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Abstract

Background

Because of the strong link between childhood obesity and adulthood obesity comorbidities,

and the difficulty in decreasing body mass index (BMI) later in life, effective strategies are

needed to address this condition in early childhood. The ability to predict obesity before age

five could be a useful tool, allowing prevention strategies to focus on high risk children. The

few existing prediction models for obesity in childhood have primarily employed data from

longitudinal cohort studies, relying on difficult to collect data that are not readily available to

all practitioners. Instead, we utilized real-world unaugmented electronic health record (EHR)

data from the first two years of life to predict obesity status at age five, an approach not yet

taken in pediatric obesity research.

Methods and findings

We trained a variety of machine learning algorithms to perform both binary classification and

regression. Following previous studies demonstrating different obesity determinants for

boys and girls, we similarly developed separate models for both groups. In each of the sepa-

rate models for boys and girls we found that weight for length z-score, BMI between 19 and

24 months, and the last BMI measure recorded before age two were the most important fea-

tures for prediction. The best performing models were able to predict obesity with an Area

Under the Receiver Operator Characteristic Curve (AUC) of 81.7% for girls and 76.1% for

boys.

Conclusions

We were able to predict obesity at age five using EHR data with an AUC comparable to

cohort-based studies, reducing the need for investment in additional data collection. Our

PLOS ONE | https://doi.org/10.1371/journal.pone.0215571 April 22, 2019 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Hammond R, Athanasiadou R, Curado S,

Aphinyanaphongs Y, Abrams C, Messito MJ, et al.

(2019) Predicting childhood obesity using

electronic health records and publicly available

data. PLoS ONE 14(4): e0215571. https://doi.org/

10.1371/journal.pone.0215571

Editor: Robert Moskovitch, Ben-Gurion University

of the Negev, ISRAEL

Received: June 21, 2018

Accepted: April 5, 2019

Published: April 22, 2019

Copyright: © 2019 Hammond et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The data are

electronic health records owned by NYU Langone

Health and contain protected health information

and personally identifiable information. They were

not anonymized for this study. It is a restricted data

set and public sharing of these data would violate

the HIPPA security rule, however a deidentified

data set will be available by request through https://

www.icpsr.umich.edu/icpsrweb/. Our code and the

subsequent analyses can be viewed on our GitHub

page at https://github.com/NYUMedML/ObesityPY.

http://orcid.org/0000-0003-4476-6406
http://orcid.org/0000-0002-1915-6094
http://orcid.org/0000-0002-9922-6370
http://orcid.org/0000-0003-1615-9430
https://doi.org/10.1371/journal.pone.0215571
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0215571&domain=pdf&date_stamp=2019-04-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0215571&domain=pdf&date_stamp=2019-04-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0215571&domain=pdf&date_stamp=2019-04-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0215571&domain=pdf&date_stamp=2019-04-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0215571&domain=pdf&date_stamp=2019-04-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0215571&domain=pdf&date_stamp=2019-04-22
https://doi.org/10.1371/journal.pone.0215571
https://doi.org/10.1371/journal.pone.0215571
http://creativecommons.org/licenses/by/4.0/
https://www.icpsr.umich.edu/icpsrweb/
https://www.icpsr.umich.edu/icpsrweb/
https://github.com/NYUMedML/ObesityPY


results suggest that machine learning approaches for predicting future childhood obesity

using EHR data could improve the ability of clinicians and researchers to drive future policy,

intervention design, and the decision-making process in a clinical setting.

Introduction

Childhood obesity has been increasing since the 1970s [1]. As of 2016, 18.5% of US children

and adolescents aged 2–19 had obesity, with a significantly higher prevalence among boys than

girls [2]. Although there has been recent cause to suspect obesity rates for adults and children

might be leveling off [3, 4], more recent data question this conclusion [5]: data from 2015–

2016 showed increases in obesity rates across children of all ages, including a large increase

among children at the youngest ages, 2–5 years old [2]. Growth trajectory simulation models

suggest that 57% of children today will have obesity at age 35 [6]. This upward trend is con-

cerning as childhood obesity can lead to diabetes, hypertension, and other conditions in adult-

hood [7–9]. Because of the strong link between childhood obesity and adult comorbidities,

and the difficulty in decreasing BMI later in life, effective strategies are needed to address the

condition early in life. In fact, a growing number of early obesity prevention interventions are

being developed to decrease obesity-promoting feeding and lifestyle practices beginning in

pregnancy and infancy. Some are beginning to demonstrate promising impacts on both pro-

moting healthy habits and decreasing early childhood obesity; however, they currently focus

on universal interventions [10–18]. If we were instead able to predict the risk level of a child

developing obesity, we would then be able to better target intervention resources through the

measurement of the effect of an intervention relative to a child’s risk of developing obesity.

Two critical periods in the development of obesity include the prenatal and infancy period,

and early childhood (Fig 1). The first 1,000 days [19, 20], from conception until the end of the

second year of life, mark the first critical period in the development of obesity. The second

period starts at age five, where the adiposity rebound marks a BMI minimum and a shift into

childhood growth.

Obesity during the early childhood critical period significantly increases the risk of obesity

later in life [22, 23]. The ability to predict obesity before age five could be a useful tool, allowing

prevention strategies to focus on children with a high risk of developing obesity. Primary care

represents a promising platform for early childhood obesity prevention given the high fre-

quency of visits during pregnancy and infancy, which provides access to infants and pregnant

women. Additionally, a number of prenatal and infancy conditions are known risk factors for

obesity at age five (Fig 1) [21].

Risk factors previously associated with childhood obesity range from 1) individual and

parental biological factors, such as the infant’s birth weight [24–27], microbiome composition

[28], maternal factors (including health diagnoses and weight gain), to 2) other family influ-

ences, such as race/ethnicity [29] and income [30]), and 3) neighborhood-level factors [31]

(e.g., food availability, crime, and built environment). However, because of the complexity of

the disease, this list likely still misses unknown key factors as well as the overall interdepen-

dence between the already identified determinants, making it challenging to predict with pre-

cision a child’s risk for developing obesity.

There are a few existing prediction models for obesity in infants, children, and adolescents

that have primarily used data from prospective longitudinal cohort studies, and tend to employ

traditional statistical methods, not machine learning approaches [32–37]. These studies

Predicting childhood obesity using EHR

PLOS ONE | https://doi.org/10.1371/journal.pone.0215571 April 22, 2019 2 / 18

Funding: The authors received no specific funding

for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0215571


demonstrated that it is possible to predict obesity during critical developmental periods, and

offered quantitative insights on how different covariates correlated with key outcomes. How-

ever, these models are not generalizable to a broad clinical setting, given the high costs of data

collection, and the fragility of those models in the cases of missing variables or small inaccura-

cies. This limitation significantly impacts the generalizability of predictions offered by such

studies.

As of 2015, EHR systems were implemented in 84% of all US hospitals and approximately

87% of physicians’ offices [38–40]. Their widespread adoption also means that medical histo-

ries for each patient can be readily available for quantitative analysis at limited additional cost.

In medicine, machine learning approaches have already seen successes, for example, in diag-

nostic medical imaging [41, 42], drug target discovery [43], early prediction of sepsis [44], type

2 diabetes [45], multiple families of diseases [46–50], and patient selection for clinical trials

[51, 52]. There have been some machine learning approaches to predict later childhood obe-

sity; however, research in this field is limited and there still exist a significant number of open

issues. The most related research to our project is Dugan, et al. [53] which is explained in fur-

ther detail below; other existing studies include some that proposed algorithms but without

reporting results, leaving no point of comparison for future work [54–56]; another used data

for children between ages 9 and 11, reducing its clinical utility to stop the development of obe-

sity [57]; one that only utilizes 12 children, which gives insight into a small set of children but

cannot be generalized to a broader population [58]; and two studies that compare a wide range

of commonly used algorithms in machine learning, but report a static set of metrics, making it

hard to compare performance across a set of metrics [53, 59]. The work of Dugan, et al. [53],

however, demonstrated that it is possible to train machine learning models for obesity predic-

tion using data from a custom clinical decision support system that incorporates both precise

measurements and questionnaire data in a safety net hospital system in Indiana. Their work

found race, the development of overweight between the ages of one and two, and accelerated

weight gain to be important factors for prediction [53].

Similar to Dugan, et al. [53], our study used existing EHR data from the first critical period

(pre-pregnancy through age two) from a safety net health system (ours in New York City) to

predict future childhood obesity using machine learning. The substantive differences are that

1) we aimed to predict obesity at age five where adiposity is at a minimum during develop-

ment, compared to obesity occurring at some point between the ages of two and ten, 2) we

focused on reporting results across a sliding scale for the risk of developing obesity at age five,

Fig 1. Factors at the prenatal and infancy periods associated with early childhood obesity by age five. Adapted from González-Muniesa et al. [21].

https://doi.org/10.1371/journal.pone.0215571.g001
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as opposed to all children who will become obese, as knowing the risk earlier may help to

guide intervention studies, and 3) we used standard EHR data combined with census data,

which requires no additional work from the clinician during a visit, rather than EHR data with

supplementary, site-specific questionnaire data. Although EHR datasets are often noisy and

incomplete due to numerous issues such as data entry errors and selective form fills, our mod-

el’s ability to make predictions using EHR data may allow for the approach to be more widely

implemented, as it avoids the limitations of expensive cohort studies. Because machine learn-

ing models can be more effective than traditional statistical methods in handling missing,

noisy, and asymmetric data (a common limitation of EHR data) we argue that our study can

become more widely applicable in a clinical setting for guiding intervention efforts, compared

to those that require the use of highly accurate and symmetrically collected cohort data, which

is often not possible in a clinical setting due to resource limitations.

Methods

We conducted a retrospective cohort study using EHR data from patients in a safety net health

system that serves a racially and ethnically diverse urban community in New York City: Family

Health Centers at NYU Langone (formerly, Lutheran Family Health Centers)—one of the larg-

est Federally Qualified Health Centers in the U.S.—which is composed of 8 primary care and

specialty locations and over 40 school-based clinics in Brooklyn, New York. The EHR data

employed by this study spanned from January 1, 2008 to August 31, 2016 and contained the

records of 52,945 children of various ages, and 36,244 of their respective mothers for visits

ranging from well-child visits to inpatient and outpatient services. Because not all mothers had

given birth or received care in the study health system, there was not always a one-to-one

match between mothers and their children. Additionally, some mothers had given birth to

more than one child during the data collection period, also contributed to a lower number of

mothers represented in the data set than children. The work was approved by the New York

University School of Medicine’s Institutional Review Board and we were granted a waiver of

informed consent as well as a waiver of authorization to use private health information for

research.

The first set of criteria for a child to be considered in our study was to have at least one BMI

measurement between the ages of 4.5 and 5.5 years (11,494 children) and be in the range of

10–40 kg/m2 (11,484 children), values outside of the CDC reference table minimums and max-

imums, to ensure there were no erroneous data points [60]. The second was that each child

had to have at least one visit in the first two years of life (5,746 children). The third was to have

the mother’s data available (3,451 children). When all three criteria are combined our study

cohort shrunk to 3,449 children (1,751 boys, and 1,698 girls). Table 1 summarizes the effect of

these three inclusion criteria used for this study on the full dataset. We included all children

Table 1. Number of children included at each selection criteria.

Selection Criteria (in order) N Boys N Girls N

1) Full data set 26,507 26,438 52,945

2a) BMI reading between 4.5 and 5.5 years 5,775 5,719 11,494

2b) BMI reading is valid 5,770 5,714 11,484

3) At least one data point prior to 2 years of age 2,860 2,886 5,746

4) Maternal data available 1,751 1,700 3,451

Study Cohort Final 1,751 1,698 3,449

https://doi.org/10.1371/journal.pone.0215571.t001
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who passed our selection criteria for both modeling and prediction. As such, our selected

cohort is not intended to be a random population sample.

Feature engineering

The EHR data used in this analysis—from both children and respective mothers—included

the following features for each of their encounters or visit to a healthcare facility, for any pur-

pose, in the study health system: demographic information (ethnicity, race, country of origin,

nationality, and languages spoken), home address (allowing us to determine zip code and cen-

sus tract), vital signs, medications, all laboratory test orders and results, diagnosis codes, and

all medical procedures administered.

For maternal data we used vital signs, diagnosis codes, procedure, and laboratory results

during six separate time periods: pre-pregnancy (prior to 40 weeks before birth), first trimester

(0–14 weeks before birth), second trimester (14–27 weeks before birth), third trimester (27–40

weeks before birth), post-pregnancy, and during any other pregnancy. Taking these six time

periods into account separately allowed us to understand the potential relationships between

maternal health before, during, or after pregnancy and the child’s growth. For all other EHR

data, such as delivery age or ethnicity, we only created one feature for each possibility as they

do not change over time.

For the children’s data, we created features that group vital signs into averages over 11 time

periods: at birth, 0–1 months, 1–3 months, 3–5 months, 5–7 months, 7–10 months, 10–13

months, 13–16 months, 16–19 months, 19–24 months, and latest measurements available

(before 24 months), to capture the timeframes surrounding the standard well-child visits dur-

ing the first two years of life [61]. Additionally, we calculated the change between each of these

time periods as well as the change from birth to age two for all vital signs. For all other EHR

data—diagnosis codes, demographic data, labs, or medications—we only created a single fea-

ture for each of the individual variables in the two-year time frame. For any data point that

was not available, we filled in the corresponding matrix value with a zero.

Further, using the Clinical Classification Software categories, we collapsed all of the Interna-

tional Classification of Diseases 9th Revision diagnosis codes into 283 standard disease group-

ings to account for multiple related diagnosis codes. We then created binary encodings for all of

the disease groups to indicate the presence of a diagnosis during each of the aforementioned

time periods for mothers and for children at any point during the first two years of childhood.

For lab results and vitals, we considered the average value for the maternal and childhood time

periods. For features where we only considered whether or not they exist, i.e., medications, pro-

cedures, and demographic information, we created binary variables to indicate their presence.

Given the likely role of neighborhoods in the development of obesity [31], we also exam-

ined 17 continuous features at the census tract level derived from 2015 American Community

Survey 5-year Estimates by geocoding each child’s address closest to birth and age two, using

the NYCgbat Geosupport Desktop Edition [62]. These tract-level features included: percentage

of population with a disability, education level, percentage of households participating in Sup-

plemental Nutritional Assistance Program (SNAP, or food stamps), unemployment rate, and

median household income. In addition, we created a binary variable for each of the 652 unique

residential zip codes in the data to determine if there were any zip code-level influences not

picked up by the census tract characteristics.

A total of 19,290 variables were created from all of the mentioned feature categories (e.g.,

diagnosis codes, labs, and ethnicity) for use in this analysis from all of the EHR data available

combined with the census data. In Table 2, we show the number of features by category. The

size of the feature space was a result of the sheer number of possible diagnosis codes, lab tests,
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and medications available. However, this did not necessarily translate to a positive impact on

modeling because our feature space shrunk to 12% of the original 19,290 features when we

look at variables that contain any information, and to 8% when we consider features with

enough information to be useful (minimum of five children with information for a given vari-

able). Many of these features are rare to begin with, such as most diagnosis codes or medica-

tions, however, for other features, there was likely genuinely missing information in our

records. In addition, in the Jupyter Notebook in S1 File all of the generated features are

included with number of occurrences and descriptive statistics for the overall data and valid

cohort (combined and separated by gender).

Outcome definition

To predict obesity, we first calculated the BMI percentile by age, in months, and gender per

the Center for Disease Control and Prevention (CDC) guidelines, for each BMI reading

between the ages of 4.5 and 5.5 years [60]. If more than one record was available, we computed

the median age, BMI, and BMI percentile as the final reading. We then determined obesity sta-

tus by creating a binary variable to indicate whether or not a child is obese as defined by the

CDC: BMI percentile being greater than or equal to the 95th percentile, according to the stan-

dard percentiles defined in [60].

Analysis methods

We used both regression and classification techniques for predicting childhood obesity. In the

classification task, we used class probabilities to predict the binary outcome of obesity status:

Table 2. Number of features by category.

Feature Category Number of Features Number of Features with at Least 1 Occurrence Number of Features with at Least 5 Occurrences

Diagnosis 566 160 107

Lab 549 73 57

Medication 2,968 78 14

Gender 2 2 2

Ethnicity 2 2 2

Race 11 9 8

Vital 475 255 255

Number of visits 1 1 1

Zip code 652 207 86

Census 34 34 34

Maternal diagnosis 3,962 473 257

Newborn diagnosis 566 52 22

Maternal ethnicity 4 3 3

Primary insurance 419 67 29

Secondary insurance 120 16 3

Maternal race 7 7 5

Maternal language 30 7 5

Maternal nationality 126 61 24

Maternal marriage status 7 5 5

Maternal birthplace 142 56 23

Maternal delivery age 1 1 1

Maternal lab history 5,700 573 477

Maternal procedure history 2,946 169 89

Total 19,290 2,311 1,509

https://doi.org/10.1371/journal.pone.0215571.t002
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obese/not obese. In the regression task we normalized the median BMI value, as is standard

practice for continuous variables. Using the predicted normalized BMI, we classified children

as having obesity if they had a predicted value greater than the threshold for obesity.

For predicting our dichotomous measures of obese/not obese we used logistic regression

with L1 loss, a random forest classifier, and gradient boosting classifier. For predicting our

continuous BMI values we employed LASSO regression, random forest regression, and gradi-

ent boosting regression. These algorithms were the implemented versions in Python’s Scikit-

learn package (version 0.19.1) [63]. LASSO regression and logistic regression were used as a

baseline for machine learning performance. Random forest and gradient boosting were chosen

because of their reported high performance across many tasks, especially those with a large fea-

ture space such as our own. As is standard practice, we normalized all of our continuous fea-

tures before training each algorithm by subtracting the mean from each value and dividing by

the standard deviation, respective to the values column mean and standard deviation.

To assess the performance of each of our models we randomly selected 20% of our data

(350 boys and 339 girls) to be held out as a test set for all analyses for maintaining a consistent

comparison of performance. Using the remaining data, we used bootstrap cross validation to

validate our models by randomly sampling 90% of the data in each iteration without replace-

ment, then performing a 70%/30% split for training and validation, and utilized our test data

to assess final performance. Bootstrapping allowed us to compute the average AUC, along

with a 95% confidence interval and represented a more real-world scenario for model imple-

mentation as opposed to a k-fold cross validation. For the comparison of classification and

regression models 20 bootstraps were used. Final results on the best performing set of models

were further refined by running 100 bootstraps.

For each of the regression and classification algorithms, we performed a series of feature

selection techniques to further refine our methods and to test the effects that certain categories

of features had on performance. In total, there were 13 variations of the data for each of the

boys’ and girls’ cohorts that were used to train a model for each of the three regression and

classification algorithms, making a total of 156 analyses. To create the 13 variations, we com-

bined three category-based feature sets and three feature selection techniques. The three fea-

ture sets were: the full feature set (including variables with no information), only EHR features

(which exclude census and zip code features), and non-weight or BMI features; the three fea-

ture selection methods consisted of no feature selection, features with at least five non-zero

entries, and 10 bootstrap LASSO feature selection. In the LASSO feature selection, we selected

all features whose average feature weight was non-zero in a 10 bootstrap LASSO regression

process. We then created nine feature sets by considering all possible combinations of feature

selection and feature category-based subset methods. The remaining four models used single

features, and acted as a baseline of performance, given their importance to childhood obesity:

the average weight for length (WFL) z-score between 19 and 24 months, the latest WFL avail-

able before 24 months, the average BMI between 19 and 24 months, and the latest BMI reading

available before 24 months. Although WFL is more clinically meaningful for assessing child-

hood obesity, it has been suggested that BMI-z is more closely associated with later childhood

obesity than WFL from a prediction standpoint [64], and thus we have incorporated both.

Results

The first column of Table 3 shows the demographic breakdown of our EHR population prior

to applying our inclusion criteria. These results are comparable to our modeling cohorts with

the exceptions of the “No Data Available” categories. Using all 3,449 children (1,751 boys and

1,698 girls) in the study cohort (Table 1) we assessed each variable’s association with the binary
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Table 3. Individual feature associations with obesity between ages 4.5 and 5.5.

Variable % of EHR

Population

Girls Boys

% of Cohort Odds Ratio (95%

CI)

p-value for

OR

% of Cohort Odds Ratio (95%

CI)

p-value for

OR

Total Number 52,945 1,698 - - 1751 - -

Ethnicity

Not Hispanic/Latina 24% 17% 0.587 (0.395, 0.874) 0.009 21% 0.714 (0.529, 0.963) 0.027

Hispanic/Latino 49% 82% 1.546 (1.053, 2.269) 0.026 79% 1.399 (1.039, 1.884) 0.027

Other/Not Reported 27% 0% - - 0% - -

Race

Caucasian/White 15% 5% 1.151 (0.65, 2.038) 0.630 4% 0.827 (0.482, 1.421) 0.492

African Amer/Black 13% 5% 1.913 (1.119, 3.27) 0.018 5% 0.907 (0.526, 1.565) 0.725

Asian 10% 9% 0.204 (0.089, 0.466) p<0.001 10% 0.623 (0.419, 0.925) 0.019

Multiracial 42% 77% 1.085 (0.786, 1.497) 0.622 68% 1.283 (0.979, 1.681) 0.071

Other 14% 3% 1.828 (0.965, 3.462) 0.064 1.321 (0.748, 2.332) 0.337

Unknown/No Response 6% 0% - - 0% - -

Maternal Marriage Status

Married 7% 36% 0.702 (0.526, 0.938) 0.017 36% 0.875 (0.689, 1.111) 0.272

Divorced 0% 0% 1.885 (0.378, 9.389) 0.439 1% 2.546 (0.804, 8.067) 0.112

Partnered 4% 32% 1.135 (0.856, 1.504) 0.379 30% 1.067 (0.836, 1.363) 0.601

Single 6% 31% 1.15 (0.867, 1.524) 0.332 33% 1.057 (0.832, 1.343) 0.651

Other/Unknown/No Response 0% 1% 5.725 (1.645, 19.92) 0.006 0.587 (0.131, 2.635) 0.487

No Data Available 83% 0% - - 0% - -

Maternal Birthplace

United States 3% 12% 1.436 (0.992, 2.081) 0.055 13% 1.041 (0.749, 1.447) 0.810

China 2% 9% 0.25 (0.115, 0.539) p<0.001 11% 0.64 (0.431, 0.951) 0.027

Dominican Republic 1% 3% 1.681 (0.871, 3.243) 0.122 4% 2.369 (1.441, 3.896) p<0.001

Ecuador 1% 5% 2.443 (1.475, 4.048) p<0.001 5% 1.011 (0.591, 1.729) 0.968

Mexico 7% 53% 0.788 (0.604, 1.028) 0.079 50% 1.078 (0.86, 1.351) 0.515

El Salvador 0% 3% 1.425 (0.703, 2.887) 0.326 3% 1.011 (0.496, 2.06) 0.977

Guatemala 1% 5% 0.589 (0.292, 1.187) 0.139 5% 0.695 (0.401, 1.203) 0.193

Other 2% 10% 1.418 (0.94, 2.139) 0.096 0.905 (0.603, 1.358) 0.629

No Data Available 83% 0% - - 0% - -

Maternal Diagnosis

Diabetes Mellitus in pregnancy - 10% 2.045 (1.396, 2.995) p<0.001 11% 1.605 (1.15, 2.24) 0.005

Diabetes Mellitus without

complications

- 5% 2.093 (1.262, 3.47) 0.004 5% 1.935 (1.216, 3.08) 0.005

Hypertension in pregnancy - 9% 1.745 (1.167, 2.61) 0.007 12% 1.377 (0.987, 1.92) 0.060

Complications at birth - 43% 1.29 (0.988, 1.685) 0.061 45% 1.158 (0.923, 1.452) 0.204

OB-related perin trauma - 41% 0.781 (0.592, 1.029) 0.078 39% 0.815 (0.645, 1.031) 0.088

Pelvic obstruction - 2% 1.36 (0.552, 3.35) 0.503 2% 1.931 (1.02, 3.653) 0.043

Infant Diagnosis

Nutritional diagnosis - 0% 0 (0, 0) 0.083 0% 0 (0, 0) 0.000

Epilepsy/convulsions - 1% 2.483 (1.053, 5.853) 0.766 1% 2.483 (1.053, 5.853) 0.038

Liver Diseases - 10% 0.743 (0.492, 1.122) 0.153 10% 0.743 (0.492, 1.122) 0.158

Skin Diseases - 11% 1.022 (0.735, 1.419) 0.252 14% 1.022 (0.735, 1.419) 0.899

Kidney Diseases - 1% 1.144 (0.556, 2.356) 0.334 2% 1.144 (0.556, 2.356) 0.714

Circulatory Diseases - 1% 2.386 (0.968, 5.88) 0.000 1% 2.386 (0.968, 5.88) 0.059

https://doi.org/10.1371/journal.pone.0215571.t003
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obesity outcome between the ages of 4.5 and 5.5. We compared these associations with obesity

to the reference group (defined in each feature category section) and show a subset of those

variables in Table 3. Overall, 18.6% of our cohort was obese at age five, which is less than the

NYC estimate of children attending public schools in grades Kindergarten through eighth

grade of 21% [31]. Only a single diagnoses category had a significant association (p<0.001)

with obesity at age five: maternal diabetes mellitus, with no infant diagnoses determined to

have had a significant association with obesity.

Additionally, we found that both BMI and weight for length z-score (at the last reading

available and at the end of the second year) were strongly associated with obesity outcomes at

age five. The characteristic tables for these features are summarized in Tables 4 and 5 for girls

and boys, respectively. Our analysis validates previous findings that a number of variables dur-

ing infancy have significant associations with obesity later in childhood, which falls in line

with previous findings that weight early in life can predict weight later in life [33, 35, 37, 53].

Obesity prediction using EHR and machine learning

For our binary obesity classification and regression models, we were able to achieve perfor-

mance comparable to, or better than, similar cohort-based studies [32–36]. However, we are

not able to compare our results to directly to Dugan et al. because of the differences in report-

ing methods. We found that our regression models outperformed their classification counter-

parts for predicting obesity at age five with data from the first two years of life. On average,

AUC on the test set with a 95% confidence interval was 0.042 [0.031, 0.052] higher for girls,

and 0.033 [0.023, 0.043] higher for boys in the regression task than the classification task. The

difference is significant because the confidence intervals do not overlap. An overview of per-

formance assessment can be seen in the Jupyter Notebook in S2 File.

Table 4. Individual feature associations for girls with obesity between ages 4.5 and 5.5.

Variable Total

Number

Total Average

(SD)

% Obese

(N)

Obese Average

(SD)

% Not Obese

(N)

Not Obese Average

(SD)

p-value

Weight for Length Z-score (average 19 to 24

months)

1,347 1.042 (1.106) 22.7%

(316)

1.899 (1.029) 77.3% (1,076) 0.79 (0.996) p<0.001

BMI (average 19 to 24 months) 1,355 17.547 (1.786) 22.7%

(318)

18.869 (1.818) 77.3% (1,083) 17.158 (1.578) p<0.001

Weight for Length Z-score (latest available

reading)

1,612 0.99 (1.166) 22.1%

(368)

1.806 (1.135) 77.9% (1,297) 0.759 (1.066) p<0.001

BMI (latest available reading) 1,624 17.509 (1.806) 22.1%

(371)

18.734 (1.953) 77.9% (1,304) 17.161 (1.599) p<0.001

https://doi.org/10.1371/journal.pone.0215571.t004

Table 5. Individual feature associations for boys with obesity between ages 4.5 and 5.5.

Variable Total

Number

Total Average

(SD)

% Obese

(N)

Obese Average

(SD)

% Not Obese

(N)

Not Obese Average

(SD)

p-value

Weight for Length Z-score (average 19 to 24

months)

1,392 1.042 (1.106) 23.5%

(316)

1.899 (1.029) 79.9% (1,076) 0.79 (0.996) p<0.001

BMI (average 19 to 24 months) 1,401 17.547 (1.786) 23.5%

(318)

18.869 (1.818) 79.9% (1,083) 17.158 (1.578) p<0.001

Weight for Length Z-score (latest available

reading)

1,665 0.99 (1.166) 22.8%

(368)

1.806 (1.135) 80.5% (1,297) 0.759 (1.066) p<0.001

BMI (latest available reading) 1,675 17.509 (1.806) 22.8%

(371)

18.734 (1.953) 80.3% (1,304) 17.161 (1.599) p<0.001

https://doi.org/10.1371/journal.pone.0215571.t005
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The best performing model with the highest mean AUC for girls was LASSO regression on

the full feature set with LASSO feature selection. LASSO looks for a sparse solution, therefore

the model only utilized 35 features. Details of these features can be found in S1 Table. Simi-

larly, the best performing multivariate model by highest mean AUC in the regression analysis

for boys was LASSO using only EHR data without feature selection with only 144 features

being utilized. A summary of these 144 features can be found in S2 Table. However, the perfor-

mance of this model was consistently lower than the best single feature model, average WFL z-

score between 19 and 24 months, whereas the other three single feature models performed

comparably to the best multivariate model. The details of these analyses can be seen in the

Jupyter Notebook in S3 File.

Using our best performing multivariate model we were able to predict obesity on the test

set with a mean AUC of 81.7% [81.4%, 81.9%] and 76.1% [76.0%, 76.3%] for girls and boys,

respectively. Using these models we found that 34.3% and 28.1% of the variance of BMI at age

five being explained for girls and boys respectively. The results for each of the models are

shown in S3 Table and S4 Table for girls and boys, respectively. In Figs 2 and 3, we present the

ROC curves and precision recall curves, respectively, for each of these highest performing

models against the each of our individual feature models.

Threshold values for these plots can be seen in Table 6 and Table 7, for girls and boys

respectively. We found that we had modest performance if the goal is to reach a high sensitiv-

ity, but when focusing on predicting children most at risk of having obesity at age five, then we

are able to achieve higher levels of accuracy. While it is important to consider predicting obe-

sity outright, we are focused on a mechanism for targeted intervention for high risk children,

so we focus on the results where a high PPV is achieved. It can be seen that where PPV is high

(at least 70%) our model accuracy as well as the Matthews Correlation Coefficient (MCC) are

maximized. This means that both our accuracy and the tradeoffs between error types in our

Fig 2. ROC curves for the top performing model compared to individual feature predictions.

https://doi.org/10.1371/journal.pone.0215571.g002
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model are performing best for this task. This tradeoff is ideal when attempting to craft a more

tailored intervention study where resources should be focused on children who are at a higher

risk of developing obesity and not all children who may become obese.

The factor that emerged as most predictive for girls was the average maternal post-preg-

nancy weight despite having a weak AUC as its own predictor; however, weight and height

related features for the infant were all but seven of the model’s 35. For the best performing

multivariate model for boys, weight and BMI features made up 122 of the 144 total features.

However, only 85 of the 144 features had beta coefficients greater than or equal to 0.001, with

71 of those features also relating to weight and BMI.

Discussion

Since the Surgeon General’s “Call to Action to Prevent and Decrease Overweight and Obesity"

in 2001 [65], obesity and its causes has been the focus of numerous scientific studies [8, 66,

67]. Similarly, thousands of state-level policies have been enacted to encourage healthy life-

styles [68]. Despite the massive investments in money and effort so far, very few interventions

have been effective at preventing obesity [69]. In this study, we used EHR and machine learn-

ing algorithms to identify young children with a high risk of developing obesity that could be

specifically targeted for intervention. Using LASSO regression, we could predict obesity,

between the ages of 4.5 and 5.5 years old on a held-out test set, achieving average AUC scores

of 81.8% for girls and 76.1% for boys (Fig 1).

Some previous intervention studies have focused on known risk factors, such as maternal

ethnicity [70, 71]. If we had used this broad cohort specification, such as that in Gross, et al.

[18], as opposed to machine learning methods, our PPV would have been 18.3% for girls and

25.7% for boys (Jupyter Notebook in S2 File). This means that 81.7% of intervention targets,

for girls, and 74.3% of the intervention targets, for boys, did not have much risk of becoming

Fig 3. Precision recall curves for the top performing model compared to individual feature predictions.

https://doi.org/10.1371/journal.pone.0215571.g003
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obese in the first place. Potentially, these broad inclusion criteria could be contributing to the

small effects found in intervention studies, likely leading to the limited effectiveness of the

interventions themselves. In contrast, with our full model, the achieved PPV (at 20% sensitiv-

ity) are 78% and 56% for girls and boys, respectively. This is significant because it allows for

researchers to be able to set thresholds for inclusion in a study to measure the impact of an

obesity intervention relative to the risk of developing obesity. High confidence predictions for

future obesity (high PPV) capture less of the overall population that will develop obesity but

those predictions will contain fewer false positives as opposed to predictions that lead to cap-

turing a larger portion of the obesity developing population. The former approach would likely

produce higher statistical power in a study because of the rebalanced distribution of false posi-

tives from previous studies, along with the added ability to measure effects relative to the risk

level would allow for better understandings of where specific intervention methods are most

effective.

We found significant differences in AUC performance between the best performing models

and the most predictive factors for girls and boys. Other work has found similar differences

[72] though it is not straightforward to determine the reason why this might be the case. These

differences suggest boys and girls follow different growth trajectories and/or are subject to dif-

ferent obesity influencing factors, as can be seen in S1 Table and S2 Table. For instance, there

was an environmental influence for predicting future obesity in girls, as can be seen with some

census features existing in the selected features, as well as influence from maternal health vari-

ables. This suggests that there may be more external influences leading to childhood obesity in

girls that can be tracked outside of growth measures. However, for boys, we found that nearly

all of the selected features directly related to measures of obesity. Additionally, our study aligns

Table 6. Performance tradeoffs for the best performing model for girls.

Sensitivity PPV Specificity Accuracy F1 MCC N Obese (TP + FP) N Not Obese (TN + FN)

0.145 0.889 0.996 0.858 0.250 0.352 9 330

0.200 0.786 0.989 0.861 0.319 0.126 14 325

0.291 0.571 0.958 0.850 0.386 0.030 28 311

0.418 0.535 0.930 0.847 0.469 0.021 43 296

0.491 0.519 0.912 0.844 0.505 0.018 52 287

0.600 0.371 0.803 0.770 0.458 0.007 89 250

0.691 0.355 0.757 0.746 0.469 0.006 107 232

0.800 0.293 0.627 0.655 0.429 0.004 150 189

0.891 0.261 0.511 0.572 0.403 0.003 188 151

https://doi.org/10.1371/journal.pone.0215571.t006

Table 7. Performance tradeoffs for the best performing model for boys.

Sensitivity PPV Specificity Accuracy F1 MCC N Obese (TP + FP) N Not Obese (TN + FN)

0.084 0.700 0.989 0.774 0.151 0.071 10 340

0.205 0.567 0.951 0.774 0.301 0.021 30 320

0.301 0.543 0.921 0.774 0.388 0.015 46 304

0.398 0.458 0.854 0.746 0.426 0.008 72 278

0.506 0.442 0.801 0.731 0.472 0.007 95 255

0.602 0.435 0.757 0.720 0.505 0.006 115 235

0.699 0.397 0.670 0.677 0.507 0.005 146 204

0.795 0.346 0.532 0.594 0.482 0.003 191 159

0.904 0.306 0.363 0.491 0.457 0.003 245 105

https://doi.org/10.1371/journal.pone.0215571.t007
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with previous work that prior weight and obesity status can predict later in childhood obesity

status [33, 35, 37, 53].

A limitation of our study is that our cohort is not demographically representative of NYC at

large, coupled with a relatively small sample size. We expect that future studies incorporating

bigger cohorts with more regionally representative demographics could further improve

model performance. In addition, the size of our study sample through using a single health sys-

tem was the likely the culprit for representation issues within the data set.

Another limitation, but also a feature of our study, was the noisy and incomplete nature of

EHR datasets. Like most EHR data, we had many sparse records with low information content.

For some features, such as newborn diagnoses, the rarity of a specified observation was inher-

ent to the features themselves. For others, the sparsity of information within a feature came

from not having complete patient history in the specific healthcare system. We underline that

this is a feature of our approach, as we utilize the inherent redundancy of the EHR variables to

become robust to certain level of data incompleteness.

A real-time, predictive health tracker, sitting on top of existing EHR systems (particularly

those that were linked across systems), could be powered by models like ours, to alert clinicians

of children at high risk of developing obesity with a goal of improving their decision-making

process. To best achieve such a goal of real-time health tracking, denser datasets, summarizing

a child and their mother’s entire medical history would enrich our feature space and poten-

tially improve performance. The model presented here is a very promising step towards

achieving this goal of using EHR for early identification of patients at-risk for developing

childhood obesity.

In this study, we have shown that we are able to detect with reasonable accuracy which chil-

dren will have obesity by age five with data from the first two years of life. While our available

data, despite a large number of visits, is limited compared to traditional prospective studies

with curated cohorts and expensive to collect data [33–35, 53, 73], our models perform just as

well or better. We have been able to train accurate prediction models, demonstrating that real-

life EHR data can be a useful tool in aiding childhood obesity intervention research, by allow-

ing clinicians to select cohorts with higher future obesity prevalence, leading to more effective

intervention studies and clinical trials, and, consequently, more targeted intervention pro-

grams and policies.

Supporting information

S1 File. Feature engineering data overview. This file provides an overview of the features

used in the paper’s analyses. The file can also be viewed in the following link on our GitHub

through Jupyter’s NBViewer: https://nbviewer.jupyter.org/github/NYUMedML/ObesityPY/

blob/master/src/Pediatric_Obesity_Prediction_Feature_Data.ipynb.

(IPYNB)

S2 File. Comparison of regression and classification models’ notebook. This file demon-

strates the methods and results used to compare the performance of regression and classifica-

tion techniques for prediction. The file can also be viewed in the following link on our GitHub

through Jupyter’s NBViewer: https://nbviewer.jupyter.org/github/NYUMedML/ObesityPY/

blob/master/src/Pediatric_Obesity_Prediction_Regression_Classification_Comparison.ipynb.

(IPYNB)

S3 File. Final regression analysis notebook. This file provides an overview of the final analy-

ses performed. The file can also be viewed in the following link on our GitHub through Jupy-

ter’s NBViewer: https://nbviewer.jupyter.org/github/NYUMedML/ObesityPY/blob/master/
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src/Pediatric_Obesity_Prediction_Regression_100_bootstraps.ipynb.

(IPYNB)

S1 Table. Non-zero features for the top performing girl’s regression model, LASSO with

the full feature set and LASSO feature selection. “�” indicates a feature whose unadjusted

odds ratio is significantly greater than or less than 1.

(XLSX)

S2 Table. Non-zero features for the top performing boys regression model, LASSO with all

features excluding those at the community-level. “�” indicates a feature whose unadjusted

odds ratio is significantly greater than or less than 1.

(XLSX)

S3 Table. Regression AUC for all girls models tested.

(XLSX)

S4 Table. Regression AUC for all boys models tested.

(XLSX)
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