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3Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey, Mexico

Correspondence should be addressed to E. Garza-González; elvira_garza_gzz@yahoo.com
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From 20 to 30% of Clostridioides (Clostridium) difficile infection (CDI), patients might develop recurrence of the infection (RCDI)
and, after the first recurrence, the risk of further episodes increases up to 60%. Several bacterial virulence factors have been
associated with RCDI, including the elevated production of toxins A and B, the presence of a binary toxin CDT, and mutations in
the negative regulator of toxin expression, tcdC. Additional factors have shown to regulate toxin production and virulence in C.
difficile in RCDI, including the accessory-gene regulator agr, which acts as a positive switch for toxin transcription. Furthermore,
adhesion and motility-associated factors, such as Cwp84, SlpA, and flagella, have shown to increase the adhesion efficiency to host
epithelia, cell internalization, and the formation of biofilm. Finally, biofilm confers to C. difficile protection from antibiotics and
acts as a reservoir for spores that allow the persistence of the infection in the host. In this review, we describe the key virulence
factors of C. difficile that have been associated with recurrent infections.

1. Introduction

Clostridioides (Clostridium) difficile infection (CDI) is the
leading cause of healthcare-associated diarrhea worldwide.
In 2011, increased CDI was reported in the United States by
the Centers for Disease Control with an estimated 453 000
infections (83 000 had at least one recurrence) and 29 000
deaths [1].

CDI severity has increased in the last decade with
outbreaks in the United States, Canada, the United King-
dom, Western Europe, Japan, Korea, China, Hong Kong,
and some countries of Latin America. This increased severity
has been coincident with the spread of the epidemic strain
designated as North American Pulsed (NAP)-field type 01,
restriction endonuclease analysis (REA) as group BI, (BI/
RT-027/BI), and polymerase chain reaction (PCR) ribotype
(RT) 027 (NAP1/BI/027) [2–8].

From 2008 to 2014, CDI cases declined considerably in
the United Kingdom, from 55,498 to 13,361, as a result of a
surveillance scheme implemented by the National Health
Service, including antibiotic stewardship, improvement
protocols for infection control in hospitals, and the creation
of the C. difficile ribotyping network in aims to prevent CDI
transmission and control epidemic strains [9–13].

However, CDI is not only of worldwide concern due to
ribotype 027 but also due to the emergence of other virulent
strains, including ribotypes 027, 078, 001, 176, 020, 002, and
106, in many populations [1, 14–17].

2. Recurrence of CDI

Primary CDI is predominantly treated with standard an-
tibiotic therapy, including metronidazole, vancomycin, and
fidaxomicin, the more recently FDA-approved drug,
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depending on severity [18]. Nevertheless, 20–35% of pa-
tients may develop the recurrence of symptoms, which is
defined as a recurrent infection (RCDI) [19–23]. After the
first recurrent episode, patients are more likely to have
subsequent recurrences, and by the third episode, risk of
recurrence can reach 60% [24, 25]. Several studies have
evaluated administration of fidaxomicin versus vancomy-
cin and metronidazole for RCDI patients, with lower re-
current episodes and fewer deaths for fidaxomicin
[18, 26, 27].

3. Relapse and Reinfection

RCDI may occur due to relapse, defined as the persistence of
the same strain causing the initial infection, or reinfection,
defined as the acquisition of a genotypically distinct C.
difficile strain from an exogenous source [28]. Furthermore,
patients with ribotype 027 strains present a higher risk of
relapse than those with other ribotypes [7].

4. Ribotypes Associated with Relapse
or Reinfection

The glycosylating toxins, toxin A (TcdA) and toxin B (TcdB),
are primarily responsible for the symptoms associated with
CDI and are the key mediators of pathogenesis [29]. These

toxins have been shown to bind to the cell surface and
translocate to the cytosol of the host epithelial cells where
they glycosylate and inactivate important GTPases (in-
cluding Rho, Rac, and Cdc42), leading to actin cytoskeleton
alternations, cell rounding, apoptosis, and cell death [30, 31].

Several studies have shown elevated sporulation rates
in epidemic strains, including the hypervirulent NAP1/BI/
027 strain [32]. Also, these strains have been found to
contain increased levels of toxins, which are associated
with deletions in the toxin negative regulator tcdC (18 bp
and 39 bp deletions for the 027 and 078 strains, respec-
tively) in in vitro models [33, 34]. However, in more
complex models, the 027 strain has been shown to have a
longer growth cycle, where toxin production starts slightly
earlier than that of other strains, and toxins tend to ac-
cumulate [35, 36].

HypervirulentC. difficile also produces a third toxin called
binary C. difficile toxin (CDT). CDT is a transferase that can
irreversibly ADP-ribosylate actin and promote disruption of
the actin cytoskeleton [31]. The presence of CDT and mu-
tations in tcdC increases the risk of RCDI (odds ratio (OR),
5.3; 95% confidence interval (CI), 3.52–6.09) (Table 1) [2, 64].

RCDI is more frequent in patients infected with the 027
strain than in those infected with non-027 strains
(P< 0.001). Besides, the clinical cure rate has been reported
to be lower in 027-infected patients than in those with non-

Table 1: Summary of presumptive virulence factors associated with recurrent C. difficile infections.

Factor Mechanism/function Risk/association Source

tcdC and binary toxin Production of elevated toxin A and B
levels in hypervirulent strains

Increased pathogenicity in vivo and in
vitro [37]

agr1 locus (accessory-gene
regulator)

Positive regulation of toxin A and toxin B
production, independent of tcdC

Regulation of virulence, associated with
increased colonization [38–41]

Biofilm

Survival niche of C. difficile with
multispecies communities

Accumulation of toxins and biomass in
variant strains regulated by quorum

sensing

Long persistence/protection of C. difficile [36, 42–46]

Accumulation of spores Reduced susceptibility to antibiotics [45, 47]

SlpA (S-layer protein A)
Presence and low molecular weight
subunits with sequence variability in

hypervirulent strains
Increased adhesion to gut mucosa [48–52]

Cwp84 (cell wall protein 84)

Cleavage of adhesins, such as SlpA, for the
paracrystalline layer assembly

Release and dissemination of C. difficile in
the host [49, 52]

Degradation of several extracellular
matrix proteins (fibronectin, laminin,

vitronectin)
Increase adhesion and colonization [48, 49, 53]

Production of thicker biofilm in strains
with high proteolytic activity associated to

Cwp84

Enhanced virulence and host-pathogen
adherence; maintenance of CDI [54, 55]

Flagella
Presence of posttranscriptional

modifications in flagellin and flagellar cap
proteins

Increased biofilm, adherence, and cell
internalization, associated with efficient

colonization in vivo
[42, 56, 57] [58]

Spores

Development of structural morphotypes
of outermost exosporium layers (thin or

thick)

Associated to host-spore interactions,
dfferences in affinity to epithelial cells [12, 45, 59, 60]

Expression of the sporulating regulator
spo0A is associated with high spore
production and biofilm formation

Transmission of CDI and maintenance of
C. difficile in the host, despite the

antibiotic treatment
[42, 45, 59, 61–63]
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027 infections when treated with fidaxomicin (P � 0.007) or
vancomycin (P � 0.02) [3].

5. Antibody Response to Toxin A

In several studies, the immune response to toxins A and B
has been described, with higher titers of immunoglobulins
IgG antitoxin A in asymptomatic carriers than noncarriers,
and higher titers of IgG and IgM against toxin A and toxin B,
but regression analysis showed significance for recurrent
infection and low antitoxin A for 027 and primarily for all
types with patients with little antitoxin B (P � 0.02) [65, 66].

Patients with a single episode of CDI had higher con-
centrations of serum IgM against toxin A on day 3 of initial
CDI than those with RCDI (n� 22; P � 0.004). On day 12,
patients who had a single episode of diarrhea (n� 7) had
higher serum IgG values against toxin A than those with
RCDI (n� 9; p � 0.009). IgG response to toxin A (12 days
after onset of CDI) during an initial episode confers pro-
tection against recurrence (OR, 48.0; 95% CI, 3.5–663) [25].
Nevertheless, CDI patients who received neutralizing anti-
bodies against toxin A showed no difference in the frequency
of recurrence in comparison with CDI patients receiving
placebo (17% and 18%, respectively, P�NS) [67].

6. Biofilm Production

Bacterial biofilms are associated with antimicrobial resis-
tance, act as a survival niche, and protect bacteria, which can
be in a dormant form with prolonged growth rates deep
within the biofilm structure. Biofilms have been reported for
several Clostridium species, including C. perfringens, C.
thermocellum, and C. acetobutylicum [68, 69]. Similarly, C.
difficile growth has shown well-organized communities on
abiotic surfaces and well-structured biofilms in vitro and in
vivo [42, 61, 70], with differences in the level of biofilm
production between some strains in monoculture biofilms
[42, 71]. In addition, a range of studies has characterized the
supernatant and the polymeric composition and architec-
ture of the biofilm matrix in in vivo and in vitro models,
which is composed of extracellular DNA, polysaccharides,
and proteins similar to B. subtilis biofilm [42, 54, 61, 72].

Notably, in a chemostat gut model, C. difficile (vegetative
and spore forms) has been shown to participate in multispecies
communities forming a robust biofilm that accumulates toxins.
In addition, this biofilm is a potential reservoir for the rees-
tablishment of C. difficile after primary antimicrobial therapy
has finished, when gut levels of antimicrobials are at sub-
minimal inhibitory concentration [36, 43, 44]. Furthermore,
the biofilm matrix showed a preferential localization of spores
that have a higher resistance to some antibiotics (metronidazole
and vancomycin) (Table 1). Taken together, these observations
may explain the long-term persistence of strains involved in
primary and/or recurrent CDI [42, 45].

7. Regulation by Quorum Sensing

Quorum sensing (QS) is the regulation of gene expression of
virulence factors (biofilm production, attachment, motility,

toxin production, and sporulation) in response to envi-
ronmental changes due to cell-to-cell communication. It is
mediated by small diffuse molecules known as autoinducers
produced by individual bacteria. The level of autoinducers is
cell-density dependent: when the density is high, auto-
inducers are detected by other bacteria, enabling them to
coordinate physiological activities [38, 73, 74].

Orthologues of the accessory-gene regulator (Agr)
ACDB, the global regulatory locus that encodes AgrA, have
been found within the genome of most C. difficile isolates,
including the hypervirulent strain 027/BI/NAP1. AgrA has
critical roles in controlling gene expression and enhancing
the production of colonization factors and exoproteins es-
sential for the pathogenic process [38, 39]. Furthermore, it is
the transcriptional regulator of the best-understood QS
system in Gram-positive bacteria, including Staphylococcus
aureus [39].

C. difficile production of toxins A and B are controlled by
an Agr-quorum signaling system mediated through a small
thiolactone that can be detected in stools of CDI patients
[40]. Some strains encode two Agr loci in their genomes (ag1
and agr2), with the first being present in all strains and the
second being present in a few strains. It has been shown that
the agr1 mutant cannot produce both toxins and that toxin
production can be restored with the wild type agr1. Fur-
thermore, it has been demonstrated that the agr1mutant can
colonize but cannot cause disease in a murine CDI model
(Table 1) [39, 75].

8. Sporulation and Germination

Another key virulence factor involved in C. difficile path-
ogenesis and colonization is spore production, with dif-
ferences in germination rates being lower in spores from
biofilm than those from a vegetative culture [45]. Spore
production is mediated by the master regulator of the
sporulation pathway (spo0A). In mice infected with spor-
ulating and nonsporulating C. difficile strains (spo0A mu-
tants), no recurrence of CDI was found after vancomycin
treatment, and the spo0A mutant infection was not trans-
missible between hosts [59]. Spo0A mutants are associated
with defective biofilm formation and low sporulation in
biofilms (0.0001%), suggesting an essential link between
Spo0A and biofilm production, such as that seen in Bacillus
subtilis [42, 61, 62].

The production and accumulation of spores within
C. difficile biofilms are likely to be significantly associated
with RCDI, with further germination of vegetative toxin-
producing cells after cessation of antibiotic therapy. Meta-
bolically dormant spore forms can protect C. difficile from
adverse conditions, such as nutrient starvation, antimicro-
bial agents, disinfectants, heat, and desiccation, and help the
bacteria survive attacks of phagocytic cells [76]. Further-
more, antibiotic treatment triggers the excretion of higher
sporulation of C. difficile in mice. Therefore, in most cases,
when antibiotic therapy is stopped, a recovery occurs and the
super-shedder state of C. difficile is suppressed [77].

A novel exosporial layer has been found in spores from
biofilms, composed of fine fibers and darkly staining
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granules. This layer is surrounded by a thin layer and is
acquired after mother cell lysis; it has been found in 027
strains associated with multiple recurrent episodes of CDI
(Table 1) [45, 59, 60]. The specific role of these structural
differences of the exosporium in spores is not clear. A
previous study showed that the C. difficile R20291 strain
(RT-027) showed higher affinity to the host cell membrane
and microvilli of intestinal epithelial cells [78], suggesting
that the differences in composition of the exosporium of
C. difficile spores might regulate the adherence to intestinal
cells of the host (Table 1) [78–80]. Additional studies are
needed to determine the role of the structural properties of
the C. difficile layer and spore exosporium for the devel-
opment of recurrent infection.

9. Adhesion Factors

Several nontoxin factors involved in the virulence and in-
fection processes have been described, including surface
proteins (cell wall and surface layer (S-layer) proteins), pili,
flagellin, flagellar cap, and fibronectin-binding proteins
[42, 53].

The S-layer protein A (SlpA) is the predominant outer
surface and has shown to be the major contributor of
C. difficile adherence to epithelial cells in vitro. SlpA is
cleaved after translation in high and low molecular weight
(HMW and LMW) subunits for the assembly of the para-
crystalline layer. Interstrain sequence variability of LMW
subunits has been associated with higher adhesion efficiency
in hypervirulent strains [48–51].

The cell wall protein 84 (Cwp84) is one of the primary
proteases that is exported by the cell and cleave several
adhesins such as SlpA for the assembly of the para-
crystalline layer and the degradation of extracellular matrix
proteins (fibronectin, laminin, and vitronectin). This
degradation triggers the release and dissemination of
C. difficile in the host, which are related to the recurrence of
infection (Table 1) [49, 81–83].

Cwp84 is present in all C. difficile strains, and those with
the highest proteolytic activity are associated with stronger
adhesion and production of thicker biofilm, planktonic
growth defect, and virulence in vivo [49, 72]. In addition, a
recent study found overexpression of cwp84 in a biofilm
model from recurrence causing strains, this phenomenon
was not observed in the biofilm produced by nonrecurrent
strains [84], suggesting an association with recurrent
infection.

SlpA cleavage could be accomplished by other proteases
in the absence of cwp84, such as cwpV, cwp66, and cwp13
[49, 52]. These findings suggest an essential role of some
surface proteins associated with increased host-pathogen
adherence, which may be related to the maintenance of CDI.

In addition to propulsion, motility components provide
bacteria with other advantages, such as adherence and cell
internalization. C. difficile possesses peritrichous flagella,
which induce the adhesion and establishment of the bacteria
including the strains without complete and functional fla-
gella as a result of mutations [56, 57, 85–87]. The filament
from C. difficile flagella is mostly composed of single flagellin

subunits and flagellar cap proteins, both of which are
modified posttranslationally. Therefore, as a consequence of
a noncomplete functional flagella, these components do not
confer motility but enhance binding of C. difficile to abiotic
surfaces, as well as reduced biofilm formation, leading to the
attenuation of colonization and relapse in vivo, suggesting a
role of flagella in the process of adherence and biofilm
formation independent to motility (Table 1) [42, 56, 57].

10. Concluding Remarks

RCDI development is associated with hypervirulent strains
and may be attributed to a high rate of sporulation and the
maintenance of spores encased in a C. difficile biofilm, which
is resistant to antibiotic therapies. Besides, several adhesion-
related proteins are involved in RCDI development and the
establishment of the infection.

Antibiotics have been demonstrated to disrupt colonic
microbiota, placing the patient at a high risk of further
recurrent episodes. Further studies on RCDI development
are needed to assess the correlation of these potential vir-
ulence traits and the persistence of C. difficile infection.
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