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Abstract: Dodder species (Cuscuta spp.) are holoparasites that have extensive material exchange with
their host plants through vascular connections. Recent studies on cross-species transfer have provided
breakthrough insights, but little is known about the interaction mechanisms of the inter-plant mobile
substances in parasitic systems. We sequenced the transcriptomes of dodder growing on soybean
hosts to characterize the long non-coding RNA (lncRNA) transfer between the two species, and
found that lncRNAs can move in high numbers (365 dodder lncRNAs and 14 soybean lncRNAs)
in a bidirectional manner. Reverse transcription-polymerase chain reaction further confirmed that
individual lncRNAs were trafficked in the dodder–soybean parasitic system. To reveal the potential
functions of mobile transcripts, the Gene Ontology terms of mobile lncRNA target genes were
predicted, and mobile dodder target genes were found to be mainly enriched in “metabolic process”,
“catalytic activity”, “signaling”, and “response to stimulus” categories, whereas mobile soybean
target genes were enriched in organelle-related categories, indicating that specific mobile lncRNAs
may be important in regulating dodder parasitism. Our findings reveal that lncRNAs are transferred
between dodder and its host soybean plants, which may act as critical regulators to coordinate the
host–dodder interaction at the whole parasitic level.

Keywords: Cuscuta; host plants; long non-coding RNA transfer; transcriptome sequencing; interac-
tion network

1. Introduction

Parasitism represents a lifestyle in which parasitic plants obtain nutrients from hosts,
causing serious biotic stresses and impacts on global agriculture [1]. Cuscuta spp. (dodder)
are rootless and leafless stem parasites throughout their lifecycle, and cannot survive
independently due to their very limited or absent photosynthesis. Their wide host range
includes vegetables, crops, and pastures, and they are malignant parasitic weeds [2].
The dodder penetrates the host and forms a specific organ—the haustorium—for host
attachment; the vascular connections established by the haustoria serve as an open hub for
the exchange of various substances (e.g., water, nutrients, pathogens, systemic signals, and
even macromolecules) between the two plants [3]. This exchange is known as cross-species
transmission.

Given the importance of cross-species transmission for adaptation, interaction, and
evolution in parasitic systems, the study of cross-species transmission has become a pop-
ular subject. Since the 1960s, researchers have performed many studies on cross-species
transmission. For instance, viruses [4,5] and phytoplasmas [6] have long been known to be
transferred between hosts and dodder. A large number of proteins have been shown to
be transferred between hosts and dodder, and long-distance mobile proteins can even be
transferred to the seeds of foreign plants and among dodder bridge-connected hosts [7].
Systemic signals, including salt stress- and herbivory-induced signals, have also been
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reported to be transmitted from the dodder to the host plant, and even among dodder-
connected hosts [8–10]. In addition, recent studies on cross-species transmission at the
transcription level have provided breakthrough insights into host–parasite interactions.
The bidirectional mobility of large-scale mRNAs has been demonstrated between dodders
and host plants, providing potential mechanisms for RNA-based interactions in symplastic
connections [11,12]. It has been shown that parasite microRNAs (miRNAs) can transfer
into host plants and may act as virulence factors of host gene expression to promote the
establishment of parasitic relationships [13]. Small interfering RNAs (siRNAs) can also
migrate into the parasite, where they decrease the expression of parasite genes, providing
great potential for gene-editing-based dodder prevention [14,15]. Despite the progress that
has been made in detailing these processes, our understanding of the cross-species trans-
mission and functional effects of non-coding RNAs (ncRNAs), such as long non-coding
RNAs (lncRNAs), is still limited.

NcRNAs are a type of RNA that cannot encode proteins, but can still participate
in various biological processes, such as cell growth, proliferation, differentiation, and
apoptosis [16–19]. These ncRNAs comprise regulatory and housekeeping ncRNAs, as
well as ncRNAs of unknown function; the regulatory ncRNAs can be further sub-divided
into several categories, including siRNAs, miRNAs, and lncRNAs, according to their
size [20,21]. In general, lncRNAs represent a large class of RNAs having transcripts longer
than 200 nucleotides (nt) in length and poor protein-coding potential [22,23]. Early studies
questioned the importance of lncRNAs and regarded them as transcriptional “noise” but,
at present, many thousands of lncRNAs—transcribed from locations throughout both
plant and animal genomes—have been identified by tilling and RNA-seq analyses [24–26].
These lncRNAs are classified into long intergenic non-coding RNAs (lincRNAs), intronic
lncRNAs, sense, and antisense lncRNAs, according to their relative location with protein-
coding genes [27].

Regulatory roles for these lncRNAs in chromatin modification and transcription are
currently under intense investigation [24]. Studies have revealed that lncRNAs can coordinate
gene expression, through a hormone–redox–cell wall network, to regulate growth process
in plants, such as tomato fruit cracking [28]. In Arabidopsis thaliana (L.) Heynh., DROUGHT
INDUCED lncRNA (DRIR) regulates the plant response to drought and salt stress as a novel
positive regulator [29]. LncRNAs can also participate in other abiotic stress responses in plants,
such as heat stress, cold stress, and oxidative stress [30–33]. A recent study has found that
tomato lncRNA23468 modulated the accumulation of NBS-LRRs in the interaction between
Phytophthora infestans (Mont.) de Bary and tomato by decoying the expression of miR482b,
indicating that lncRNAs can also respond to biotic stresses [34]. Although lncRNAs may
play a broadly critical role in coordinating growth and development, as well as in abiotic
and biotic responses, the biological significance of lncRNA movements remains largely
elusive, with only a few studies having been carried out on the transport of lncRNAs. In
plants, grafting studies have identified 22 lncRNAs which move systemically into root tips
and developing leaves, where they can respond to early Pi deficiency [35]. It has also been
shown that lncRNAs are transferred between different types of cells through exosomes as
a means of information exchange, acting as important activators or inhibitors to regulate
gene expression and participating in a variety of biological processes [36,37]. Thus, these
observations that lncRNAs can move long distances through phloem to sink tissues, or
move in different cells, have suggested to us the bold idea that lncRNAs might have
potential mobility across species through dodder bridges, which merits further exploration.

Recently, the genomes of C. australis R.Br. and C. campestris Yunck. have been se-
quenced and published, thus providing useful resources for the comprehensive inves-
tigation of the evolution and physiological ecology of Cuscuta [1,38]. Furthermore, the
whole-genome sequence of crop soybean [Glycine max (L.) Merr. var Williams 82], one of
the known hosts of dodder, has been reported [39,40]. This evidence provides support that
soybean and dodder can be used as ideal candidate parasitic systems for further investiga-
tion of the ability of haustorium-mediated lncRNA transfer between two organisms. In this
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study, with the transcription analysis of the dodder–soybean parasitic system, we found,
for the first time, that lncRNAs were translocated between the stems of the two species.
Among the target genes of mobile lncRNAs, hundreds of mobile lncRNA–mRNA pairs can
be co-transferred between dodder and host soybean. This inter-plant lncRNA trafficking
through dodder bridge connections may provide new insights into the potential regulatory
roles of lncRNAs in parasitic system interactions.

2. Results
2.1. Dodder Infestation-Induced Physiology Responses in Soybean Host

Dodder infestation has severe effects on the growth of its host. To explore the physi-
ological responses of hosts to dodder parasitism, two-week-old soybean seedlings were
infested with dodder (winding group) or mock-treated (control group) for 3 weeks. Com-
pared with those in the control group, the fresh weight of shoots, net photosynthetic rate,
and soluble sugar content of soybean infested by the dodder decreased significantly in
the winding group (Figure 1a–c). In contrast, proline (PRO), malondialdehyde (MDA),
and H2O2 contents in the winding group were 75%, 22%, and 33% higher than in the
control group, respectively (Figure 1d–f). These data indicate that soybean plants prime
themselves to respond dramatically to the dodder parasitism at the physiological level,
which provides an important stepping stone in understanding lncRNA communication at
the molecular level.
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Figure 1. Physiological analysis of soybean in response to dodder parasitism: (a) Fresh weight of
shoot; (b) net photosynthetic rate; (c) soluble sugar content; (d) proline (PRO) content; (e) malondi-
aldehyde (MDA) content; and (f) H2O2 content. Asterisks indicate significant differences between
control (soybean without dodder) and winding (soybean winded by dodder) groups, determined by
Student’s t-test (n = 6; *, p < 0.05; **, p < 0.01). Error bars are ±SE.

2.2. RNA Sequencing and Identification of lncRNAs

In order to determine whether there exists cross-species lncRNA transfer in the
soybean–dodder parasitization system, dodder seedlings were initially twisted and spread
on soybean plants. Then, the dodder stems, interface stems where the parasite was con-
nected to the soybean, and soybean stems were collected when the parasitic system had
been established (Supplementary Figure S1). Three biological repeats were performed
for each group of samples, and nine samples were sequenced on an Illumina NovaSeq
platform for transcriptome analysis. A total of 121.84 Gb of clean data were ultimately
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generated, after the removal of poor-quality reads and adapters. The clean sequences were
used to identify lncRNAs present in the analyzed tissues. To this end, cleaned paired-end
reads were mapped to the soybean reference genome (Wm82.a2.v1) [40] and the C. australis
reference genome [38]. Sequences that did not match any of the genomes due to sequencing
errors were filtered out. Subsequently, reads that matched to both genomes and only
matched to the native genome were considered to be from native transcripts, while reads
that matched the foreign plant genome but not the native plant genome were considered to
be mobile transcripts. After strict screening and mapping, the mapping rates were generally
greater than 85%. These results indicated that the RNA-seq reads were highly reliable
(Supplementary Table S1).

According to the pipeline in Figure 2a, further analysis identified 6580 lncRNAs,
including 1892 soybean lncRNAs and 4688 dodder lncRNAs. These lncRNAs were assigned
to 5525 lincRNAs, 526 antisense lncRNAs, 497 sense lncRNAs, and 32 intronic lncRNAs,
according to the anatomical properties of their gene loci (Figure 2b). Subsequently, the basic
genomic features of lncRNAs and mRNAs were comparatively analyzed. We found that
lncRNAs were expressed at similar levels in different groups and had fewer fragments per
kilobase per million fragments mapped (FPKM) than protein-coding mRNAs in each group
(Supplementary Figure S2). Among them, 54% of the lncRNAs were spliced (Figure 2c).
The majority of lncRNAs (~55%) had two exons, and the number of lncRNAs decreased
with an increase in the number of exons, while mRNAs contained more and more widely
distributed exons: approximately 6% of mRNAs had more than 16 exons (Figure 2d). The
average length of these lncRNAs (1458 bp) was shorter than that of protein-coding mRNAs
(2133 bp); approximately 60% of the lncRNA lengths ranged from 200 to 1400 bp, while
those longer than 3000 bp accounted for only 9% (Figure 2e). More than 90% of lncRNAs
contained an open reading frame (ORF) of length ≤ 200 bp, while about of 34% mRNAs
had ORF length ≥ 200 bp (Figure 2f). Overall, both the transcript length and ORF length of
lncRNAs were shorter, compared with those of mRNAs.

2.3. Identification and Validation of Mobile lncRNAs

To explore the mobility of lncRNAs between the different plants, we used the above-
developed lncRNA database to analyze the lncRNAs in three various tissues (dodder stems,
soybean stems, and interface stems). In dodder stems, the proportions of the lncRNA
reads from soybean averaged 0.17% of the total mapped reads across three sequencing
runs, whereas soybean stems contained 1.48% dodder lncRNA reads, indicating that
bidirectional movement of lncRNAs occurred between the dodder and soybean. Similarly,
dodder stems contained 0.02% soybean mRNA reads, while soybean stems contained
1.04% dodder mRNA reads, suggesting that lncRNA movement is usually accompanied by
mRNA trafficking (Figure 3a,b; Supplementary Table S2).

In the dodder–soybean parasitic system, the established mobile reads represent the
diversity of transcripts. Subsequently, the number of mobile or non-mobile transcripts was
determined, in order to compare the transferability of inter-plant lncRNAs and mRNAs. As
shown in Table 1, 365 dodder lncRNAs and 8894 dodder mRNAs were detected in soybean
stems, accounting for 7.8% (365/4688) and 52.4% (8894/16,977) of the total dodder lncRNAs
and mRNAs, respectively. In contrast, only 14 soybean lncRNAs and 74 soybean mRNAs
were identified in dodder stems, comprising 0.74% (14/1892) and 0.17% (74/42,296) of the
total transcripts of soybean, respectively.
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Table 1. Numbers of lncRNAs and mRNAs transferred in the soybean–dodder system.

Mobility Category Soybean
lncRNAs

Dodder
lncRNAs

Soybean
mRNAs

Dodder
mRNAs

Total mobile 14 365 74 8894
Nonmobile 1878 4323 42,222 8083

Total 1892 4688 42,296 16,977
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Figure 3. Transcript transfer in soybean–dodder parasitization systems: (a) Sequencing and analysis
of three types of tissues, including the dodder stems (DS), interface stems (IS), and soybean stems (SS).
Scale bars = 5 mm; (b) Pie charts illustrating the proportion of reads from foreign and native lncRNAs
or mRNAs in each tissue. Calculations were based on the ratio of the reads mapped only to the
foreign genome and total reads mapped to the foreign and native genomes. The values are the mean
± standard deviation of three replicates. DS, IS, and SS represent dodder stems, interface stems, and
soybean stems, respectively; (c) RT-PCR confirmed the transfer of lncRNAs into the dodder for two
soybean lncRNAs, MSTRG.73584.1 and MSTRG.78090.2; MSTRG.75652.1 and MSTRG.90232.2 were
not detected in the dodder by RNA-seq. SS represents soybean stem; DS represents dodder stem;
Ps represents positive control (soybean without dodder); Ns represents negative control (dodder
not growing on soybean); (d) RT-PCR confirmed the transfer of lncRNAs into the host for two
dodder lncRNAs, MSTRG.28867.1 and MSTRG.29852.5; MSTRG.24667.1 and MSTRG.29752.2 were
not detected in soybean by RNA-seq. DS represents dodder stem; SS represents soybean stem;
Pd represents positive control (dodder not growing on soybean); Nd represents negative control
(soybean without dodder).

To further confirm the trafficking of inter-plant lncRNA individuals, several mobile
and non-mobile lncRNA transcripts were selected and analyzed by reverse transcription-
polymerase chain reaction (RT-PCR). Mobile lncRNAs MSTRG.73584.1 and MSTRG.78090.2
from soybean were detected in dodder stems at a lower level than in soybean stems;
similarly, mobile lncRNAs MSTRG.28867.1 and MSTRG.29852.5 from dodder were detected
in soybean stems at a lower level than in dodder stems. In contrast, non-mobile lncRNAs
were detected only in soybean stems or dodder stems (Figure 3c,d). The RT-PCR results
indicated that the lncRNA data obtained by RNA-seq were reliable.

Additionally, the read coverage and alignments of RNA-seq data illustrated the
form of the mobile transcripts. The read sequences and coverage of mobile lncRNA
MSTRG.10219.19 from dodder stem tissue closely matched those of the interface tissue,
with the exception that the mobile lncRNAs in the soybean stem tissue appeared in a fully
spliced mature form; introns were only found in the libraries of dodder stems or interface
tissues (Figure 4). This further confirmed the actual movement of lncRNAs between the
dodder and soybean. Notably, although the output of read mapping itself produced an
attractive picture of lncRNA movement, such confirmation is not practical for all mobile
lncRNAs.
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The lncRNA model at the top indicates exons as blue bars and introns as line bridges. Each panel
includes tracks for total coverage, junction coverage, and read alignments. Reads that span junctions
are connected with thin lines. DS, IS, and SS represent dodder stems, interface stems, and soybean
stems, respectively.

2.4. General Properties of the Mobile Transcripts

Next, we investigated whether the inter-plant mobile transcripts possess certain prop-
erties that enable them to be transferred. First of all, by comparing the expression abundance
of mobile and non-mobile transcripts in the interface stems, we found that the abundance
of mobile lncRNAs was higher than that of non-mobile lncRNAs in the interface stems, and
the expression patterns of mRNAs were similar to those of lncRNAs (Figure 5a,b).

Secondly, as there were only a small number of mobile soybean transcripts, correlation
analysis was only performed for the transcript levels of mobile dodder lncRNAs and
mRNAs in interface stems and soybean stems, respectively (Figure 5c,d). The results
showed that the expression levels of mobile dodder lncRNAs or mRNAs in interface stems
had a positive linear correlation with those in soybean stems. Nonetheless, the mobility
pattern of lncRNAs was more dispersed, whereas the mobility pattern of mRNAs was
more focused around the regression line, indicating that the dynamics of transmission of
lncRNAs may differ from those of mRNAs (Figure 5c,d).
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mRNAs (b) transcript levels in interface stems related to mobility in dodder–soybean associations;
(c,d) Scatter plots of lncRNAs (c) and mRNAs (d) transcript levels in the soybean stem versus those in
interface stems. A total of 365 dodder lncRNAs were transferred into soybean, whereas 8894 dodder
mRNAs were transferred into soybean. Lines correspond to linear regression analysis of the data.

2.5. Functional Prediction of Mobile lncRNAs by Their Target Genes

To investigate the potential systemic roles of transfer lncRNAs, the target genes of
transfer lncRNAs were predicted. LncRNAs spaced near protein-coding genes could
participate in transcriptional regulation by binding to promoters and other cis-acting
elements [27]. Thus, we first searched for the upstream and downstream 100 kb regions
of lncRNAs and found that 136 mobile dodder lncRNAs might regulate 148 mRNAs with
215 lncRNA–mRNA pairs in cis, and that 14 mobile soybean lncRNAs might regulate
52 mRNAs with 85 lncRNA–mRNA pairs in cis, respectively (Figure 6a,b; Supplementary
Table S3). Recently published data has suggested the great potential of detecting lncRNA-
mediated regulation by base pair complementarity [41], which was determined to identify
trans-acting lncRNAs. In total, 206 mobile dodder lncRNAs might regulate 899 mRNAs with
1429 lncRNA–mRNA pairs in trans (Figure 6a,b; Supplementary Table S3). Furthermore,
the expression patterns of mobile lncRNA target genes associated with three different
tissues (dodder stems, interface stems, and soybean stems) were further analyzed using the
MultiExperiment Viewer 4.9 (MEV 4.9) software (Supplementary Figure S3). In addition,
a total of 440 dodder target genes, including 70 (47.3%) cis-target genes and 370 (41.2%)
trans-target genes, were predicted to be co-transferred with 159 mobile lncRNAs from
dodder into soybean, while only four soybean cis-target genes were predicted to be co-
transferred with 11 mobile lncRNAs from soybean into dodder (Supplementary Figure S4;
Supplementary Table S3).
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mobile dodder lncRNAs regulating mRNAs; (b) Schematic diagram of mobile soybean lncRNAs
regulating mRNAs. The numbers of regulatory relationship pairs are shown on the black arrows; (c)
Pie charts showing the percentages of Gene Ontology (GO) slim terms enriched by mobile dodder
lncRNAs target genes by WEGO 2.0 (p-value < 0.05); (d) Pie charts showing the percentages of GO
slim terms enriched by mobile soybean lncRNAs target genes by WEGO 2.0 (p-value < 0.05). The full
list of GO slim terms for these data is presented in Supplementary Table S4a.

In order to gain insight into the function of these mobile lncRNAs, we then applied
Gene Ontology (GO) enrichment to analyze their predicted target genes. A total of 12 mo-
bile dodder and two mobile soybean GO terms were enriched by WEGO 2.0 (p-value < 0.05;
Supplementary Table S4a). Notably, the great majority of the target genes of mobile dod-
der lncRNAs were enriched in “metabolic process”, “catalytic activity”, “signaling”, and
“response to stimulus” categories, whereas the genes corresponding to mRNAs targeted
by mobile soybean lncRNAs were only enriched in organelle-related categories, including
“intracellular organelle part” and “organelle part” (Figure 6c,d). In addition, the GO enrich-
ment analysis of these target mRNAs was also performed using the agriGO 2.0 website, the
results of which were similar to those found in WEGO enrichment analysis (Supplementary
Figure S5).

We also applied GO enrichment to assess the functional significance of mobile mRNAs
using the WEGO 2.0 and agriGO 2.0 websites (Supplementary Table S4b). Similarly, most
of the mobile dodder mRNAs were enriched in “metabolic process”, “catalytic activity”,
“binding”, “biological regulation”, “response to stimulus”, and “signaling” categories
(Supplementary Figure S6a; Supplementary Figure S7), while the mobile soybean mRNAs
were similar to the corresponding lncRNAs, with some of them being enriched in “or-
ganelle” and “binding” categories (Supplementary Figure S6b; Supplementary Figure S7).

2.6. Identification of Transcription Factors of the Mobile Transcripts

Transcription factors (TFs) are regulatory proteins that can activate or inhibit target
genes and which participate in biotic or abiotic stress responses [42–45]. To further reveal the
potential regulation functions of lncRNAs, we screened the TFs corresponding to their target
mRNAs. In total, 201 mobile lncRNAs resulted in the identification of 635 targeted TFs,
belonging to 49 TF families (Supplementary Table S5a). In the dodder–soybean parasitic
system, the MYB family was the largest gene family identified (74 in total), corresponding
to 34 mobile lncRNAs, followed by the bHLH, NAC, C2H2, and WRKY families and
presenting a high number of mobile transcripts (Figure 7a). The dynamic changes in the
expression levels of these TFs in the three different tissues are shown in Figure 7b–f. In
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addition, when we screened the TFs for the mobile mRNAs, 54 TF families, including
297 mobile mRNAs, were shown to be transferred from dodder to soybean, while no TFs
were predicted to be transferred from soybean to dodder (Supplementary Table S5b). We
found a total of 30 TF families that were common to mobile lncRNA-targeted mRNAs and
mobile mRNAs (Supplementary Table S5).
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Figure 7. Distribution and expression patterns of transcription factors: (a) Details of the number
for TFs identified from mobile lncRNAs target genes of dodder and soybean. Data are sorted by
number of lncRNAs. Only categories with more than 10 mobile transcripts identified as transcription
factors are shown; (b–f) Heatmap of the expression patterns of the first five most numbers of TFs in
the tissues of dodder stems (DS), interface stems (IS), and soybean stems (SS), including MYB (b),
bHLH (c), NAC (d), C2H2 (e), and WRKY (f). ‘D’ represents mobile dodder lncRNAs target genes. ‘S’
represents mobile soybean lncRNAs target genes. The gene expression is based on the z-scores of
log2(FPKM) value. The blue and red colors indicate low and high expression levels, respectively.

2.7. Potential lncRNA–mRNA/TF Network in Parasitic System

Finally, mobile lncRNA-associated networks were constructed based on all the target
genes, revealing the intricacy of their relationships (Supplementary Figure S8). Among
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them, the detailed interactions of the mobile dodder lncRNAs enriched in “signaling”
and “respond to stimulus” terms (Figure 8a,b), and the interactions of the mobile soybean
lncRNAs enriched in organelle-related terms were visualized (Figure 8c). In these networks,
lncRNA target prediction revealed the presence of 5 and 24 potential lncRNA–mRNA target
pairs that co-transferred from dodder to soybean in “signaling” and “respond to stimulus”
terms, respectively. In contrast, there were 19 potential lncRNA–mRNA/IF target pairs
enriched in organelle-related terms, but no lncRNA–mRNA/TF target pairs appeared to be
co-transferred.
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Figure 8. Potential lncRNA–mRNA/TF network in parasitic system visualized using Cytoscape
3.7.2: (a,b) Predicted network of mobile dodder lncRNAs and their targeted mRNAs/TFs enriched
in “signaling” term (a) or “respond to stimulus” term (b); (c) Predicted network of mobile soybean
lncRNAs and their targeted mRNAs/TFs enriched in “organelle part” term. Red circles represent
lncRNAs, blue squares represent mRNAs, and yellow triangles represent TFs.

3. Discussion

Taking advantage of the significant phylogenetic distances between dodder and its
wide range of host species, dodder–host systems can be used as ideal parasitic systems for
the identification of mobile molecules—including DNA, RNA and proteins [7,11,13,46]—



Int. J. Mol. Sci. 2022, 23, 561 12 of 20

and for the study of systemic signaling [8–10,12]. In this paper, we provide evidence
that lncRNAs can also be transferred between species, moving in a bidirectional manner
through dodder bridges.

Genome-wide identification studies of lncRNAs have been performed in numerous
plants, including model plants, trees, and crops [47–49]. As essential regulators of devel-
opment and stress responses, plant lncRNAs have also been shown to regulate biotic and
abiotic stresses in genetic studies [30–33,50]. In this study, we identified lncRNAs from the
stems of different species, including dodder stems, interface stems, and soybean stems,
using the Illumina NovaSeq platform. As a result, a total of 6580 lncRNAs were identified
in the dodder–soybean parasitic system. It was shown that most of these lncRNAs were
lincRNAs, which might be due to genes only occupying a small part of the chromosome se-
quence [51]. The expression levels of lncRNAs were lower than mRNAs encoding proteins,
consistent with previous studies on Cleistogenes songorica (Roshev.) Ohwi and Melilotus
albus Medik. [27,52]. Moreover, the number of exons (mostly two exons), transcript length,
and ORF length of lncRNAs are generally smaller than mRNAs, which may be the reason
for the differences in their function and evolution [53–55].

Previously, mRNAs have been reported to transport between different plants through
dodder bridges [11,56]. For instance, RNA-seq analysis indicated that more than 8500 and
9500 unigenes originating from dodder (C. pentagona Engelm.) and Arabidopsis were de-
tected in Arabidopsis and dodder, respectively; in contrast, 347 and 288 mobile unigenes
were shown to be transferred in the tomato–dodder system [11]. Liu et al. (2020) have also
confirmed 172 and 1416 mobile mRNAs in dodder (C. australis) and Arabidopsis, as well
as 64 and 708 mobile mRNAs in dodder and soybean [7]. In our RNA-seq analysis, both
lncRNAs (365 for dodder and 14 for soybean) and mRNAs (8894 for dodder and 74 for
soybean) were shown to move between dodder and soybean, strongly suggesting that
dodder is capable of transmitting lncRNAs between the two species, as with the mRNAs.
It is worth noting that the proportion of host/dodder lncRNAs (3.84%), as well as mRNAs
(0.83%), is much lower than that previous reported (more than 82.99%) [7,11], indicating
that the number of mobile mRNAs varies significantly in different parasitic systems, or
even in different studies on the same parasitic system. This may be because plants at differ-
ent growth stages and with different distances between sampled segments and interface
regions were used in these studies. Furthermore, lncRNAs and mRNAs with relatively
high abundance have a greater likelihood of moving into the other species than those with
relatively low abundance in the soybean–dodder system (Figure 5a,b). This result is in
line with previous findings that the abundance of mRNAs or proteins is likely a factor
that influences their mobility [7,11], strongly supporting the selective mobility of RNAs
and proteins in dodder bridge connections. Interestingly, we also found that mobile RNAs
with high abundance in dodder appear to be more expressed when they move into the
host (Figure 5c,d). These findings suggest that abundance is a major driving force for the
inter-plant mobility of macromolecules.

Unlike mRNA sequences, which can provide information to predict mRNA functions,
the sequence motifs of lncRNAs do not support functional prediction [53,57]. Generally,
lncRNAs can act in cis or trans roles through their sequence complementarity to RNA or
DNA—either as scaffolds or decoys—to regulate gene translation and expression [58]. In
this study, there were 150 mobile lncRNAs cis-targeting 200 genes within 100 kb of their
upstream and downstream, and 206 mobile lncRNAs trans-targeting 899 genes, based on the
complementary base-pairing (Figure 6), suggesting that they may participate in interspecific
communication by both cis and trans regular manners. Notably, in plants, lncRNAs can
serve as small RNA precursors in RNA interference [59], interact with the chromatin
remodeling complex to change the chromatin structure [60,61], act as an enhancer of
translation [62], and be involved in RNA processing [63]. LncRNAs can also bind to proteins
and assemble as a complex platform, or regulate protein–protein interactions [64,65]. Thus,
it should not be ignored that the mobile lncRNAs identified in our study may have some
additional regular functions, such as RNA interference and binding proteins, which could
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also regulate the biological processes in new species; this deserves exploration in future
research.

Although whether these long-distance mobile lncRNAs have activities and functions
in manipulating the host physiology remains to be determined, the following two lines of
indirect evidence strongly support the notion that some of the mobile miRNAs and proteins
still have biological functions after long-distance translocation: (1) Using transgenic hosts
expressing eGFP-GUS, GUS, LUC, PAT, and EPSPS, it has been demonstrated that these
proteins retained their activity after inter-plant movement [7]; and (2) several Arabidopsis
mRNAs are targeted by 22-nucleotide dodder miRNAs during parasitism, resulting in
mRNA cleavage, secondary siRNA production, and decreased mRNA accumulation [13].
Given that dodder has a very wide host range (across many plant families), it is logical to
speculate that lncRNAs with the same functions can be exchanged or transferred through
the haustorial connections between dodder and hosts. In this study, GO analysis on the
cis- and trans-target genes of mobile lncRNAs revealed that mobile dodder lncRNA target
genes were mainly enriched in “catalytic activity”, “response to stimulus”, and “signaling”
terms, whereas mobile soybean lncRNA target genes were enriched in organelle-related
categories (Figure 6). Many plant pathogens secrete effector proteins into plant cells to
suppress the host plant’s defenses [66]. In contrast, studies on the secretomes of soybean
have also indicated that the host mobile proteins may function in the recipient dodder by
modulating their physiology, such as altering the growth and development of subsequent
generations [7]. Together with our results, these observations thus favor a scenario in
which mobile transcripts transferred from the dodder into the host might participate in
signaling and nutrient redistribution, while the host mobile lncRNAs may provide feedback
which, in turn, influences the growth and development of the dodder (e.g., haustorium
establishment) [7].

TFs are vital regulators that can bond with corresponding cis-acting elements to mod-
ulate their target gene functions, including responses to biotic stresses and environmental
factors [67]. Recent studies have provided a comprehensive update on wheat TFs involved
in defense responses against pathogen infection [68]. In this paper, 49 TF families corre-
sponding to 635 targeted TFs were identified. Among them, the MYB, bHLH, NAC, C2H2,
and WRKY families, which have been revealed to respond to biotic stress and growth in
plants [43–45], accounted for a large proportion of these TFs. These results are similar to
those of previous proteome analyses on the transferability of MYB, bHLH, C2H2, bZIP, and
ARF TFs between host and dodder plants [7], suggesting their high biological importance
in forming a stable parasitic system.

The inferred lncRNAs–mRNAs/TFs network could be a potential mechanism regulat-
ing parasite–host plant interactions. With such networks, researchers are not only able to
evaluate the functions of lncRNA by means of well-studied protein-coding mRNA, but can
also deduce the lncRNAs related to mRNAs of interest. Indeed, we found that dodder lncR-
NAs related to “signaling” and “respond to stimulus” were transferred to soybeans, and
that some of these mobile lncRNAs and targeted mRNAs were co-transported to soybeans,
such as the pairs of MSTRG.20745.1 and Cuscuta_newGene_8241 (HD-ZIP) as well as
MSTRG.10219.19 and C013N0458G1 (Trihelix) (Figures 8 and 9). Consistently, at the physio-
logical level, we found that dodder parasitism resulted in marked oxidative damage in soy-
beans, meaning that ROS levels (mainly including H2O2) accumulated markedly, and that
lipid peroxidation (MDA content) was significantly aggravated in soybean plants. To allevi-
ate oxidative damage, the soybean antioxidant defense system was significantly activated
using osmotic adjustment substance (PRO) to scavenge the over-accumulated cellular ROS
to relatively low levels. Meanwhile, several soybean organelle-related lncRNAs were trans-
ferred to dodder, such as the pairs of MSTRG.75652.2 and Glyma.13G186700.Wm82.a2.v1
(LBD TF) as well as MSTRG.73584.1 and Glyma.13G023900.Wm82.a2.v1 (MADS TF) [69,70]
(Figures 8 and 9). Whether these co-transferred lncRNAs–mRNAs/TFs have functions
in the recipient plants remains to be elucidated. Further studies can select several of
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the lncRNAs–mRNAs/TFs modules mentioned above but not limit them for functional
analysis by reverse genetics, using existing mutant populations or through genome editing.
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Figure 9. The inferred lncRNA–mRNA interaction pathway of host soybean in response to dodder
parasitism. Heatmap of the expression level of the mobile lncRNAs and targeted mRNAs in the
tissues of dodder and soybean stems. The gene expression is based on the z-scores of log10(FPKM)
value. Below are the gene annotations of important target genes enriched in three terms, including
“signaling”, “response to stimulus”, and “organelle part”. The green and blue colors indicate dodder
and soybean transcripts, respectively.

Taken together, this study demonstrates that lncRNAs can be translocated bidirection-
ally between dodder and its host, and some mobile lncRNAs and their predicted target
mRNAs can co-transfer during parasitism (Figure 10; Figure S4). Although the functional
effects of these movements—especially lncRNA–mRNA interaction modules—need to be
further explored, the large-scale transfer of lncRNAs between parasite and host affects their
exchange of various substances and, therefore, likely play a key role in the establishment
and maintenance of parasitism. Dodder-mediated cross-species mobility of lncRNAs will
provide a critical database for further analysis of the parasitic systemic function of plant
lncRNAs.
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Figure 10. Mobile molecules in light of interaction with RNAs and DNA. Green represents parasite,
blue represents host. Solid lines represent direct evidence, dashed lines represent potential pathways
that currently lack evidence in this system. Kim et al. (2014), Shahid et al. (2018), and Yang et al.
(2019) represent supporting references: [11], [13], and [46], respectively. Bidirectional transfer of
lncRNAs was observed by RNA sequencing in this study, but the cross-species targeting of mobile
lncRNAs to foreign genes requires further experimental validation.

4. Materials and Methods
4.1. Plant Material and Sampling

Soybean seeds of Williams 82 and dodder seeds of C. australis were kindly provided
by Professor Bin Liu (Institute of Crop Sciences, Chinese Academy of Agricultural Sciences,
Beijing, China) and Professor Jianqiang Wu (Kunming Institute of Botany, Chinese Academy
of Sciences, Kunming, China), respectively. Soybean plants (G. max var Williams 82) were
grown in a greenhouse under a 12 h photoperiod (light intensity ~800 µmol/m2/s) at
26 ± 2 ◦C and 60 ± 5% relative humidity. The seeds of C. australis were submerged
in sulfuric acid for 30 min, then rinsed with water 10 times. The germinated Cuscuta
seedlings were twisted and spread on 2-week-old soybean plants. Three weeks after the
initiation of infestation (Supplementary Figure S1), three distinct regions were collected
for strand-specific RNA sequencing. As shown in Figure 3a, the three tissues included
interface regions where the haustoria were bound tightly to host tissues, 2 cm Cuscuta
stem segments 1 cm away from the attachment region, and 1 cm soybean segments 1 cm
above the attachment region. Three biological replicates were sampled for each tissue; each
sample consisted of a pool of 3–5 stem segments. All samples were immediately frozen in
liquid nitrogen and stored at −80 ◦C.

The photosynthetic index was measured using a LI-6400 portable photosynthesis
system (LI-COR, Lincoln, NE, USA) from 9:00 to 11:00 a.m. Physiological indicators,
such as soluble sugar, PRO, MDA, and H2O2, were determined using corresponding
reagent kits (KT-1-Y, PRO-1-Y, MDA-1-Y, H2O2-1-Y; Cominbio, Suzhou, Jiangsu, China;
http://www.cominbio.com/, accessed on 13 March 2020).

4.2. cDNA Library Construction and Sequencing

Total RNA from nine independent samples (three biological replicates of three tissue
groups) was isolated separately using TRIzol reagent (Invitrogen, Waltham, MA, USA),
according to the manufacturer’s instructions. A Ribo-Zero™ kit (Epicentre, Madison, WI,
USA) was used for rRNA removal from the total RNA sample, when the concentration,
integrity, and purity of the RNA samples were all qualified. Afterwards, the total RNA from
all samples was used to construct cDNA libraries using an Illumina NEBNext® UltraTM

Directional RNA Library Prep Kit (NEB, Ipswich, MA, USA). A total of nine libraries were
sequenced on an Illumina NovaSeq platform with 2 × 150 bp paired-end reads [71]. Clean

http://www.cominbio.com/
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data were obtained by removing reads containing contaminating read adapters, poly-N,
low-quality, and poor-quality reads from the raw data.

All libraries were assumed to contain a mixture of soybean and dodder sequences.
To confirm RNA transfer from soybean to dodder, HISAT2 (http://ccb.jhu.edu/software/
hisat2/index.shtml, accessed on 7 February 2020) was used to map cleaned reads from the
dodder samples to the C. australis genome, and the unmapped reads were matched against
the soybean reference genome (Wm82.a2.v1) [40]; if it did not match either genome (for ex-
ample, due to sequencing errors), it was filtered out. The resulting soybean sequences were
identified as mobile RNAs from soybean to dodder. Mobile RNAs of soybean samples were
identified in a similar manner. The mapped reads from each library were assembled using
the StringTie software (http://ccb.jhu.edu/software/stringtie/, accessed on 13 February
2020) and the FPKMs of both lncRNAs and mRNAs were calculated [72].

LncRNAs were identified based on their characteristics, according to the pipeline
(Figure 2a) as follows [73,74]: (1) the class_code of transcripts was selected as “i”, “x”,
“u”, “o” or “e”; (2) transcripts with length ≥200 nt and exon count ≥2 were selected;
(3) transcripts with FPKM ≥0.1 were selected; (4) transcripts that passed the protein-
coding score test with Coding Potential Calculator (CPC), Coding-Non-Coding Index
(CNCI), and the Coding Potential Assessment Tool (CPAT) were removed; and (5) the
remaining transcripts that contained protein-coding domains were removed by alignment
with the Pfam databases [75–78]. Various types of lncRNAs, including lincRNAs, antisense
lncRNAs, sense lncRNAs, and intronic lncRNAs, were identified using cuffcompare [79].
All sequencing reads generated from the Illumina NovaSeq platform are available in NCBI
SRA: SRR15100082-90 (https://www.ncbi.nlm.nih.gov/sra, accessed on 14 July 2021).

4.3. Analysis of Mobile lncRNAs and mRNAs

The cis and trans target genes of mobile lncRNAs were predicted, in order to analyze
their functions. Protein-coding genes spaced less than 100 kb upstream and downstream of
lncRNAs were identified to predict putative target neighboring genes of cis-acting lncRNAs,
and the LncTar software was used to analyze the complementary base pairing between
lncRNAs and mRNAs [80].

Venn diagram analyses were performed through an online platform (http://bioinfogp.
cnb.csic.es/tools/venny/, accessed on 23 May 2021). The cluster analysis and expression
pattern were carried out using the MEV 4.9 software through the hierarchical clustering
and the K-means clustering method. GO enrichment analysis of mobile transcripts was
performed using WEGO 2.0 (https://wego.genomics.cn, accessed on 1 June 2021) and
agriGO 2.0 (http://systemsbiology.cau.edu.cn/agriGOv2, accessed on 1 June 2021). TFs
were predicted and classified into various families using the BMK Cloud Server platform
(http://www.biocloud.net/, accessed on 7 June 2021). Finally, the regulatory networks
were constructed using the Cytoscape 3.7.2 software between lncRNA–mRNA/TF [81].

4.4. RT-PCR Confirmation

The total RNA of all samples used for the transcriptome analysis was also used to
generate cDNA for RT-PCR validation. Gene-specific primers for RT-PCR were designed
using the DNAMAN software (Lynnon BioSoft, Canada, accessed on 3 July 2021), and are
given in Supplementary Table S6. Three technical replicates were assayed for each sample.

5. Conclusions

In this study, we showed, for the first time, that lncRNAs can be translocated within
the dodder–soybean parasitic system through high-throughput sequencing. A total of
6580 lncRNAs were identified, among which 365 dodder and 14 soybean lncRNAs were
found in soybean and dodder stems, respectively. It was shown that these lncRNAs
are selectively mobile, preferring to move when more abundant. We also predicted that
255 mobile dodder lncRNAs might regulate 1045 mRNAs, and 14 mobile soybean lncRNAs
might regulate 52 mRNAs. GO enrichment showed that the mobile dodder lncRNA target
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genes were mainly enriched in “catalytic activity”, “response to stimulus”, and “signaling”
terms, while mobile soybean lncRNA target genes were enriched in organelle-related
terms. Furthermore, the inferred lncRNAs-mRNAs/TFs network may provide a potential
mechanism for further analysis of the systemic function of mobile lncRNAs. Our findings
not only provide new insight into the mechanism of the dodder–host interaction, but also
add another means of interspecific communication to the previously identified transfer of
mRNAs, microRNAs, proteins, and systemic signals.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms23010561/s1.

Author Contributions: Y.W.: Conceptualization, Methodology, Validation, Formal analysis, In-
vestigation, Data curation, Writing—original draft, Visualization. D.L.: Methodology, Validation,
Writing—review & editing, Visualization. L.F.: Validation, Formal analysis, Investigation. Q.Z.:
Formal analysis, Investigation. W.L.: Investigation. Z.L.: Conceptualization, Methodology, Resources,
Writing—review & editing, Project administration, Funding acquisition, Supervision. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (32071862),
the National Natural Science Foundation of China (31722055) and the Major science and Technology
Project of Gansu Province (19ZD2NA002).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All sequencing reads generated from the Illumina NovaSeq platform
are available in NCBI SRA: SRR15100082-90 (https://www.ncbi.nlm.nih.gov/sra, accessed on 14 July
2021). Other data sets supporting the conclusions of this article are included within the article and its
additional files.

Acknowledgments: We acknowledge Jianqiang Wu at Kunming Institute of Botany, Chinese Academy
of Sciences for valuable help and advice on transcriptome analyses and manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Vogel, A.; Schwacke, R.; Denton, A.K.; Usadel, B.; Hollmann, J.; Fischer, K.; Bolger, A.; Schmidt, M.H.W.; Bolger, M.E.; Gundlach,

H.; et al. Footprints of parasitism in the genome of the parasitic flowering plant Cuscuta campestris. Nat. Commun. 2018, 9, 2515.
[CrossRef]

2. Goldwasser, Y.; Lanini, W.T.; Wrobel, R.L. Tolerance of tomato varieties to lespedeza dodder. Weed Sci. 2001, 49, 520–523.
[CrossRef]

3. Clarke, C.R.; Timko, M.P.; Yoder, J.I.; Axtell, M.J.; Westwood, J.H. Molecular dialog between parasitic plants and their hosts. Annu.
Rev. Phytopathol. 2019, 57, 279–299. [CrossRef] [PubMed]

4. Hosford, R.M. Transmission of plant viruses by dodder. Bot. Rev. 1967, 33, 387–406. [CrossRef]
5. Birschwilks, M.; Haupt, S.; Hofius, D.; Neumann, S. Transfer of phloem-mobile substances from the host plants to the holoparasite

Cuscuta sp. J. Exp. Bot. 2006, 57, 911–921. [CrossRef]
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