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Background. Estimating real-world vaccine effectiveness is challenging as a variety of population factors can impact vaccine 
effectiveness. We aimed to assess the population-level reduction in cumulative severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) cases, hospitalizations, and mortality due to the BNT162b2 mRNA coronavirus disease 2019 (COVID-19) vaccina-
tion campaign in Israel during January–February 2021.

Methods. A susceptible-infected-recovered/removed (SIR) model and a Dynamic Survival Analysis (DSA) statistical approach 
were used. Daily counts of individuals who tested positive and of vaccine doses administered, obtained from the Israeli Ministry of 
Health, were used to calibrate the model. The model was parameterized using values derived from a previous phase of the pandemic 
during which similar lockdown and other preventive measures were implemented in order to take into account the effect of these 
prevention measures on COVID-19 spread.

Results. Our model predicted for the total population a reduction of 648 585 SARS-CoV-2 cases (75% confidence interval [CI], 
25 877–1 396 963) during the first 2 months of the vaccination campaign. The number of averted hospitalizations for moderate to 
severe conditions was 16 101 (75% CI, 2010–33 035), and reduction of death was estimated at 5123 (75% CI, 388–10 815) fatalities. 
Among children aged 0–19 years, we estimated a reduction of 163 436 (75% CI, 0–433 233) SARS-CoV-2 cases, which we consider 
to be an indirect effect of the vaccine.

Conclusions. Our results suggest that the rapid vaccination campaign prevented hundreds of thousands of new cases as well as 
thousands of hospitalizations and fatalities and has probably averted a major health care crisis.
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During the second half of December 2020, Israel launched 
a national vaccination campaign to promote coronavirus 
disease 2019 (COVID-19) vaccine use. This campaign was 
based on the BNT162b2 mRNA COVID-19 vaccine (Pfizer-
BioNTech, Mainz, Germany) and was planned to include a 
large proportion of the Israeli adult population in a short time 
interval [1].

Vaccine effectiveness against symptomatic severe acute respi-
ratory syndrome coronavirus 2 (SARS-CoV-2) infection at days 
14–20 after the first dose and at 7 days following the second dose 
was 47%–57% and 92%–94%, respectively [2–6]. Postlicensure 

effectiveness studies are crucial to determine the population-
level impact of a vaccine and determine the total impact of di-
rect and indirect effects of the vaccine [7, 8]. But these studies 
are prone to limitations derived from their observational design 
and potential bias introduced by case ascertainment, surveil-
lance, and data quality [9].

Estimating real-world vaccine effectiveness is challenging. A 
variety of population factors can impact vaccine effectiveness, 
including differences between vaccinated and unvaccinated 
individuals related to health-seeking behaviors and access to 
health care, prior health conditions, or demographic character-
istics [10]. Effectiveness studies are not randomized, meaning 
vaccinated and unvaccinated individuals may be fundamen-
tally different across these demographic and socioeconomic 
factors. Potential selection bias in the administration of the 
vaccine is typically unknowable, and careful statistical controls 
must be included to account for confounding [11]. Population 
differences may also bias observational studies because of dif-
ferential exposure to infection or differences in access to care 
and health-seeking behaviors. Observational studies are not 
blinded, so vaccinated individuals may change behaviors that 
mitigate the probability of infection. Cases of disease reported 
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to a surveillance system are not random and may reflect any 
number of biases [11].

Challenges related to delays in case reporting, weekend ef-
fects, censoring and truncation, and uneven geographic or 
population vaccination rollout can all impact estimates of effec-
tiveness that rely on high-quality surveillance data.

Equally crucial is understanding the indirect effects of the 
vaccine. Indirect effects occur through 2 main mechanisms. 
First, vaccination can reduce symptoms and viral shedding, 
rendering infected individuals less infectious than unvaccinated 
individuals [12]. The recent SIREN study clearly demonstrated 
this effect with the BNT162b2 mRNA COVID-19 vaccines [9]. 
Second, vaccination can reduce the number of infected people 
in the population, thereby reducing the risk of infection among 
susceptible individuals. Effectiveness studies typically compare 
outcomes of vaccinated and nonvaccinated individuals and sys-
tematically underestimate the combined direct and indirect 
protective benefits to vaccinees [13, 14]. Quantifying the indi-
rect effects of vaccination typically requires more time, innova-
tive study design, and higher-quality data collection [12].

Though much has been written on methods for evaluating 
vaccine effectiveness [7, 15], most observational studies con-
tinue to use traditional statistical approaches that compare 
incidence rates in the vaccinated vs unvaccinated popula-
tion. Studies do not account for confounding caused by other 
population-level mitigation strategies like lockdowns, business 
and school closures, or travel restrictions, which fundamentally 
alter the epidemiology of the disease under study. However, 
no matter how many potential confounding variables are con-
trolled for, traditional statistical models cannot usually fully 
account for the dynamically changing biases and complex inter-
actions/uncertainties present in any particular study. They also 
cannot fix problems with poor-quality or incomplete surveil-
lance data. Mathematical models [16, 17] are another avenue 
by which to explore the population-level impact of the vaccine, 
including both direct and indirect effects [14]. Building a valid 
vaccination model for SARS-CoV-2 is particularly challenging 
because the changing dynamics of both infection and vaccina-
tion must be accounted for, reflecting the race between contin-
uous spread of infection and the vaccination efforts restricted 
by logistics and supply limitations.

A viable mathematical model of SARS-CoV-2 vaccination has 
to take into account various complex interactions between mul-
tiple factors affecting the dynamics of the epidemic, like the ini-
tial disease prevalence, the compliance with nonpharmaceutical 
interventions (NPIs), the rate of growth or decay of infection at 
various times, the speed of the vaccine rollout, and its targeting 
and uptake [18]. In addition, it is important to assess the effect 
of vaccination not only in terms of efficacy and effectiveness, 
but also in estimations of the averted SARS-CoV-2 infections 
and COVID-19-related hospitalizations and fatalities, both in 
the vaccinated and unvaccinated populations. The magnitude of 

averted cases depends not only on the efficacy, but also on other 
factors such as disease incidence, degree of implementation 
of NPIs, compliance with vaccination recommendations, etc. 
Estimation of direct and indirect COVID-19-related burden 
averted following vaccination rollout may better characterize 
the benefit of the vaccination campaign beyond what random-
ized controlled trials and observational studies provide.

Due to a lack of data from randomized longitudinal trials, 
we developed a mathematical model that could be used with 
observational data to quantify the effect of vaccination as the 
infection spreads and public health countermeasures (eg, lock-
downs and social distancing) are implemented.

Using an extended version of the standard compartmental 
susceptible-infected-recovered/removed (SIR) model and a 
Dynamic Survival Analysis (DSA) statistical approach [19] to 
estimate its parameters, we aimed to assess the population-
level reduction in cumulative SARS-CoV-2 cases due to the 
BNT162b2 mRNA COVID-19 vaccination campaign in Israel. 
We used the SIR model [20] for disease transmission with 2 ad-
ditional compartments for individuals vaccinated with only 1 
dose and those vaccinated with 2 doses. Data on daily counts 
of individuals who tested positive and daily numbers of vac-
cine doses administered were used to calibrate the model. The 
statistical methodology to infer the parameters of the compart-
mental model is based on the DSA approach [19, 21], which 
combines classical dynamical systems theory and survival anal-
ysis. The DSA approach applies a simple algebraic manipulation 
to the SIR equations and allows us to apply tools from survival 
analysis to population-level epidemic data. The DSA approach 
accounts for changes in SARS-CoV-2 infections due to con-
founding effects of lockdown and other mitigation strategies, 
while simultaneously accounting for data-related challenges. 
This approach is particularly appropriate for the Israeli context 
as the effect of the vaccination campaign was slowed by a resur-
gence of COVID-19 cases, largely due to the rapid circulation of 
the B.1.1.7 variant [1, 22]. Consequently, January and February 
2021 saw the highest rates of COVID-19-related fatalities and 
hospitalization of patients with severe disease.

The full effect of the vaccine has been difficult to estimate be-
cause it was launched simultaneously with nonpharmacological 
measures such as school closure and national lockdown. One 
of our model parameters accounts for the effective removal of 
individuals from the susceptible pool due to vaccination and 
NPIs such as lockdown. This parameter is learned empirically 
using the DSA method. The population-level effect of vaccines 
is then computed by setting this specific parameter to 0. This ap-
proach provides an objective and standardized way of assessing 
the population-level effect of vaccination in that it can be gen-
eralized to other populations.

Here, we use the DSA method to estimate the number of 
cases, hospitalizations, and fatalities prevented during the first 
2 months of the mass vaccination campaign in Israel. We also 
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estimate the indirect effect of vaccination in the adult popula-
tion on the incidence of new SARS-CoV-2 cases in unvaccinated 
children. We used 2 methods to quantify the population-level 
impact on the reduction in cumulative SARS-CoV-2 infections 
due to rapid vaccination. Approach 1 simulates population-
level daily counts of positive tests based on the model and 
known testing patterns when no vaccines are administered. We 
then compare this simulated number to the actual number of 
known positive tests to estimate the vaccine-attributable reduc-
tion in cases. We expect these simulated estimates to be higher 
because they assume no mitigation measures were enacted ex-
cept for vaccination. However, this approach fails to separate 
the effect of vaccination from the confounding effect of lock-
down and other preventive measures that occurred simultane-
ously on the vaccine rollout in Israel. Approach 2 parameterizes 
the model using values derived from a phase of the pandemic 
during which similar lockdown and other measures were im-
plemented. In this second approach, we used the daily case 
counts from September 1, 2020, to November 1, 2020, a time 
window that saw a surge in cases followed by a strict lockdown. 
We expected these simulated estimates to be lower because the 
NPIs are explicitly incorporated into the model through param-
eterization, thereby reducing the estimated overall cumulative 
cases and attributing a smaller reduction in cumulative cases 
to the vaccine.

METHODS

Surveillance and Data
COVID-19 Cases
Daily counts of COVID-19 cases and fatalities attributed to 
COVID-19 were obtained from Ministry of Health reports and 
sites [23, 24].

COVID-19 Vaccinees
Daily counts of COVID-19 vaccinees (BNT162b2 mRNA 
COVID-19 vaccine) were obtained from the Ministry of Health 
reports and sites.

Population
The age-specific breakdown of the Israeli population was 
obtained from the Israel Central Bureau of Statistics [25].

Setting and Population

The vaccination campaign was launched on December 20, 
2020. A timetable of the vaccination campaign and the relevant 
nonpharmacologic measures used to slow COVID-19 spread 
are detailed in the Supplementary Data.

Mathematical Model

We used the standard SIR compartmental model for disease 
transmission, along with 2 additional compartments for indi-
viduals vaccinated with only 1 dose and those vaccinated with 2 
doses. A detailed description is provided in the Supplementary 
Data and Supplementary Table 1.

Patient Consent

The design of this work conforms to standards currently ap-
plied in Israel, and, according to the guideline of the Ministry 
of Health, this study is considered exempt from institutional re-
view board approval as de-identified data from public sources 
were used.

RESULTS

Figure 1 shows the SARS-CoV-2 epidemic curve from March 1, 
2020, through the end of the study period (February 28, 2021). 
There was a significant outbreak beginning in late August 2020, 
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Figure 1. Daily case counts of SARS-CoV-2-positive tests. Daily numbers of SARS-CoV-2-positive samples tested during March 2020–February 2021 are shown. The “ep-
idemic waves” of COVID-19 in Israel are depicted; major time points, including lockdown periods, social restrictions, and the start of vaccinations, are noted. Abbreviations: 
COVID-19, coronavirus disease 2019; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.
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which was controlled through the second national lockdown. 
An additional large outbreak (“third wave”) began in December 
and coincided with the beginning of the mass vaccination cam-
paign (Figure 2B). Since the start of the mass vaccination of the 
Israeli population (December 20, 2020) through the end of the 
study period (February 28, 2021), a total of 399 565 individuals 
contracted SARS-CoV-2 infection in Israel, with 7217 COVID-
19-associated hospitalizations for moderate to severe condi-
tions and 2681 COVID-19-associated deaths. During the study 
period, a gradual decline in the weekly number of COVID-19-
associated hospitalizations was observed (beginning on January 
17, 2021), as well as a gradual decline of weekly fatalities (Figure 
2A & B) associated with SARS-CoV-2 infections beginning on 
January 24, 2021 (Figure 2B).
Figure 3A compares the actual number of cumulative SARS-
CoV-2 cases in the entire Israeli population with the estimated 
number of cumulative cases under the no vaccination scenarios 
following the 2 approaches described above. The actual and esti-
mated cumulative cases and 75% confidence bounds are shown 
in Table 1. Given the huge amount of uncertainty (as seen in the 
figures), we used 75% confidence bounds because 90% or 95% 

confidence bounds, which are more standard, would be too 
wide to be useful for our purpose. The purple dotted line (and 
the blue shaded regions indicating 75% confidence bounds) 
shows the no intervention scenario (Approach 1), while the 
black dashed lines (and the gray shaded region indicating 75% 
confidence bounds) correspond to the no vaccination scenario 
in which the parameters are trained on data from September 1, 
2020, to November 1, 2020 (Approach 2). The solid red line in-
dicates the actual number of cumulative cases in the population 
over the study period. Table 1 indicates for the total popula-
tion a reduction of 913 057 (75% CI, 128 043–1 442 984) SARS-
CoV-2 infections under Approach 1 and 648 585 (75% CI, 25 
877–1 396 963) under Approach 2. The corresponding values 
per 1 million population were 98 708 and 70 117 averted SARS-
CoV-2 infections under Approaches 1 and 2, respectively.

Figure 3B and Table 1 show the actual number of cumu-
lative SARS-CoV-2 infections in the population <20 years of 
age and the estimated number of cumulative cases under the 
2 simulation approaches. We consider this to be an indirect 
effect of the vaccine as the population age <20 years was not 
eligible for vaccination until the end of February. Again, the 
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Figure 2. SARS-CoV-2 infections, hospitalizations, fatalities, and vaccinations by date. A, Daily counts of positive SARS-CoV-2 tests. B, Time series and counts of the 
BNT162b2-mRNA COVID-19 vaccine first dose administered. Vaccinations began on December 19, 2020. C, Daily counts of COVID-19 moderately to severely ill hospitaliza-
tions. In order to account for potential changes in the definition of moderate, severe, and critical cases, we have combined the counts. D, Daily counts of COVID-19 fatalities. 
Abbreviations: COVID-19, coronavirus disease 2019; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.



Quantifying the Population-Level Effect of the COVID-19 Mass Vaccination • OFID • 5

solid red line indicates the actual number of cumulative cases 
in this population (500 286). The indirect effect of the vac-
cine equates to an estimated reduction of 654 719 (75% CI, 
114 109–1 022 195) under Approach 1 and 163 436 under 
Approach 2 (75% CI, 0–433 233). The corresponding values 
per 1 million pediatric population (aged 0–19 years) were 
198 400 and 49 526 SARS-CoV-2 infections averted under 
Approaches 1 and 2, respectively. The simulated daily SARS-
CoV-2-positive tests in the entire population and among the 
younger population (<20 years of age) on no interventions 
and no vaccination regimes are shown in Supplementary 
Figure 1.

Figure 3C and Table 1 show the effect of vaccination on 
COVID-19-related moderate to severe hospitalizations. As of 
February 28, 2021, the cumulative number of hospitalizations 
was 16 941 (red line). Under Approach 1 (purple dotted line), 

the reduction in hospitalizations was estimated at 22 843 (75% 
CI, 4909–35 306), and under Approach 2, it was 16 101 (75% 
CI, 2010–33 035). The corresponding values per 1 million pop-
ulation were 2470 and 1741 averted hospitalizations under 
Approaches 1 and 2, respectively.

Figure 3D and Table 1 show the effect of vaccination on the 
cumulative number of COVID-19-related fatalities. Approach 
1 estimates a reduction of 7389 deaths (75% CI, 1362–11 578), 
while Approach 2 estimates a reduction of 5123 deaths (75% CI, 
388–10 815).

The corresponding values per 1 million population were 799 
and 554 averted deaths associated with SARS-CoV-2 infec-
tions under Approaches 1 and 2, respectively. The simulated 
population-level daily SARS-CoV-2 hospitalizations and mor-
tality under the no intervention and no vaccination regimes are 
shown in Supplementary Figure 2.
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Figure 3. Actual cumulative numbers, and calculated numbers under the no vaccination scenario, of SARS-CoV-2 infections, hospitalizations, and fatalities. Weekly num-
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demonstrating the indirect effect of vaccination on the young population (<20 years of age). C, The actual and calculated numbers of the no vaccination scenario of weekly 
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black dashed line (and gray shaded region indicating 75% confidence bounds) corresponds to the no vaccination scenario modeled under Approach 2. Abbreviations: COVID-
19, coronavirus disease 2019; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.
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A comparison of simulated cumulative count of positive tests 
and daily counts of positive tests with true daily counts is shown 
in Figure 4. In the figure, the solid red lines show the actual tra-
jectories. The means of the simulated trajectories are shown as 
a broken line in purple.

As of January 8, 2021, the cumulative count of positive 
tests was 480 338. As seen in Figure 4, the simulated tra-
jectories lie close to the true counts of cumulative positive 
tests (Figure 4A) and daily counts of positive tests (Figure 
4B). The true trajectory lies entirely within the 75% confi-
dence bounds (shaded blue regions), indicating a good fit 
of the model to the data. This comparison demonstrates 
good matching between the simulated and the actual 

curves of daily counts. Further comparisons are provided in 
Supplementary Figures 3–10.

DISCUSSION

This study evaluated the impact of the BNT162b2 mRNA vac-
cine in the Israeli population utilizing a mathematical model 
that enumerated the number of averted COVID-19 cases as 
a result of the mass vaccination in Israel. Under Approach 2, 
which parameterizes the model using values derived from a 
phase of the pandemic during which similar lockdown and 
other preventive measures were implemented, the estimated 
number of cases averted during the study period was 70 117/1 

Table 1. Actual Cumulative Number of COVID-19 Cases in the Total Population, in the Population <20 Years of Age, Hospitalizations, and Mortality and 
the Population-Level Effect of Vaccination on the Estimated Cumulative Positive Tests Under No Intervention and the Estimated Reduction in Cases With 
Vaccination, Following 2 Different Simulation Approaches

Estimate 

Actual Cumulative 
Number as of 
2/28/2021 

Approach 1 Approach 2

Estimated Cumulative  
Positive Tests Under No 
Intervention (75% CI) 

Estimated Reduction 
in Cases With  
Vaccination (75% CI) 

Estimated Cumulative  
Positive Tests Under No 
Intervention (75% CI) 

Estimated Reduction in Cases 
With Vaccination (75% CI) 

Total population 774 045 1 687 102 913 057 1 422 630 648 585

(902 088–2 217 029) (128 043–1 442 984) (799 922–2 171 008) (25 877–1 396 963)

Children (age <20 y) 500 286 1 155 005 654 719 663 722 163 436

(614 395–1 522 481) (114 109–1 022 195) (439 237–933 509) (0–433 233)

Hospitalization 16 941 39 784 22 843 33 042 16 101

(21 850–52 247) (4909–35 306) (18 951–49 976) (2010–33 035)

Mortality 5778 13 167 7389 10 901 5123

(7140–17 356) (1362–11 578) (6165 16 593) (388–10 815)

Abbreviation: COVID-19, coronavirus disease 2019.
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Figure 4. Comparison of actual SARS-CoV-2 infections and simulated counts during January 8–January 28, 2021. Comparison of simulated cumulative counts of positive 
counts and daily counts of positive tests with true counts is shown. As of January 8, 2021, the cumulative count of positive tests was 480 338. As demonstrated in the figure, 
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000 000, with estimated prevention of 1741/1 000 000 hospital-
izations for moderate to severe conditions and 554 fatalities per 
1 million population. We also evaluated the indirect effect in 
children, who during the study period were not yet vaccinated 
but would be offered protection from widespread vaccination of 
adults. As children may be less susceptible to COVID-19 infec-
tion and less infectious than adults (at least with the pre-B.1.1.7 
circulating SARS-CoV-2 variants), interaction with adults may 
have been a major driver to SARS-CoV-2 infection among 
children, and we therefore hypothesized that the prevention 
of SARS-CoV-2 infections in adults would be accompanied by 
a decline in pediatric COVID-19 cases [26–28]. In line with 
this hypothesis, the results of the study revealed that under 
Approach 2, a total of 163 436 COVID-19 cases in children aged 
0–19 were averted (averted rate: 49 526 cases per 1 million pe-
diatric population) due to vaccination of the adult population.

Our study adds another important avenue for understanding 
BNT162b2 mRNA vaccine effectiveness and its impact on 
population-level infection rates. It should be pointed out that 
the use of a highly effective vaccine does not necessarily result 
in the prevention of many new cases, as if new cases could have 
been prevented by other means such as altered public behavior, 
the effect of the vaccine may not be apparent. Traditional obser-
vational studies, which use the same type of surveillance data 
we use here, are sensitive to problems with data quality and 
often cannot adequately account for changes in SARS-CoV-2 
infection due to confounding effects of mitigation strategies. 
The DSA modeling approach directly accounts for the impact 
of additional mitigation measures in the parameterization of 
the model (especially in Approach 2), thereby providing a novel 
method for enumerating the effectiveness of the vaccine in re-
ducing excess morbidity. This approach also provides estimates 
of uncertainty, which can strengthen inferences when data 
quality is an issue. Moreover, despite being relative, the lock-
down measures introduced at different phases of the pandemic 
will have different effects on the overall rate of infection [27]. 
However, this can be properly captured by a modeling-based 
analysis such as ours but not necessarily by empirical studies.

One of the major lessons of this study has been the vast im-
portance of a rapid vaccination campaign as results suggest that 
a slower pace of vaccination in Israel could have resulted in the 
addition of hundreds of thousands of new cases as well as thou-
sands of hospitalizations and fatalities. Such a large number 
of hospitalizations would have resulted in a major health care 
crisis like those seen in other countries [29, 30].

There are several limitations that should be mentioned. 
This study is based on a mathematical model that is sensitive 
to initial parameterization and therefore prone to inherent 
errors in assumptions. Another limitation is that the concur-
rent nonpharmacologic measures implemented during the vac-
cination campaign could have potentially averted some and 
even most of these cases without the vaccination campaign. 

However, the parameters used in approach 2 were derived from 
a phase of the pandemic during which similar mitigation meas-
ures were implemented—for example, September 2020, when 
there was a national lockdown and school closure. When we 
assessed model fit for this early segment of the time series, the 
close match between the actual trajectories of positive cases and 
the simulated ones indicated a very good fit of the model to the 
observed data. Thus, extrapolation of the model into a later time 
period and comparing these estimates with real-world data 
demonstrated the model’s reliability.

We assume a “mass action” mode of disease transmission in 
this study. The empirical analysis (Figure 4) confirms that this 
assumption is acceptable for our current purpose. In a sense, 
one may think about our analysis as a way of averaging the 
agent-based dynamics, which despite being more realistic is 
also difficult to calibrate from empirical data. As we are con-
cerned with an overall population-level effect, the use of an 
average transmission network appears acceptable in our case 
[31–35].

The main strength of our study is that it is based on a reli-
able national database and is in line with the recent data that 
show the real-life vaccine effectiveness in the Israeli population. 
This report illustrates the effect of the rapid implementation of 
COVID-19 vaccination at a national scale and suggests that the 
accompanying models serve as a paradigm for other national 
COVID vaccination programs.
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