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Abstract

Background: Several studies have investigated miRNA and mRNA co-expression to identify regulatory networks at
the transcriptional level. A typical finding of these studies is the presence of both negative and positive mMiRNA-MRNA
correlations. Negative correlations are consistent with the expected, faster degradation of target mRNAs, whereas positive
correlations denote the existence of feed-forward regulations mediated by transcription factors. Both mechanisms have
been characterized at the molecular level, although comprehensive methods to represent miRNA-MRNA correlations are
lacking. At present, genome-wide studies are able to assess the expression of more than 1000 mature miRNAs and more
than 35,000 well-characterized human genes. Even if studies are generally restricted to a small subset of genes
differentially expressed in specific diseases or experimental conditions, the number of potential correlations remains
very high, and needs robust multivariate methods to be conveniently summarized by a small set of data.

Results: Nonparametric Kendall correlations were calculated between miRNAs and mRNAs differentially expressed in
livers of patients with acute liver failure (ALF) using normal livers as controls. Spurious correlations due to the
histopathological composition of samples were removed by partial correlations. Correlations were then transformed
into distances and processed by multidimensional scaling (MDS) to map the miRNA and mRNA relationships. These
showed: (a) a prominent displacement of mMiIRNA and mRNA clusters in ALF livers, as compared to control livers, indicative
of gene expression dysregulation; (b) a clustering of mRNAs consistent with their functional annotations [CYP450,
transcription factors, complement, proliferation, HLA class I, monocytes/macrophages, T cells, T-NK cells and B
cells], as well as a clustering of miRNAs with the same seed sequence; and (c) a tendency of miRNAs and mRNAs
to populate distinct regions of the MDS plot. MDS also allowed to visualize the network of miRNA-mRNA target pairs.

Conclusions: Different features of miRNA and mRNA relationships can be represented as thematic maps within the
framework of MDS obtained from pairwise correlations. The symmetric distribution of positive and negative correlations
between miRNA and mRNA expression suggests that miRNAs are involved in a complex bidirectional molecular network,
including, but not limited to, the inhibitory regulation of miRNA targets.

Keywords: MicroRNAs, mRNA, Multidimensional scaling, Gene expression, Kendall correlation, Partial correlations,
Normal liver, Acute liver failure (ALF), Hepatitis B virus

Background

MicroRNAs (miRNAs) are short non-coding RNAs that
induce silencing and destabilization of messenger RNAs
(mRNAs) by binding to specific target sites [1, 2]. Several
studies have recently investigated miRNA and mRNA co-
expression to identify post-transcriptional regulations
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involved in proliferative and degenerative diseases [3-8],
based on the fact that the up/down-regulation of a miRNA
causes the inverse down/up-regulation of its target
mRNAs, and this would result in a negative correlation
between miRNA and mRNA expressions. On the other
hand, most studies have so far shown the co-existence
of negative and positive miRNA-mRNA correlations,
which are consistent with the presence of a more complex
network that involves not only inhibition of miRNA tar-
gets (resulting in negative miRNA-mRNA correlations)
but also feed-forward regulation activated by common
transcription factors [9-11], resulting in positive miRNA-
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mRNA, miRNA-miRNA and mRNA-mRNA correlations.
Moreover, there is increasing evidence for the existence of
miRNA-miRNA [12-15] and mRNA-mRNA [16, 17] dir-
ect interactions.

A long recognized problem in correlation studies is
the presence of covariates [18], which result in spurious
correlations that confound the true correlations. In gene
expression studies of diseases, critical covariates are rep-
resented by the different degree or extension of the
histopathological lesions of samples. This is particularly
relevant to human tissues, whose histological conditions
are not as homogeneous as in experimental laboratory
models.

Another problem concerns the visualization of data.
Genome-wide studies are able to assess the expression of
more than 35,000 well-characterized human genes and
more than 1000 mature miRNAs. Even restricting the
study to a small subset of genes differentially expressed in
specific diseases or experimental conditions, the number
of potential correlations is very high, and needs robust
multivariate methods to be conveniently summarized by a
small set of significant data [19].

These issues were addressed in this study, which was
aimed at investigating the joint expression of miRNAs and
mRNAs in pathologic livers obtained from patients with
HBV-associated acute liver failure (ALF), a dramatic dis-
ease characterized by hepatocellular necrosis. Our previous
studies in HBV-associated ALF have shown a prominent
expression of B cell-related genes as well as of genes
involved in liver regeneration and fibrogenesis [20, 21].

The study involved various steps. First, miRNAs and
mRNAs differentially expressed in ALF were merged into a
single gene-by-sample matrix. Then, partial nonparametric
correlations between each gene pair (including all miRNA-
mRNA, miRNA-miRNA and mRNA-mRNA combinations)
were calculated to remove the effect of necrosis. Nonpara-
metric correlations were transformed into nonmetric dis-
tances, and multidimensional scaling (MDS) was then
applied to transform distances into spatial coordinates.
MDS provided a comprehensive framework for thematic
maps showing different features of the miRNA-mRNA,
miRNA-miRNA and mRNA-mRNA interrelationships.

Methods

Patients and liver specimens

Thirteen liver specimens were obtained at the time of liver
transplantation from 4 patients with HBV-associated ALF.
The demographic, clinical, biochemical, virological and
histopathological data have been previously reported
[20, 21]. The control group comprised 10 liver donors
and 7 subjects who underwent hepatic resection for liver
angioma. Liver specimens were received under code to
protect the identity of the subjects. Written informed con-
sent was obtained from each patient or the next of kin.
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The study received approval by the NIH Office of Human
Subjects Research, granted on the condition that all sam-
ples were made anonymous.

RNA extraction and microarray analysis

miRNA analysis was performed using Affymetrix Gene-
Chip miRNA 2.0 arrays (Affymetrix, Santa Clara, CA),
which contain 1105 pre-miRNA (mir-), and 1105 mature
miRNA (miR-) probe sets, whose nomenclature refers to
miRBASE release 15 [22]. However, miRNAs removed
from next miRBase releases were also excluded from the
study. Total RNA was extracted from frozen liver speci-
mens using the miRNeasy Mini Kit (Qiagen, Valencia, CA).
500 ng of total RNA, including microRNA, was poly(A)-
tailed and then directly ligated to a fluorescent dendrimer
(a branched single- and double-stranded DNA molecule
conjugated to biotin) using the FlashTag Biotin HSR RNA
Labeling Kit (Affymetrix). An ELOSA was performed prior
to hybridization and analysis of the arrays in order to verify
that all miRNAs were correctly labeled with the biotin
molecule at the 3" end. mRNA analysis was performed
using Affymetrix Human U133 Plus 2 arrays, which
contain 54,675 probe sets representing approximately
38,000 known human genes. Total RNA was extracted
from frozen liver specimens using Trizol (Invitrogen, Life
Technologies, Carlsbad, CA). Total liver RNA (50 ng) was
subjected to two successive rounds of amplification. RNA
quality and integrity were assessed with the RNA 6000
Nano Assay on the Agilent 2100 Bioanalyzer (Agilent
Technologies, Santa Clara, CA). Standard Affymetrix pro-
tocols were used for hybridization, staining, washing,
scanning and quality control of the arrays [23].

Statistical analysis

Raw microarray data (cel files) were imported into BRB-
ArrayTools [24] and probe set summaries were computed
using the RMA algorithm. Multiple transcripts of known
gene were averaged, whereas transcripts of unknown
genes were discarded. Signed fold changes were calculated
as the ratio between the geometric means of ALF and nor-
mal livers. A multivariate permutation F-test [25] with a
maximum false discovery rate of 1 % with 80 % confidence
level identified 109 miRNAs and 3239 mRNAs differen-
tially expressed in ALF. To ensure a more robust analysis,
the number of mRNAs was then reduced to 531 by select-
ing only mRNAs with absolute fold changes >5. The list
and fold changes of miRNAs and mRNAs are shown in
the Additional file 1: Tables S1-S2. Log,-transformed miR-
NAs and mRNAs expressions of ALF and control livers
were merged into two separate genes x samples matrices,
a 642 x 13 matrix for ALF livers, and a 642 x 17 matrix for
control livers. Pairwise nonparametric partial Kendall cor-
relations were calculated for the matrix of ALF livers, set-
ting the degree of liver necrosis as covariate, whereas
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simple Kendall correlations were calculated for the matrix
of normal livers, which were not affected by necrosis. The
choice of a nonparametric correlation, rather than
Pearson’s correlation, was forced by the fact that the
expression levels of miRNAs and mRNAs, particularly
in ALF samples, were not normally distributed (data
not shown). Correlations were then transformed into
nonmetric distances using the formula: (-1) x Kendall
tau, rather than 1 - Kendall tau, to maintain the data
zero-centered. The distance matrices were finally proc-
essed by MDS to obtain a dimensionally reduced map of
gene coordinates. The MDS method was preferred to
analogous methods (i.e., Principal Coordinates) as it allows
data to be preliminarily processed by partial nonparamet-
ric correlations. MDS was computed using the singular
value decomposition (SVD) method [19], which ensures a
matrix factorization numerically accurate even in the pres-
ence of a high degree of multicollinearity (i.e., multiple
correlation). Multivariate analyses and graphics were
made using the following R functions available from the
CRAN repository [26]: pcor.test {ppcor}; svd {base};
sammon, isoMDS {MASS}; ordiellipse {vegan}; ellipse3d,
plot3d {rgl}; Im, density {stats}; ppp {spatstat}. An example
of R code of MDS achieved using SVD is shown in [27].
MiIRNA seed sequences and chromosomal loci were ob-
tained from Affymetrix annotations to the GeneChip
miRNA 2.0 [23], and verified in miRBase [22]. Only the
chromosomal locus of miR-199a-3p was found in miR-
Base, but not in Affymetrix annotations. The identification
of target mRNAs was obtained from the microRNA.org
database [28], selecting miRNA-mRNA pairs with con-
served miRNAs and a good (<= —0.1) mirSVR score.

Results and discussion

The effect of the tissue condition on spurious correlations
In ALF livers, nonparametric correlations between each
gene pair (including all miRNA-mRNA, miRNA-miRNA
and mRNA-mRNA combinations) showed a prominent
bimodal distribution due to a large number of highly
negative and positive correlations, contrasting with the
more regular, unimodal distribution of correlations of
control livers (Fig. 1). This was an evident effect of the
disease, as necrosis involves a loss of hepatocytes and an
increase of infiltrating cells. Thus, pairs of genes preva-
lently expressed by hepatocytes (both ||) or infiltrating
cells (both 11) result in spurious positive correlations,
whereas pairs of genes expressed by hepatocytes and in-
filtrating cells (one | and one 1, respectively) result in
spurious negative correlations. The impact of histo-
pathological changes on the apparent gene expression
was also indicated by the fact that about one third of genes
differentially expressed in ALF livers correlated with the
level of necrosis with very high correlation coefficients
(IR] >0.9). This means that more than 81 % (R squared) of
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Fig. 1 Frequency distribution comprehensive of all pairwise
MiRNA-MRNA, miRNA-miRNA and mRNA-mRNA Kendall correlations.

a ALF livers. b normal livers. ¢ ALF livers after partial correlations
calculated for the level of necrosis

the overall variability of gene expression was due to the
changes in the histological composition of ALF livers. A
representative sample of genes positively and negatively
correlated with necrosis with |R| > 0.9 is shown in Fig. 2.
We also calculated the regression between the level of ne-
crosis (independent variable) and the mRNA concentra-
tion (dependent variables), in order to estimate the gene
expression expected for zero necrosis (intercept). This
involved a certain statistical licence, because zero necrosis
was out of the range of data inputted in the model (some
amount of necrosis is invariably present in all ALF livers).
Using the same subset of genes as in Fig. 2, the mRNA
levels of control and ALF livers, and those expected for
ALF livers with zero necrosis, are shown in Fig. 3a-c.
The correlation between the original mRNA levels of
control and ALF livers was very low (R = 0.34, Fig. 3d).
However, using the mRNA levels of ALF livers calcu-
lated for zero necrosis, the correlation became very high
(R=0.99, Fig. 3e). This finding confirmed not only that
gene expressions were strongly biased by the level of
necrosis, but also showed that the impact of necrosis
could be effectively removed. It is also noteworthy
that the analysis included both hepatocyte genes and
non-hepatocyte genes (i.e., genes negatively and posi-
tively correlated with necrosis, respectively). This
suggests that the opposite effects of the loss of hepa-
tocytes and the increase of infiltrate were equally
removed, thus making hepatocyte and non-hepatocyte
gene expressions balanced and comparable to those of
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Fig. 2 Correlation between gene expression and level of necrosis in ALF livers. The plots show a selection of representative mRNAs positively (left) or
negatively (right) correlated with the degree of necrosis in ALF livers with |R| > 0.9. The level of hepatic necrosis is on the X axis; the gene expression is
on the Y axis. Presumably, mRNAs positively correlated with necrosis are produced by non-hepatocyte cells, whereas those negatively correlated with
necrosis are produced by hepatocytes. Gene expressions were standardized to fit the same scale range. Multiple dots of the same gene (color) for each
level of necrosis represent data of multiple samples

control normal livers. These preliminary findings
prompted us to estimate the partial correlations for
necrosis in order to investigate the genuine relation-
ships among miRNA and mRNA gene expressions of

Partial correlations and multidimensional scaling

Partial nonparametric (Kendall) correlations of ALF livers
showed a unimodal distribution, similar, although some-
what flatter, to that of control livers (Fig. 1c). Partial corre-

ALF livers. lations were transformed into distances and then
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processed by MDS using the singular value decomposition
method. MDS provided a general framework for thematic
maps showing different features of miRNA-mRNA,
miRNA-miRNA and mRNA-mRNA interrelationships
(Figs. 4, 5, 6, 7 and 8 for ALF livers; Figs. 9, 10, 11, 12 and
13 for control livers). Though all 531 mRNAs differentially
expressed in ALF livers were included in the analyses, for
reasons of clarity only the symbols of a subset of 87
mRNAs, attributable to 9 well-defined functional groups
(CYP450, transcription factors, complement, proliferation,
HLA class II, monocytes/macrophages, T cells, T-NK cells
and B cells, whose genes are listed in Table 1) are shown
in MDS maps. The remaining mRNAs are graphically rep-
resented by points.

miRNA and mRNA co-expression maps

ALF livers showed a clear segregation of leukocyte-related
mRNAs (HLA class II, monocytes/macrophages, T cells,
T-NK cells and B cells) from hepatocyte-related mRNAs
(CYP450, transcription factors, complement) (Fig. 4), at
variance with normal liver mRNAs which were densely
interconnected (Fig. 9). A 360° rotation of the MDS maps
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of these mRNAs in ALF and control livers is shown in
Additional files 2 and 3: Movies 1-2. A clustered arrange-
ment of the five groups of leukocyte-related mRNAs was
also evident in ALF livers, in spite of the wider overall
spreading. A major overlap was found between T and T-
NK cell mRNAs, consistent with the strong functional
interrelation of T and NK cells. Interestingly, MDS
enabled the identification of a unique relationship between
T and T-NK cell mRNAs and B cell mRNAs in corres-
pondence of regulatory genes, but not of Ig genes, which
encode the terminal effectors of humoral immunity. In
addition, B cell mRNAs were located in a region charac-
terized by the lowest mRNA density (Fig. 5). This suggests
that B cell mRNAs were those which deviated more mark-
edly from the configuration of normal livers. Paradoxic-
ally, the region with the lowest density of mRNAs was
also the one with the highest density of miRNAs, revealing
a sort of complementarity of miRNA and mRNA maps on
a large scale (Fig. 6, inset). A similar complementarity was
also seen in normal livers (Fig. 11). Other nonmetric MDS
methods such as Kruskal's MDS and Sammon’s mapping
[29, 30] produced MDS maps substantially similar to
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444 mRNAs (shown by small dots)

those obtained using Kendall correlation. On the other
hand, less comparable patterns were obtained using MDS
based on metric (i.e., Euclidean) distances.

Numerical comparison of miRNA-mRNA relationships in
ALF and control livers

To compare numerically the miRNA-mRNA relationships
in ALF and control livers, for each miRNA we computed
the median correlation between that miRNA and all
mRNAs (Additional file 4: Figure S1). Using an arbitrary
threshold of £ 0.15 Kendall tau, a decreased correlation
was found in 17 miRNAs (miR-143-star, 625, 542-5p, 30c-
1-star, 18a-star, 200a, 629, 150, 125b-2-star, 30e, 155, 154,
192-star, 30a, 15a, 487a, 148a), all located within or very
close to the B and T cell mRNAs in the MDS map of ALF
livers (shown as green-outlined points in Fig. 6). Con-
versely, an increased correlation was found only in a single
miRNA (miR-665), located on the opposite side of the
MDS map (shown as a red-outlined point in Fig. 6). The
discrepancy between these two findings is in agreement
with the inhibitory effect of miRNAs.

MDS location of miRNA-mRNA target pairs
We also mapped miRNA-mRNA target pairs (Figs. 7 and
12). In general, miRNAs and target mRNAs were located

far apart from each other. In view of the fact that the dis-
tance in the MDS plot accounts for a negative correlation,
this finding appeared to be suggestive of the inhibitory
relationship between miRNA-mRNA target pairs. To test
this hypothesis, we simulated an alternative MDS plot by
inverting the sign of miRNA-mRNA correlations. Surpris-
ingly, the average distance between miRNAs and their tar-
get mRNAs was unchanged. This means that the distance
between single miRNA-mRNA pairs does not reflect only
the negative regulation of miRNA targets, but also positive
feed-forward co-expressions mediated by transcription
factors [9—11]. This hypothesis is consistent with the sym-
metric distribution of positive and negative miRNA-
mRNA correlations observed in this and previous studies
[3=7, 31-33]. On the other hand, it must be also consid-
ered that the 2D MDS map does not exhaust the whole
multidimensional structure of data. We therefore per-
formed a multiple regression between the mirSVR score, a
conventional estimate of mRNA down-regulation calcu-
lated for each miRNA-mRNA pair [28], and the distance
between the same miRNA-mRNA pair in each of the first
50 MDS dimensions. This analysis showed a statistically
significant relationship (p =0.032), although predictively
poor (multiple R-squared = 0.131), between mirSVR scores
and MDS distances. By contrast, the same test performed
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tau (Additional file 4: Figure S1). The dispersion ellipses of functional mMRNA clusters are shown for reference. The inset shows the complementarity of
miRNA (cyan) and mRNA (yellow) MDS density plots

J

on control livers was not statistically significant. This may
be attributed to the fact that the miRNAs and mRNAs
under investigation were those differentially expressed in
ALF livers.

MDS location of miRNAs with the same seed sequence
Finally, we also mapped 8 groups of miRNAs which
showed the same seed sequence (Figs. 8 and 13). The
complete sequence and chromosomal origin of these miR-
NAs is reported in the Additional file 5: Table S3. Some
miRNAs were similar through their entire sequence, dif-
fering by just one or two bases. Two miRNAs in particular
(199a-3p and 199b-3p) were perfectly identical despite the
different chromosomal origin; thus that their distance,
however small, could be ascribed to purely technical fac-
tors. On the other hand, other miRNAs (i.e., miR-221 and
222; miR-30b and 30a/30e) showed several differences in
the base sequence. Interestingly, in ALF livers these miR-
NAs were located in the B-cell region.

Knowledge-based and knowledge-independent methods

The functional characterization of a set of differentially
expressed genes is generally based on enrichment ana-
lysis [34] using Gene Ontology [35] and/or other gene

annotations. A major limit of these methods is that they
depend on the knowledge publicly available at the time
of the investigation. This is particularly relevant, for
example, for miRNAs whose list is continuously growing
(known mature human miRNAs are at present 2588, but
they were only 313 about ten years ago), and the number
of miRNA targets experimentally validated is only a min-
imal fraction (less than 2 %) of those numerically pre-
dicted. Alternatively, gene expressions can be investigated
using knowledge-independent methods. One of the most
used methods is hierarchical clustering, often associated
with heat maps. On the other hand, hierarchical clustering
methods are strongly sensitive to the linkage method
adopted and, in addition, their standard output, the tree
diagram, is not adequate to represent a relational network.
A more suitable but less used method is MDS, which
allows a number of useful options such as the preliminary
control of covariates and the adoption of nonmetric dis-
tances, less sensitive to nonlinear relationships.

Hidden covariates and confounding factors

The problem of covariate interference is of great im-
portance in correlations studies, in particular when
large (‘omics’) data sets are investigated from tissues
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Fig. 7 MDS mapping of the network of miRNAs and target mRNAs differentially expressed in ALF livers. For clarity, only the 87 mRNAs of the
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whenever gene expression profiles are associated to
phenotypic traits [36]. In this study, it was relatively

easy to recognize necrosis as a confounding covariate,
as samples where histologically characterized. We have
shown that removing the effect of necrosis (re)estab-
lishes a linear relationship between gene expressions of
control and ALF livers, including both hepatocyte and
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non-hepatocyte-related genes (Figs. 2 and 3). However,
it is very likely that other latent covariates may exist,
possibly associated with the origin of ALF, rather than
with its final outcome resulting in necrosis. But the bio-
logical factors and genetic predisposition involved in
ALF pathogenesis are still largely unknown. A drastic
alternative would be that of calculating partial correla-
tions ‘within’ genes (i.e., each gene versus all others, as

in some prediction-oriented methods), but this would
also remove the genuine interactions at the molecular
level, representing gene co-regulations.

Emerging evidences for a complex regulatory network

mRNA destabilization induced by miRNAs has been
successfully demonstrated in strictly controlled experi-
mental conditions by hyper-expressing or silencing a
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Table 1 Functional classes of genes

CYP family

CYP8B1 (-19), CYP4F3 (-28), CYP4F2 (-18), CYPAAT1 (-7), CYP3A7 (-6),
CYP3AS5 (-5), CYP3A4 (-7), CYP39A1 (-7), CYP2J2 (-6), CYP2ET (-14),
CYP2D6 (-8), CYP2C9 (-8), CYP2C8 (-12), CYP2C19 (-7), CYP2C18 (-7),
CYP2B6 (-10), CYP26AT (-5), CYP1A2 (-14), CYP1AT (-7)

Transcription factors
NR1I3 (-7), NR112 (-6), HNF4A (-5), FOXA3 (-7)
HLA class Il

HLA-DRA (7), HLA-DQBT1 (7), HLA-DQAT (14), HLA-DPB1 (9), HLA-DPA1
(6), HLA-DOA (8), HLA-DMB (6), HLA-DMA (10), CD74 (6)

B cells

TNFRSF17 (14), SEL1L3 (6), POU2AF1 (32), MZB1 (18), IGLL3P (10), IGLJ3
(6), IGKV4-1 (7), IGKV1-5 (12), IGKC (13), IGHM (12), IGHD (5), FCRL5 (11)

Monocytes/macrophages
CD86 (5), CD163 (5), C1QC (6), C1QB (13), C1QA (10)
Cell proliferation

ZWINT (5), TOP2A (7), RRM2 (7), PRR11 (7), PRCT (5), NDC80 (5),
DLGAPS (6), CDC20 (6), CCNBT1 (5), BUB1B (5), ANLN (5), AKR1B10 (18)

T cells
VTCN1 (6), VSIG4 (10), TRAC (5), LAX1 (5), CD8A (7), CD3D (5), CD2 (8)
T-NK cells

SLAMF7 (9), RASGRP1 (7), PRDM1 (6), NKG7 (6), KLRK1 (6), GZMK (5),
GZMH (7), GZMB (13), GZMA (12), GNLY (6)

Complement?

C9 (-118), C8G (-6), C8B (-36), C8A (-39), C6 (-10), C5 (-15), C4BPB (-20),
C4BPA (-18), C3P1 (-19), C1S (-6)

In parentheses are the fold changes of original data, not corrected for necrosis
?Complement components C1QC, C1QB and C1QA were attributed to
monocytes/macrophages as these proteins are mostly produced by these cells

single or a few miRNAs at a time [37, 38], but this is less
achievable in observational studies, due to the simultan-
eous presence of a high number of genes differentially
expressed. On the other hand, the balanced number of
positive and negative miRNA-mRNA correlations observed
in this and previous studies [3—7, 31-33] is consistent with
the presence of a complex network involving not only the
inhibitory regulation of miRNA-targeted mRNAs, but also
feed-forward regulations of both miRNAs and mRNAs, ac-
tivated by common transcription factors [9-11], as well as
miRNA-miRNA [12-15] and mRNA-mRNA [16, 17] dir-
ect interactions.

Conclusions

The symmetric distribution of positive and negative
correlations between miRNA and mRNA expression
suggests that miRNAs are involved in a complex
bidirectional molecular network including, but not
limited to, the inhibitory regulation of miRNA targets.
Different features of this network can be represented
as thematic maps within the framework of a MDS
analysis applied to the whole set of pairwise correla-
tions. MDS made it possible to visualize: (a) a prom-
inent displacement of miRNAs and mRNAs in ALF
livers, indicative of gene expression dysregulation; (b)
a clustering of mRNAs consistent with their functional an-
notation; (c) a tendency of miRNAs and mRNAs to popu-
late distinct regions of MDS; (d) a map of miRNA-mRNA
target pairs.
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