camelliaside A, are also identified [53,69]. The antineoplastic activity
in vitro of the saponin-containing fractions obtained from wild-grown and cultivated A.
glycyphyllos, respectively, were tested in a panel of human tumor cell lines of different
origin and characteristics. A standard MTT-based protocol for assessing cell viability was
used. Both fractions inhibited tumor cell growth in a dose-dependent manner. However,
according to the calculated IC50 value, the fraction obtained from the in vitro shoot cultures
showed relatively superior cytotoxic activity compared to that of the wild-type species in all
of the screened tumor cell lines (our unpublished data). In vitro cultures of A. glycyphyllos
could be an alternative way to produce saponins, with promising antineoplastic activity.
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Table 2. Notable metabolites from wild and in vitro cultures of targeted species and cytotoxicity of
some on a panel of malignant cells.

Plant Species Type Compounds Isolated Cytotoxicity on Cell Lines
(IC50) References

A. aitosensis callus, suspension cycloartane saponins, sterols,
flavonoids n.d. [51]

aerial pars, wild grown * 5,6-dehydro-6-desoxyastragenol n.d. [51]
A. angustifolius callus, suspension cycloartane saponins, flavonoids n.d. [53]

aerial parts, wild grown *

β-sitosterol, cycloastragenol,
astragenol, soyasapogenol B,

3-O-[α-L-rha-(1→2)-β-D-xyl-(1→2)-
β-D-glc]-3β,22β,24-trihydroxyolean-

12-en-29-oic
acid

n. d.
HeLa (36 µM); HT-29 (50 µM)

[63]
[53]

A. asper aerial parts, wild grown * saponins, flavonoids n.d. [53]

A. boeticus callus, suspension,
hairy roots

saponins, soyasapogenol B,
β-sitosterol, flavonoids n.d. [70]

A. brachycera hairy roots **
shoots ** cycloartane saponins, sterols n.d. [51]

A. canadensis hairy roots cycloartane saponins,
cycloastragenol, astragenol, n.d. [51]
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Table 2. Cont.

Plant Species Type Compounds Isolated Cytotoxicity on Cell Lines
(IC50) References

A. centralpinus aerial parts, wild grown * flavonoids n.d. [53]

A. corniculatus aerial parts, wild grown *** two oleanane type saponins and a
corresponding lactone

Graffi tumour–in vivo, i.p.,
hamsters (50 mg/kg) ***; in vitro

(20 µg/mL) ***
[71]

A. edulis callus quercetin, kaempferol, isorhamnetin,
saponins n.d. [70]

A. englerianus hairy roots cycloartane saponins n.d. [51]
A. falcatus hairy roots cycloartane saponins n.d. [51]

A. glycypyllos
hairy roots **, callus

shoots ***

cycloastragenol, astragenol,
soyasapogenol B

epoxycycloartanes

n.d.
T-24 (125 µg/mL); CAL-29

(90 µg/mL); MJ (75 µg/mL);
HUT-78 (78 µg/mL)

[51]
[53]
[72]

aerial parts, wild grown *** epoxycycloartanes
K-562 (50 µg/mL) ***; HL-60

(40 µg/mL) ***; BV-173
(70 µg/mL) ***

[73]

aerial parts, wild grown *** epoxycycloartanes
T-24 (168 µg/mL); CAL-29

(105 µg/mL); MJ (126 µg/mL);
HUT-78 (87 µg/mL)

[72]

aerial parts, wild grown

17(R),20(R)-3β,6α,16β-
trihydroxycycloartanyl-23-
carboxylic acid 16-lactone
3-O-β-D-glucopyranoside

T-24 (66 µg/mL); CAL-29
(52 µg/mL); MJ (52 µg/mL);

HUT-78 (18 µg/mL)
[74]

A. hamosus
callus, suspension, hairy

roots

saponins, soyasapogenol B,
β-sitosterol, astragalin, rutin,
isorhamnetin-3-O-glycoside

n.d. [53,70]

aerial parts, wild grown *** saponins HL-60 (63 µg/mL); HL-60/Dox
(25 µg/mL); SKW-3 (84 µg/mL) [75]

A. missouriensis Callus **, suspension, hairy
roots

isoquercitrin, quercitrin, rutin,
hyperoside, saponins n.d. [70,71]

A. mongholicus (syn.
A. membranaceus) hairy roots **, shoots ** astragalosides, β-sitosterol,

stigmasterol, campesterol n.d. [51,72]

A. monspessulanus aerial parts, wild grown * flavoalkaloids, acylated flavonoids,
flavonoids n.d. [65]

A. onobrychis aerial parts, wild grown * flavonoids, saponins n.d. [76]
A. oxyglotis hairy roots cycloartane saponins n.d. [51]

A. sesameus Shoots ** - HL-60/Dox (87 µg/mL); SKW-3
(68 µg/mL)

A. spruneri aerial parts, wild grown * flavonoids n.d. [77]
A. sulcatus hairy roots cycloartane saponins, sterols,

swensonine n.d. [51]

A. thracicus callus, suspension saponins, flavonoids n.d. [53]

aerial parts, wild grown * saponins, flavonoids
HT-29 (52 µg/mL); HL-60
(67 µg/mL); HL-60/Dox

(53 µg/mL); SKW-3 (83 µg/mL)
[53]

A. vesicarius ssp.
carniolicus

callus flavonoids HL-60 (8.8 µg/mL) *;
HL-60/Dox (11.8 µg/mL) * [78]

callus

5-hydroxy-7-methoxy-2′,
5′-dihydroxyisoflavone

HL-60 (38.9 µg/mL);
HL-60/Dox (35.2 µg/mL) [78]

5, 7-dihydroxy-4′-methoxyisoflavone HL-60 (41.4 µg/mL);
HL-60/Dox (42.4 µg/mL) [78]

7-methoxy-5-hydroxy-4′-methoxy-
2′-hydroxyisoflavone

HL-60 (64.1 µg/mL);
HL-60/Dox (41.8 µg/mL) [78]

8-pregnyl genistein HL-60 (36.1 µg/mL);
HL-60/Dox (36.1 µg/mL) [78]

5,7-dihydroxy-8-pregnyl-4′-
methoxy-2′-hydroxyisoflavone

HL-60 (56.3 µg/mL);
HL-60/Dox (56.8 µg/mL) [78]

sophorophenolone HL-60 (78.0 µg/mL);
HL-60/Dox (63.0 µg/mL) [78]

G. superba
seeds

colchicoside, colchicine,
3-O-demethylcolchicine

PANC-1, PANC02 (GS ++

0.45–0.59 µg/mL)
PANC02 (GS2B + 9.49 µg/mL)

[79]
[80]

glorioside, colchicodiside A,
gloriodiside, colchicodiside B,

colchicodiside C, dongduengoside
A-C, colchicine, 2-demethilcolchicine,

colchicoside and luteolin
7-O-β-D-glucopyranoside

DLA (29 µg #; 21 µg ##)
[81]
[82]
[83]

rhizomes peptides SW620 (n.d.) [84]
roots colchicine HT-29 (0.12 µg/mL *) [85]

G. rothschildiana aerial parts
gloriosamine A-D, colchicine,
colchiciline, colchifoline and

N-deacetyl-N-formylcolchicine
- [86]

* Extract was tested; ** Extract from this culture was tested; *** Purified saponins’ mixture was tested; + GS2B, colchicine
poor extract; ++ GS, G. superba total extract; # Methanolic extract of G. superba seeds; ## AgNPs; n.d., not defined.
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Three saponins are isolated from A. corniculatus: two of them with an aglycone 3β,21α-
dihydoxyolaean-12-ene-28-oic acid, and the third–with its corresponding lactone [22,87].
A series of studies demonstrated that a purified saponin fraction containing these com-
pounds had a protective effect against the invasiveness of bone marrow carcinoma (Graffi
myeloid tumor) in hamsters. Administration of the saponin mixture increased the number,
migration, and phagocytic index of peritoneal macrophages and blood polymorphonuclear
leukocytes in animals with implanted tumors. Also, due to the hamster treatment with the
mixture, an increased mitogenic response to phytohemagglutinin and lipopolysaccharides
is observed, i.e., the saponins have an immunostimulatory effect [88–90].

Rhamnocitrin 4′-β-D-galactopyranoside and a mixture of two saponins are isolated
from aerial parts of A. hamosus and investigated for antiproliferative activity on SKW-3
cells. Significant apoptosis-induction activity is proved for the saponin mixture compared
to the flavonoid glycoside at equal concentrations. After co-administration of rhamnocitrin
4′-β-D-galactopyranoside, with Cisplatin and Gentamicin, there is significant protection of
human kidney cells HEK-293T against the cytotoxic effects of nephrotoxic drugs [75]. The
same mixture of two saponins is examined on cell lines HL-60, HL-60/Dox, SKW-3, RPMI-
8226, U-266, and OPM-2 [75]. The saponins caused concentration-dependent suppression
of the proliferative activity of malignantly transformed cells. These data are confirmed by
an ELISA test evaluating apoptosis-specific DNA fragmentation. The significance of the
transcription factor NFκB, as well as the mitochondrial protein Bcl-xL for the antitumor
activity of the saponin mixture, is established. Selective cytotoxic activity of saponins in
cell lines originating from breast cancer is demonstrated. The saponin mixture showed
cytotoxicity concerning both cell lines and clearly demonstrated inhibitory properties
against the mitochondrial anti-apoptotic protein Bcl-xL. This gives a reason to believe that
unlocking the internal pathway of apoptosis by suppressing the expression of BclxL is a
part of the mechanism of action of the saponins. Furthermore, the mixture of two saponins
showed no cytotoxic effect on the non-malignant cell line MCF-10A, which originated from
the mammary gland, suggesting that it exhibited selective malignant cell toxicity and may
be the subject of further studies [91].

Data on the phytochemical content as well as the cytotoxic activity of extracts and
purified fractions from wild-grown and in vitro cultivated selected Astragalus species on
notable malignant lines is presented in Table 2. Some structures of the compounds of
interest are shown in Figure 1.

All the data from the phytochemical analysis and the activity suggest that these plants
are valuable as anticancer agents.

3.4. Biotechnology of Astragalus Species

Many in vitro cultures are established not only to increase the production of important
secondary metabolites in selected Astragalus plants but also to preserve the endemic and/or
endangered species. In general, the most investigated species both in phytochemical and
biotechnological means is A. mongholicus (syn A. membranaceus) [92].

3.4.1. Cell Culture

The active substances from wild and field-grown plants usually have different quality
and quantity and vary depending on the environmental conditions. The diseases and the ap-
plication of pesticides further reduce the quality of the plant material. In vitro plant cultures
surmount these problems as environmental conditions affecting the metabolism of plants
can be precisely controlled. Working with tissue cells dramatically decreases preparation
time, processing, and storage costs associated with traditional plant approaches [93]. There
are several advantages to producing secondary metabolites in plant cell culture compared
to in vivo cultivation. Production can be more predictable, reliable, and independent from
unpredictably changing climatic conditions. Isolation of the phytochemical metabolites can
be more rapid and efficient than extraction from the whole plant. Interfering compounds in
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the wild plant can be avoided in tissue cultures. Cell cultures can produce phytochemicals
in large volumes.

Astragalus genus possesses characteristics that make it significant for in vitro cultiva-
tion. Reducing natural supplies due to excessive collection is already present and, therefore,
industrial or consumer interest. Due to their complex structures, saponins, flavonoids, and
polysaccharides are still most efficiently produced by the plants. There are a lot of problems
involved with this production method. Variable qualities and quantities of the plant mate-
rial, plants that need to grow several years before being ready for harvesting (Astragalus
roots), and the over-collecting of some species (A. mongholicus, syn. A. membranaceus), A.
angustifolius, A. missouriensis, A. thracicus, A. aitosensis, etc.) are just a few of the problems
connected with the production of these natural products. Therefore, tissue cultures might
be explored as an alternative production method [7].

3.4.2. Effects of Medium Composition and Growth Regulators

The flavonoid biosynthesis in cell cultures of A. missouriensis and A. angustifolius is
strongly suppressed by 2,4-dichlorophenoxyacetic acid (2,4-D). The higher concentrations
of 2,4-D decreased the content of flavonoids. In this respect, 1-naphthaleneacetic acid (NAA)
is weaker than 2,4-D. Therefore, flavonoid production is inhibited by adding 2,4-D to the
medium. In all tested concentrations of cytokinins, such as 6-benzylaminopurine (BAP) or
kinetin (Kn), under the light cultivation regimen, induction of flavonoid production in cell
suspension cultures is achieved. Kinetin was found to be the most effective. The sucrose
levels of the medium have a tremendous impact on saponins production. The growth
and the saponins production are favored by the higher concentrations of sucrose. The
investigation was carried out on A. membranaceus hairy roots cultures (HR) with different
concentrations of sucrose in the MS medium. A basic MS medium supplemented with
2% sucrose increases overall saponins yield but inhibits the growth of HR. The growth of
Astragalus-HR is promoted by high concentration (6%), but the yield of saponins remains
very low. The optimal medium for both yield and growth is supplemented with 4%
sucrose [94].

3.4.3. Effects of End-Product Inhibition

Because phytosterols (campesterol, stigmasterol, and β-sitosterol) are present in the
hairy roots of Astragalus species, the effect on the total saponin production of these sub-
stances is examined. Since the biosynthetic route of saponins and that of phytosterols are
branched at 2,3-epoxyscvalen, it may be possible to increase the production of saponins by
end-product inhibition. In the experiments, contents of saponins after adding 0.2 mg/mL
of β-sitosterol in MS liquid medium without ammonium nitrate are examined at differ-
ent stages of growth. The saponin content (total saponins) in the hairy roots induced by
Agrobacterium rhizogenes LBA 9402 reached 5.25% of dry wt on day 28 of cultivation. When
β-sitosterol is added to the culture media of these hairy roots, astragaloside production is
remarkably increased to 7.13% of dry wt and led to an increase of 36% of the total saponin
content in comparison with the control. From these data, β-sitosterol seems to behave as an
inhibitor in the biosynthetic route when the amount added is relatively large. These results
prove that the hairy root cultures of Astragalus mongholicus can be a valuable alternative
for overproducing cycloartane saponins compared with the whole plant. Using a selected
high productive clone, inducing by Agrobacterium rhizogenes LBA 9402, optimized culture
medium (MS without ammonium nitrate), and end-product inhibition, a relatively high
saponin production can be achieved [94,95].

3.4.4. Genetic Transformation of Astragalus Species by Agrobacterium Rhizogenes

In a specific soil, A. rhizogenes can induce a certain type of “hairy roots” culture, which
can be maintained without phytohormones in the medium [96]. Usually, four different
bacterial strains are used—TR 105, R 1601, ATCC 15834, and LBA 9402. With the same
Agrobacterium strain, the susceptibility of Astragalus species to infection is highly variable.
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Some species of the genus (A. membranaceus, A. mongholicus, A. monspessulanus) have more
difficulties establishing transformed roots. In some plants (A. englerianus, A. mongholicus, A.
missouriensis, A. sulcatus), a callus is formed initially, and transformed roots subsequently
emerge from it. Still, in others (A. glycyphyllos, A. hamosus, A. boeticus), a profusion of roots
appear directly at the site of inoculation [70].

3.4.5. In Vitro Production of Secondary Metabolite

Optimization of cultures and production conditions has been achieved to produce
flavonoids from cell cultures of different Astragalus species: A. monspessulanus, A. aitosensis,
A. missouriensis, A. edulis, A. hamosus, and A. angustifolius [53,65]. Flavonoids within complex
plant tissues can be more difficult to separate in an intact polymeric form than cell culture-
derived flavonoids. A novel vehicle for depth investigation of flavonoids individually
represents the production of these compounds in uniform plant-cell culture systems.

All in vitro cultures of A. missouriensis and A. angustifolius produced flavonoids.
Quercetin is the main aglycone identified in the in vitro cell suspension in both free
and bound forms (as glycosides). The main flavonoid glycosides are isoquercitrine and
quercitrine. Rutin and hyperoside have also been detected. The maximum total amount of
flavonoids, 1.78% for A. angustifolius (unpublished results) and 1.34% for A. missouriensis, is
achieved after optimization of the production medium [97].

Different types of in vitro culture lines of A. monspessulanus subsp. monspessulanus, na-
tive to Bulgaria are established, i.e., shoots, callus, and suspension. Significant differences in
the flavonoid content are observed. In suspension cultures, callus, and shoot cultures, small
amounts of flavonoids are quantified in comparison to wild overground parts, in which,
among other flavonoids, the rare flavonoid alcesefoliside is found [98]. In vitro cultivated
A. hamosus afforded astragalin and isoquercitrin [53]. Five isoflavonoids such as 5-hydroxy-
7-methoxy-2′, 5′-dihydroxyisoflavone, 5, 7-dihydroxy-4′-methoxyisoflavone, 7-methoxy-5-
hydroxy-4′-methoxy-2′-hydroxyisoflavone, 8-pregnyl genistein, 5,7-dihydroxy-8-pregnyl-
4′-methoxy-2′-hydroxyisoflavone and one coumarochromone–sophorophenolone are iso-
lated from ethylacetate fraction of in vitro callus cultures of Astragalus vesicarius ssp. carnioli-
cus, after enzymatic hydrolysis with β-glucosidase and investigated for antiproliferative
activity against chemosensitive human promyelocyte cell line HL-60 and its multidrug-
resistant variant HL-60/Dox (Table 2). Despite the strong activity of the ethylacetate
fraction, prenylated compound 8-pregnyl genistein also showed antiproliferative activ-
ity [78].

The fast growth of the biomass, as well as relatively high saponin production, can
be achieved through the HR cultures of A. mongholicus. These produced cycloastragenol-
saponins: astragalosides I-III [80,99]. Part of the saponin products (about 16–20% of the total
saponin) produced by HR cultures of Astragalus spp. is released into the medium, essential
to establish continuous saponin production. Heterogenous acid hydrolysis of the total
mixture of saponins isolated from selected HR of A. membranaceus yielded three aglycones:
astragenol, cycloastragenol, and soyasapogenol B. In vitro cultivation of A. hamosus and
the latter phytochemical analysis of the cultures established (Table 2) revealed the presence
of soyasapogenol A [51]. In vitro callus, shoot, and suspension cultures of A. glycyphyllos
are developed when cultivated on MS, as well as using modified media (supplemented
with various concentrations and combinations of plant hormones). Compared to the wild-
grown species, in vitro shoot cultures accumulated double the amount of the main saponin
(our unpublished data). Among them, Astragaloside (AG) IV has a tremendous interest
due to its health benefits as antitumor, cardioprotective, antiviral, hepatoprotective, im-
munoregulatory anti-inflammatory, antidiabetic, and neuroprotective activities [51,52,81].
Due to the complicated stereochemical ring, the chemical synthesis of AG IV is difficult
and commercially infeasible A. membranaceus hairy root cultures (AMHRCs) are developed
as a biotechnology system that can supersede field-grown plants for the production of
AGs [100]. However, the quantity of AG IV in AMHRCs is still low-0.02% dry weight
(DW). The microbial biotransformation has been recognized to be superior to conventional
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chemical procedures for producing AG IV, owing to its high catalytic efficiency, inherent
selectivity, low cost, and simple downstream processing [83,84]. There are many materials
concerning fungus-mediated biocatalysis [83,85–87]. An elicitation effect of immobilized
Prunus canescens (IPC) has been reported for in vitro cultures of plants [101]. The microor-
ganisms have taken on greater significance in producing pharmaceuticals, chemicals, and
food ingredients [89,90,102]. The fungi, especially the fungal endophytes, are a source
of novel biocatalysts with numerous applications [103]. Currently, an ideal method in
biotransformation procedures for producing biologically active substances represents the
immobilization of microorganisms by Ca-alginate gel (CAG) [83,93–95]. Except through
microorganisms’ biotransformation of exogenous substrates such as quercetin, kaempferol,
and apigenin is achieved via suspension cultures of Astragalus vesicarius ssp. carniolicus.
Respective mono-O-glycosylated derivatives are detected by ultra-high performance liquid
chromatography-high resolution electrospray ionization mass spectrometry (UHPLC-HR-
ESI-MS) analysis [104]. Suspension cultures of A. glycyphyllos was evaluated for possible
increase in flavonoid production when treated with exogenous quercetin. Suspensions cul-
tures, cultivated on modified G48 medium [105] supplemented with 10, 20 and 30 mg/mL
quercetin achieved higher total flavonoid content (0.09, 0.10 and 0.13 mg/mg DW). In addi-
tion, biotransformation of quercetin to isoquercitrin is achieved. The highest concentration
of isoquercitrin (56.73 ng/mg DW) was observed on suspensions cultures cultivated on a
modified G48 medium supplemented with 20 mg/mL quercetin [106].

Many research groups have investigated the hairy root cultures of A. mongholicus [96,98,107]
since the first report on HR Astragalus cultures [70]. Through the genetic transformation of
A. rhizogenes, LBA9402 successfully induced eight A. membranaceus hairy root lines (I–VIII).
The various AMHRCs lines showed variations in the contents of the astragalosides and
isoflavonoids accumulation [100].

A. membranaceus field-grown roots (3-year-old) can produce 2.4 mg/g DW of total AG,
while the hairy roots cultures of A. membranaceus can produce a higher amount (2.7 mg/g
DW). The genes RolB and RolC from the plasmidic Ri-DNA of A. rhizogenes are responsible
for the induction of AG accumulation in AMHRCs. However, for further promoting AG
production in AMHRCs, there is a possibility to exploit external elicitations. There are
several advantages of elicitation to induce/enhance the biosynthesis of secondary plant
metabolites. Methyl jasmonate (MJ), salicylic acid (SA), and acetylsalicylic acid (ASA)
are individually applied to AMHRCs to find the best elicitor for AG production. The
quantity of AG increased in the range of 3.0–4.9 mg/g DW when MJ, SA, and ASA were
individually fed to 34-day-old AMHRCs at 100 µM. The quantity of AG in non-treated
control is 2.6 mg/g DW and 2.7 mg/g DW in ethanol-treated control. In terms of applying
the three elicitors, the AG yield decreased in the following order MJ (4.9 ± 0.11 mg/g DW)
> ASA (3.8 ± 0.08 mg/g DW) > SA (3.0 ± 0.15 mg/g DW). Therefore, the highest AG yield
is achieved by elicitation with MJ [107].

The effect of elicitors depends on the elicitation doses [108]. Different types of UV
elicitation treatments have been investigated [100,101,103–126].

3.5. Characteristics of Target Gloriosa Species

Genus Gloriosa (Liliaceae) includes 12 species and, despite its taxonomic complication,
was found to be monophyletic [127]. Few of them are of commercial, pharmaceutical, or
ethnobotanical interest.

3.5.1. Ethnobotaical Data of Gloriosa Species Used against Cancer

Gloriosa superba is one of the plants used as an antidote against snakebite in the
Southern part of Tamilnadu, India [128], and several drops of extract of this plant are
rubbed onto the cuts and wounds in Rajouri and Poonch districts of Jammu and Kashmir,
India [129]. It has wide application in folk medicine in tropical Africa and Asia, such as
abdominal and general pain, anthelminthic and antiparasitic, leprosy, leucorrhea, mental
illness, skin diseases, ulcers, etc. [130]. But also, in traditional applications in Asia and
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Africa, in addition to diseases such as gout, scrofula, antipyretic, anthelmintic, purgative,
and antiabortive activity, anticancer use is indicated [131]. This activity is well confirmed
in recent pharmacological tests against pancreatic cancer [79], colon cancer [84], and other
cancer cells [132]. Due to the boom in harvesting and export trade, some populations of
G. superba are on the edge of extinction [127].

3.5.2. Secondary Metabolites of Gloriosa Species with Anticancer Properties

The main secondary metabolite is colchicine, which has anticancer activity but its
toxicity profile is not acceptable. Several studies suggested the cytotoxic activity of semisyn-
thetic derivatives of colchicine and thiocolchicoside; thus, the reported IC50 values have
no relevance to naturally occurring tropolones [133–136]. Gene expression, as well as
cytotoxic effects of colchicine in human gastric cancer ASG and NCI-N87 cell lines, are
evaluated. It was found that only 6 ng/mL of colchicine had the desired antiproliferative
effect on both lines. Interestingly, the gene regulation of those cells is affected in the same
manner as the stated concentration leading to apoptosis [137]. Despite this compound,
the interesting colchicinoids such as gloriosamine A-D are isolated from the aerial part of
G. rothschildiana [86].

Nowadays, the focus on G. superba is also due to the presence of glycosylated colchicine
derivatives, especially colchicoside, which is considered ten times less toxic than colchicine,
as shown in Table 2 [79]. Recently, four novel colchicinoids named N-deacetyl-N-formyl-3-de-
O-methylcolchicine-3-O-β-D-glucopyranoside (glorioside), 3-de-O-methylcolchicine-3-O-β-D-
glucopyranosyl-(1→6)-3-O-β-D-glucopyranoside (colchicodiside A), N-deacetyl-N-formyl-3-
de-O-methylcolchicine-3-O-β-D-glucopyranosyl-(1→6)-3-O-β-D-glucopyranoside (gloriodi-
side) and 3-de-O-methylcolchicine-3-O-β-D-glucopyranosyl-(1→3)-3-O-β-D-glucopyranoside
(colchicodiside B) are isolated from the seeds of the species [81]. Also, from a seedless pot of
Thai origin, G. superba was identified in novel glycosylated colchicinoids–dongduengoside A-C,
and colchicine, 2-demethilcolchicine, colchicoside, and luteolin 7-O-β-D-glucopyranoside [82].
Some colchicinoids are obtained using biotechnological approaches. Riva et al. (1997) describe
that β-1,4-galactosyltransferase catalyzes galactosylation of colchicoside, and Pišvejcová et al.
(2006) describe the influence of various parameters on the activity of β-1,4-galactosyltransferase
derived from beef milk and the optimization of the conditions leading to the preparation of
galactosylate and glycosylated colchicoside derivatives [138,139].

Within a survival experiment carried out in a murine model of pancreatic adenocarci-
noma induced by PANC02 cells and the semi-long-term toxicity, slightly longer survival
is observed for the group treated with colchicoside rich extract (GS2B) containing 0.07%
colchicine, 2.26% colchicoside and 0.46% 3-O-demethylcolchicine. In contrast, combina-
tory treatment of total seed extract of G. superba (GS) with gemcitabine demonstrates a
significant effect on tumor growth [80]. Among 23 selected plants from the Thai/Lanna
medicinal database “MANOSROI III” frequently used in the anticancer recipes, methano-
lic extracts of G. superba roots demonstrated the highest antiproliferative activity against
colon cancer cell line (HT-29) (Table 2). Significantly higher, dose-dependent apoptotic
morphological changes on HT-29 cancer cells at a concentration of 50 µg/mL are observed
for methanol extract and the hexane, methanol-water, and n-butanol fractions obtained
therefrom when compared to cisplatin and doxorubicin [85]. Methanolic extract of G.
superba seeds is employed in forming silver nanoparticles (AgNPs) with reduced toxic-
ity [140]. Thus, the anticancer properties of G. superba seeds methanolic extract and AgNPs
are studied against dalton lymphoma ascites (DLA) cells (Table 2). Using the rhizome
extract of G. superba, biomolecule-coated nanotitania catalysts were synthesized, which
showed an IC50 value of 46.64 µg/mL MCF-7 cancer cell line compared with L929 normal
cells (IC50 61.81 µg/mL) [141]. In addition, in vivo study with DLA tumor-bearing mice
demonstrated an increased survival rate from 20 days without treatment up to 72 days
when seed extract was administered and 75 days for AgNPs treated group, respectively.
Despite the undisputed activity of the phenethylisoquinoline alkaloids, major secondary
metabolites, and also peptides obtained from the rhizome of G. superba are investigated
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against colon cancer [84]. In vivo study suggests that ethanol leaf extract of G. superba
contains phytochemicals that can induce apoptosis via mitochondrial permeability tran-
sition pore opening and protect against monosodium glutamate-induced hepato-cellular
injury and proliferative disorder in prostate and uterus [142]. Partially purified protein
hydrolysate (30 ng/mL) significantly inhibited viability (by 40%) of SW620 human colon
cancer cells and induced apoptosis by the up-regulation of p53 and down-regulation of
NF-kB, considered potential targets for anticancer therapy.

3.5.3. Biotechnology of Gloriosa Species

The medicinal interest in G. superba and its nonstop over-exploitation are the main
reasons to apply in vitro techniques for the conservation, production, and enhancement
of secondary metabolites. The species has a very low rate of seed germination as well as
seed production is quite low and uneconomical. One of the problems with commercial
cultivation is the poor viability of the seeds [143]. Four or five vegetative cycles are neces-
sary for the complete reproductive phase [144]. Commercially these plants are propagated
using daughter corms with a week multiplication ratio (1:1), slow and insufficient for
conservation of this species [145]. Thus, in vitro cultivation is needed to conserve this
taxon, otherwise we will lose it by 2020 [146]. Plant biotechnological approaches, such
as in vitro mass multiplication, have been taken for the conservation, and various meth-
ods and techniques have been studied for the production and enhancement of secondary
metabolites. An efficient protocol is established for in vitro micro-propagation using corm
bud explant [147]. Extracts from buds inoculated at MS medium supplemented with
different concentrations of 2,4-D (1.0–10.0 mg/L) and IAA (0.5–5.0 mg/L) indicated that
higher concentrations of 2,4-D and IAA reduce the callus induction. The shoot initiation
depends on the combination of cytokinins. Most shoots are obtained in the presence of
9.84 µM 2iP combined with 4.64 µM Kin after 21-day culturing. Sivakumar et al. (2019)
developed an efficient protocol for in vitro mass propagation of G. superba using callus
derived from non-dormant corm buds [148]. Medium supplemented with a combination
of plant growth regulators such as BAP (1.5 mg/L), NAA (0.6 mg/L), and polyamine
putrescine (15 mg/L) as secondary messengers in signaling pathways, induced maximum
shoot buds (87.5). Within this study, optimal seed germination of 86% is also achieved
when seeds are treated with 70% sulphuric acid for 2 min. Mahendran et al. (2018) initiated
cell suspension cultures of G. superba with a callus derived from rhizomes cultivated on MS
medium supplemented with 2.0 mg/L, 2,4-D, and 0.5 mg/L NAA [149].

Despite the general advantages which make the plant cell suspension cultures suitable
for the production of secondary metabolites, using classical fermentation technology the
opportunity to scale up for bigger manufacturing and regulatory requirements following
established once for microbial and mammalian cells, plant cell suspension can serve as
tools for biotransformation of foreign substrates. Biotransformation is in vitro tissue culture
technique used for commercial exploitation of secondary metabolites in which chemical
conversions of an exogenously supplied substance are catalyzed by microorganisms, cells,
or their enzymes, including oxidation, reduction, hydroxylation, esterification, hydrolysis,
methylation, glycosylation, etc. Biotransformation of colchicinoids into their 3-O-glucosyl
derivatives using Bacillus megaterium is reported [150]. In vitro glycosylation of colchicine
to its 3-O-demethylglucoside has been investigated with different modern biotechnology
tools, especially using selected microbial strains such as Bacillus aryabhattai [151]. Only
non-selective demethylation of colchicine has been obtained using a Colchicum variegatum
culture yielding a mixture of 3-demethylcolchicine and 2-demethylcolchicine [152]. Regio-
specific demethylation at the C-3 position of colchicine has been achieved when using
selected bacterial microorganisms [152]. Glycosylation of exogenous thiocolchicine by plant
cell suspension cultures of Centella asiatica resulted in monoglycosydated derivatives at C-2
and at C-3 of the aromatic ring, which is not highly selective biotransformation [153]. Zarev
et al. (2018) achieved region-specifically demethylation of the C-3 methoxy group bound to
the aromatic ring A of the colchicine, and subsequent glycosylation of the demethylated
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derivative at the same site, using plant suspension cultures of A. vesicarius, which normally
do not produce tropolone type of alkaloids. Thus, quantitative HPLC-UV analysis showed
two times fold increase in colchicoside yield of 9.35 µmol/g DW when compared to its
natural source, G. superba seeds, 4.26 µmol/g [154].

Using modern biotechnology, Sivakumar et al. (2019) reached concentrations of
colchicine (2.65 µg/mL, 3.56 µg/mL, and 5.69 µg/mL) within the methanolic extract of
in vitro treated leaf samples with spermidine, spermine, and putrescine, resp. [148]. The
obtained amount of colchicine is much higher when compared to the leaf samples from
field-grown plants (2.41 µg/mL). Among four elicitors tested to cell suspension cultures
of G. superba, casein hydrolysate (CH) exhibited the maximum level of colchicine pro-
duction [8.290 mg/g dry weight (DW)] at 300 mg/L concentration for 15 days’ exposure,
while after 30 days’ exposure salicylic acid (SA) at 27.62 mg/L concentration showed an
enhanced colchicine production rate (8.149 mg/g DW), when compared to non-elicited
control cultures. Treatment for 15- and 30-days with 200 and 300 mg/L AgNO3 resulted
in thiocolchicoside content in a cell suspension culture of 4.55 mg/g DW and 1.53 mg/g
DW, respectively [149]. The highest colchicine content (0.29%) in the tubers of microprop-
agated plantlets raised from non-dormant tuber explants is achieved when combinatory
treatment of Glomus mosseae and Acaulospora laevis arbuscular mycorrhizal fungi strains
is applied [155]. Also, random amplified polymorphic DNA (RAPD) and inter simple
sequence repeat (ISSR) profiles of micropropagated plants of G. superba is compared to
evaluate the possible somaclonal variations [156]. The homogeneity of the micropropa-
gated plants is proved as amplification products showed similar banding patterns to that
of non-dormant tuber explants.

4. Conclusions

In this review, we summarize the research efforts made in recent years concerning
the secondary cytotoxic metabolites obtained from plant species belonging to the genera
Astragalus L. and Gloriosa L., many of them with conservational status. Our integrative
approach bonds phytochemistry with cancer therapy, offering a possible supply of valuable
metabolites without contributing to the global biodiversity loss. The biotechnological
production of some of the molecules in plant cell and tissue cultures obtained of the studied
species preserves the wild populations of the rare ones. This way of production of the
target compounds, such as isoflavonoids, saponins, etc., detected with UHPLC-HR-ESI-MS
is promising and prospective as often the quantity of the desired metabolites exceeds many
times that in native plants. We believe that cell cultures of species from Astragalus L. and
Gloriosa L. as a source of biologically active anticancer compounds could one day play a role
in large-scale processes. However, this review has only the aim of combining information to
date. It could be the basis for future research on these valuable compounds and their in vitro
production. Of course, a single report on the possibility of biotechnological production of a
molecule is not enough for its practical production. Our findings are only a preliminary
step in biotechnological production. Implications for further research are the aspects of
automation, large-scale production, the stability of the reported culture itself, as well as
cost-effectiveness, which are in the major part missing in most of the sources.
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