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Background: Transcranial direct current stimulation (tDCS) is a non-invasive brain
stimulation to modulate cortical activity for improving motor function. However, the
information of tDCS stimulation on different brain regions for dual-task walking and
cortical modulation in Parkinson’s disease (PD) has not yet been compared.

Objective: The objective of this study was to investigate the effects of different tDCS
targets on dual-task gait performance and cortical activity in patients with PD.

Methods: A total of 36 participants were randomly assigned to primary
motor cortex (M1) tDCS, dorsal lateral prefrontal cortex (DLPFC) tDCS,
cerebellum tDCS, or Sham tDCS group. Each group received 20 min of tDCS
stimulation, except for the Sham group. Gait performance was measured by
the GAITRite system during dual-task walking and single walking. Corticomotor
activity of the tibialis anterior (TA) was measured using transcranial magnetic
stimulation (TMS). The functional mobility was assessed using the timed up
and go (TUG) test.

Results: All participants showed no significant differences in baseline data. Following
the one session of tDCS intervention, M1 (p = 0.048), DLPFC (p < 0.001), and
cerebellum (p = 0.001) tDCS groups demonstrated significant improvements in dual-
task gait speed compared with a pretest. The time× group interaction [F (3, 32) = 5.125,
p = 0.005] was detected in dual-task walking speed. The post hoc Tukey’s test showed
that the differences in gait speed were between the Sham tDCS group and the DLPFC
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tDCS group (p = 0.03). Moreover, DLPFC tDCS also increased the silent period (SP)
more than M1 tDCS (p = 0.006) and Sham tDCS (p = 0.002).

Conclusion: The results indicate that DLPFC tDCS exerted the most beneficial effects
on dual-task walking and cortical modulation in participants with PD.

Clinical trial registration: [http://www.thaiclinicaltrials.org/show/TCTR20200909005],
Thai Clinical Trials Registry [TCTR20200909005].

Keywords: tDCS, different targets, single-session effects, dual-task gait, cortical activity, Parkinson’s disease

INTRODUCTION

Parkinson’s disease (PD) is a degenerative neurological disease
due to the loss of dopaminergic neurons in the substantia nigra
pars compacta in basal ganglia (BG) (Lees et al., 2009). With
impaired interactions among cortico-BG-cerebellar circuits, the
deficits in gait performance are frequently seen in individuals
with PD (Hausdorff et al., 1998). In addition to classical motor
symptoms, cognitive symptoms are widely accepted as part of the
clinical feature in individuals with PD. These motor and cognitive
impairments increased their difficulties to perform complex
daily activities, such as dual-task walking (i.e., responding to a
cognitive demanding task while walking) (Benecke et al., 1986;
Raffegeau et al., 2019). According to a meta-analysis, the gait
speed and stride length decreased under the condition of dual-
task walking as compared with single walking in people with PD
(Raffegeau et al., 2019). These significant difficulties in dual-task
walking may lead to increased disability, fall risks, and decreased
quality of life in people with PD (Kelly et al., 2012). Therefore,
how to improve the dual-task walking performance is crucial
for people with PD.

In addition to deficits in cortico-BG-cerebellar circuits, 33
studies demonstrated abnormal activity in primary motor cortex
(M1), dorsal lateral prefrontal cortex (DLPFC), and cerebellum
during dual-task performance in patients with PD (Wu and
Hallett, 2005; Nieuwhof et al., 2016; Al-Yahya et al., 2019). It
has been suggested that abnormal plasticity within M1 reflects
a loss of coordination among the BG, cerebellar, and cortical
inputs and eventually causes motor impairments in PD (Gaspar
et al., 1991; Kishore et al., 2014). The decreased M1 inhibition
during resting was reported in people with PD by transcranial
magnetic stimulation (TMS) (Rossini et al., 2015), which may be
one of the compensations for the cortico-BG-cerebellar deficit.
Furthermore, the pattern of hypo-activation between the cortical
area and striatum was associated with gait impairment in PD
(Shine et al., 2013). Therefore, modulating brain activities might
be a strategy for motor improvement, especially the complex
movement, such as dual-task walking in individuals with PD.

Abbreviations: BG, basal ganglia; CV, coefficients of variation; DLPFC, dorsal
lateral prefrontal cortex; DTC, dual-task cost; EMG, electromyography; M1,
primary motor cortex; MEP, motor evoked potential; MMSE, Mini-Mental State
Examination; PD, Parkinson’s disease; RMT, resting motor threshold; SP, silent
period; TA, tibialis anterior; tDCS, transcranial direct current stimulation; TMS,
transcranial magnetic stimulation; TUG, timed up and go test; UPDRS, Unified
Parkinson’s Disease Rating Scale.

The transcranial direct current stimulation (tDCS) is a non-
invasive technique to modulate cortical excitability (Sánchez-
Kuhn et al., 2017). Anodal tDCS has been considered not only
to alter cortical excitability but also to exert subcortical effects
(Polanía et al., 2012). Fregni et al. (2006) indicated that a single
session of M1 tDCS improved upper extremity performance.
Moreover, Ferrucci et al. (2016) demonstrated that 5 sessions
of cerebellum tDCS decreased the disease severity as indicated
by the Unified Parkinson’s Disease Rating Scale (UPDRS). The
previous study suggested that the lateral cerebellar region plays
an important role in the complex motor task, such as dual-task
walking (Ilg and Timmann, 2013). Furthermore, a recent review
suggested that cerebellum may be the potential tDCS target area
to improve the gait performance in people with PD (Potvin-
Desrochers and Paquette, 2021). In contrast, as mentioned earlier,
walking in daily activities demands interactions between motor
and cognitive control, particularly, executive function (Yuan and
Raz, 2014). The DLPFC has been recognized as the key area for
executive function, and the relative DLPFC activations during
gait can be demonstrated via dual-task walking (Collette et al.,
2005; Beurskens et al., 2014). Evidence also showed that a single
session of DLPFC tDCS improved balance and mobility (Manenti
et al., 2014; Lattari et al., 2017). Taking together, the potential
use of tDCS has been demonstrated for people with PD in
neurorehabilitation. However, it is not known whether different
tDCS targets would modulate the brain differently to result in
different effects on motor performance. Therefore, this study
aimed to compare the different tDCS targets in brain modulation
and dual-task walking performance in individuals with PD.

MATERIALS AND METHODS

Subjects
This study protocol was approved by the Institutional Review
Board of Taipei Veterans General Hospital and Ministry of
Health and Welfare. This trial was registered at https://www.
clinicaltrials.in.th/(TCTR20200909005) and conformed to the
CONSORT checklist. Participants who were diagnosed with
idiopathic PD by neurologists (J-LF and H-LC) were recruited
from Taipei Veterans General Hospital. The age, gender, duration
since the diagnosis of PD, and medications were obtained from
the detailed clinical interviews and medical charts. Inclusion
criteria were as follows: (1) stages 1–3 on the Hoehn and Yahr
scale, (2) ability to walk independently for at least 10 m without
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the use of walking aids, (3) stable medical condition, and (4) a
score of ≥ 24 on the Mini-Mental State Examination (MMSE).
Exclusion criteria were as follows: (1) history of diseases or
conditions known to interfere with participating in this study
(e.g., epilepsy or metal implants in the brain) and (2) history of
using central nervous system medications other than for PD, e.g.,
antiepileptic or antidepressant drugs in recent months. In total,
51 individuals were identified as potential subjects. Of these, 36
participants provided informed consent for participation in this
study (Figure 1).

Experimental Design
This study was a double-blinded, randomized, controlled trial
with pre- and post-measurements. An individual who was not
involved in this study selected the sealed envelopes to assign
participants to one of the four groups (i.e., M1 tDCS group,
DLPFC tDCS group, cerebellum tDCS group, and Sham tDCS
group) by the block of 2 randomizations. The cortical activities
followed by gait performance were measured before (pretest) the
real (or Sham) tDCS by the assessor who was blinded to the
group assignment (assessor blinded) (Figure 1). Participants were
blinded to their group assignment (participants blinded) and
received one session of real or Sham tDCS for 20 min according
to the group assignment. After 20 min of tDCS, all participants
were measured the cortical activities immediately after tDCS and
gait performance for 30 min after tDCS. All interventions and
assessments were carried out with patients in the “on” status.

Intervention
The stimulation was delivered by a current stimulator (Eldith
DC Stimulator, NeuroConn, Germany) through a pair of 35 cm2

electrodes with a maximal output of 2 mA. The stimulation
intensity was set to 2 mA for 20 min.

a. M1 tDCS group: The anode was placed over the M1 of
the dominant hemisphere (C3 according to EEG 10/20
system), and the cathode was placed over the contralateral
supraorbital ridge (Fregni et al., 2006).

b. DLPFC tDCS group: The anode was placed over the
DLPFC of the dominant hemisphere (F3 according to
EEG 10/20 system), and the cathode was placed over
the contralateral supraorbital ridge (Fregni et al., 2006;
Lattari et al., 2017).

c. Cerebellum tDCS group: The anode was placed 1 cm
below and 2 cm lateral to the inion over the dominant
hemisphere, and the cathode was placed over the
contralateral supraorbital ridge (Ferrucci et al., 2015).

d. Sham tDCS group: The electrodes were positioned as
described in the M1 tDCS group. However, the current was
delivered only for the first 60 s, with a ramp up and ramp
down for 30 s.

Outcome Measures
Primary Outcome Measures
The primary outcome of this study was dual-task walking
performance measured by a GAITRite system (CIR system,
Inc., Havertown, PA, United States) (Yang et al., 2019). The

GAITRite system is 4.75 m long and 0.9 m wide, and the
pressure-sensitive area of the walkway is 4.30 m long and 0.61 m
wide. The dual-task walking was walking while performing
serial subtracting by three, starting from a randomized 3-
digit number at a comfortable speed. The walking trial was
repeated three times with 60 s rest in between. The average
of the three trials of each walking condition was used for
data analysis. Gait parameters of interest were speed, cadence,
stride time, stride length, and coefficients of variation (CV) of
stride time and stride length. The formula of CV is standard
deviation/mean × 100%. A lower CV value means a more
consistent gait pattern (Yang et al., 2013). In addition, the
dual-task cost (DTC) was calculated to indicate the dual-
task interference. The formula of DTC was DTC = (dual-task
walking speed – single-task walking speed)/single-task walking
speed× 100% (Yang et al., 2019).

Secondary Outcome Measures
The secondary outcomes included corticomotor activity, single
walking performance, and functional mobility.

Corticomotor Activity
The resting motor threshold (RMT), motor evoked potentials
(MEPs), and silent period (SP) duration of the tibialis anterior
(TA) elicited by TMS (Magstim 200 magnetic stimulator;
Magstim Company, Whiteland, Dyfed, United Kingdom) were
used to indicate the corticomotor activity. The MEPs of TA
were recorded by an electromyographic (EMG) machine in
response to TMS delivered through a double-cone coil placed
on the M1 with participants lying supine wearing a fitted cap
marked with a coordinate system (distance, 1 cm). The optimal
scalp location (hot spot) was determined by moving the TMS
stimulator over the scalp in 1-cm steps. Once the hot spot was
identified, a single-pulse TMS was delivered to the location to
determine the RMT, as the lowest stimulus intensity necessary
to elicit MEPs greater than 0.05-mV peak-to-peak amplitude
in at least 5 of 10 consecutive stimuli (Yang et al., 2013). The
RMT was expressed as a percentage of maximum stimulator
output, which reflects the excitability of motor cortex (Groppa
et al., 2012). The MEPs were measured at an intensity of 120%
RMT, and the peak-to-peak amplitudes of the MEPs of 10
trials were collected and averaged. The amplitude of MEPs is
thought to represent the corticospinal excitability of the M1
(Groppa et al., 2012). Both RMT and MEP were considered
to be mediated by the glutamatergic system indicated by the
TMS-pharmacological study (Kapogiannis and Wassermann,
2008; Paulus et al., 2008). The SP duration was determined
during isometric voluntary contraction of TA. Ten magnetic
stimuli were applied at an intensity of 120% RMT, while the
participant performed maximum of 20% voluntary contraction.
The intensity used in the post-assessment was the same as that
used in the pre-assessment. The SP duration was determined
from the MEP onset to the recurrence of at least 50% of EMG
background activity (Yang et al., 2013). The neurophysiological
phenomenon of SP is thought to be due to inhibition mechanisms
of the motor cortex mediated through the GABAergic system
(Werhahn et al., 1999).
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FIGURE 1 | Flowchart of the patient inclusion and study procedures.

Single Walking Performance
The single walking performance was also measured using
the GAITRite system. For a single walking performance, the
participants walked at their comfortable speed without additional
tasking. The average of the three trials was used for data analysis.

Timed Up and Go Test
The timed up and go (TUG) was used to evaluate the functional
mobility. The participants were seated in a chair and were
instructed to stand up, walk 3 m, turn around, walk back to
the chair, and then sit down. We recorded the time needed
to complete this task. A high reliability of this test has been
documented in individuals with PD (Morris et al., 2001).

Statistical Analysis
All analyses were performed using the SPSS version 24.0.
Descriptive statistics [mean ± standard deviation, frequency,
or median (interquartile range)] were generated for all
variables. The Shapiro–Wilk test was used to assess the
normal distributions. The intergroup difference of baseline
(pretest) data was analyzed by using the Kruskal–Wallis test and
one-way ANOVA for continuous variables or χ2 test for nominal
scales. Accordingly, the two-way repeated measures ANOVA
(group × time) was used for intergroup comparisons of dual-
task walking, single walking, and TUG performance, followed
by the post hoc Tukey’s test with the Bonferroni correction,
which multiplied the uncorrected p-values by 6 for multiple
comparisons between four groups, if there was group × time
effect. The post hoc paired t-test was used to examine significance
between pre- and post-data if there was a significant time effect.
The Kruskal–Wallis one-way ANOVA was used for intergroup
comparisons of change values in corticomotor activity due to

not being normally distributed, followed by the post hoc Mann–
Whitney U tests with the Bonferroni correction. The intragroup
difference was thus analyzed by the Wilcoxon signed-rank test.
The change values of corticomotor activity were calculated by
subtracting the baseline data from the post-intervention data.
Statistical significance was set at p < 0.05. The sample size was
calculated using the G-Power version 3.1.9.7. Although the effect
size was 0.85 for tDCS in improving dual-task gait performance
in patients with PD (Mishra and Thrasher, 2021), in this study,
we chose a relatively smaller effect size of 0.518 according to the
study by Kaski et al. (2014). The total sample size was required to
be 36 (9 per group) with a power of 0.80 and a two-tailed alpha
level of 0.05 to detect a difference in gait performance.

RESULTS

A total of 51 patients were screened for the eligibility of
participating in this study. As a result, 36 patients were included
in this study and were randomly assigned to the M1 tDCS group
(n = 9), DLPFC tDCS group (n = 9), cerebellum tDCS group
(n = 9), or Sham tDCS group (n = 9). Participants received
20 min of tDCS according to their group assignment. None of
them reported any adverse events or withdrew from this study
(Figure 1). No significant differences between groups were found
in baseline demographic characteristics (Table 1) and all outcome
measures at the pre-intervention assessment.

Dual-Task Walking Performance
Table 2 shows the dual-task walking performance at pre- and
post-intervention for 4 study groups. Regarding the dual-task gait
parameters, there was no group effect [F(3, 32) = 2.237, p = 0.103]
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TABLE 1 | Demographic characteristics of included participants with Parkinson’s disease.

Group M1 group (n = 9) DLPFC group (n = 9) Cerebellum group (n = 9) Sham group (n = 9) P value

Age (years) 54.20 ± 4.1 50.09 ± 2.4 61.30 ± 7.9 58.30 ± 8.0 0.60

Gender (M/F) 8/1 6/3 2/7 3/6 <0.01

H&Y stage 1.89 ± 0.6 1.67 ± 0.5 2.13 ± 0.6 1.78 ± 0.7 0.75

More affected side (L/R) 2/7 1/8 2/7 1/8 0.85

Duration of diagnosed (months) 93.54 ± 68.2 73.81 ± 39.2 49.11 ± 39.3 100.18 ± 147.0 0.43

UPDRS 33.22 ± 13.1 25.56 ± 17.0 24.22 ± 9.9 23.44 ± 14.7 0.48

MMSE 28.11 ± 1.8 28.89 ± 1.8 27.33 ± 2.2 28.89 ± 2.0 0.29

LEDD (mg) 592.1 ± 208.2 603.89 ± 357.3 468.22 ± 212.1 426.11 ± 243.7 0.41

M, male; F, female; H&Y, Hoehn and Yahr stage; L, left; R, right; MMSE, Mini-Mental State Examination; LEDD: levodopa equivalent daily dosage.

TABLE 2 | Dual task walking performance after different tDCS interventions.

Group M1 group
(n = 9)

DLPFC group
(n = 9)

Cerebellum
group
(n = 9)

Sham group
(n = 9)

Time Group Time × group Post-hoca

p-value, p-value, p-value,

F-value F-value F-value, η2

Speed(cm/sec) <0.001, 0.103, 0.005, DLPFC vs. Sham

F (3,32) = 56.616 F (3,32) = 2.237 F (3,32) = 5.125, 0.325

Pre 97.48 ± 29.2 78.99 ± 26.3 70.74 ± 23.2 90.01 ± 22.4

Post 107.94 ± 29.6# 98.49 ± 24.9# 87.54 ± 24.6# 92.77 ± 24.4

Cadence (step/min) <0.001, 0.182, 0.005, –

F (3,32) = 41.497 F (3,32) = 1.723 F (3,32) = 5.180, 0.327

Pre 108.60 ± 12.9 104.87 ± 20.1 87.24 ± 27.9 108.41 ± 19.2

Post 113.32 ± 14.2 119.18 ± 16.8# 93.33 ± 19.2# 111.20 ± 20.5

ST (sec) 0.004, 0.237, 0.023, –

F (3,32) = 9.628 F (3,32) = 1.487 F (3,32) = 3.649, 0.255

Pre 1.12 ± 0.1 1.19 ± 0.2 1.23 ± 1.0 1.16 ± 0.3

Post 1.08 ± 0.1 1.02 ± 0.1# 1.15 ± 0.3 1.14 ± 0.3

SL (cm) <0.001, 0.100, 0.031, –

F (3,32) = 22.069 F (3,32) = 2.267 F (3,32) = 3.340, 0.238

Pre 106.12 ± 22.5 89.02 ± 18.9 84.83 ± 24.6 100.11 ± 18.3

Post 112.95 ± 22.0# 98.32 ± 14.7# 92.18 ± 18.8# 99.30 ± 18.7

ST variability (%) 0.047, 0.832, 0.239, –

F (3,32) = 4.287 F (3,32) = 0.291 F (3,32) = 1.476, 0.122

Pre 5.63 ± 5.5 5.06 ± 4.5 16.23 ± 18.7 4.80 ± 3.1

Post 3.59 ± 2.5 3.13 ± 1.1 7.34 ± 3.8 4.58 ± 4.1

SL variability (%) 0.385, 0.319, 0.936, –

F (3,32) = 0.777 F (3,32) = 1.217 F (3,32) = 0.138, 0.013

Pre 4.64 ± 3.3 5.20 ± 3.0 7.16 ± 4.1 4.38 ± 2.1

Post 4.11 ± 3.3 4.15 ± 2.0 6.39 ± 3.3 4.46 ± 2.2

DTC (%) 0.006, 0.078, 0.140, –

F (3,32) = 8.779 F (3,32) = 2.493 F (3,32) = 1.957, 0.155

Pre −15.19 ± 17.5 −20.31 ± 25.7 −18.31 ± 22.1 −10.14 ± 11.2

Post −12.27 ± 9.0 −13.53 ± 18.4#
−13.54 ± 20.0 −8.97 ± 14.0

Data are presented as the mean ± SD (The Shapiro–Wilk test was used to determine the values are normally distributed). ST, stride time; SL, stride length; DTC, dual task
cost. #p < 0.05 for intragroup comparison (Analyzed using paired t-test). aThe Tukey’s post-hoc test with Bonferroni correction was used to determine the intergroup
differences.

but a significant effect of time [F(3, 32) = 56.616, p < 0.001]
and time × group interaction [F(3, 32) = 5.125, p = 0.005].
The post hoc Tukey’s test with the Bonferroni correction showed
that the differences in gait speed were between the Sham tDCS
group and the DLPFC tDCS group (p = 0.03) (Figure 2). The

cadence showed no group effect [F(3, 32) = 1.723, p = 0.182)
but a significant effect of time [F(3, 32) = 41.497, p < 0.001] and
time × group interaction [F(3, 32) = 5.180, p = 0.005]. However,
the post hoc Tukey’s test with the Bonferroni correction did not
show any group difference in cadence. The stride time showed
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FIGURE 2 | Results of gait speed during dual-task walking performance after different transcranial direct current stimulation (tDCS) stimulations. Data are presented
as the mean ± SD. #P < 0.05: intragroup comparison. *P < 0.05: intergroup comparison.

no group effect [F(3, 32) = 1.487, p = 0.237] but a significant
effect of time [F(3, 32) = 9.628, p = 0.004) and time × group
interaction [F(3, 32) = 3.649, p = 0.023]. However, the post hoc
Tukey’s test with the Bonferroni correction did not show any
group difference in stride time. The stride length showed no
group effect [F(3, 32) = 2.267, p = 0.100] but a significant effect of
time [F(3, 32) = 22.069, p < 0.001] and time× group interaction
[F(3, 32) = 3.340, p = 0.031]. However, the post hoc Tukey’s test
with the Bonferroni correction did not show any group difference
in stride length.

Furthermore, two-way repeated ANOVA indicated
several significant time effects. The post hoc paired t-test
showed a significant increase in gait speed [t(8) = −6.963,
p < 0.001], cadence [t(8) = −6.659, p < 0.001], and
stride length [t(8) = −3.761, p = 0.006] and a decrease
in stride time [t(8) = 4.600, p = 0.002] after DLPFC
tDCS intervention. In addition, the post hoc paired
t-tests indicated that patients in cerebellum tDCS group
significantly increased in gait speed [t(8) = −5.231,
p = 0.001], cadence [t(8) = −3.499, p = 0.008], and stride
length [t(8) = −2.610, p = 0.031] and patients in M1 tDCS
group significantly increased in gait speed [t(8) = −2.338,
p = 0.048] and stride length [t(8) = −2.492, p = 0.037] after
tDCS intervention.

Corticomotor Activity
Table 3 shows the cortical activity of M1 measured by the
TMS before and after tDCS interventions. After the DLPFC
tDCS stimulation, the SP of stimulating hemisphere increased
significantly more than M1 tDCS (p = 0.038) and Sham tDCS
(p = 0.001) (Figure 3). However, there was no significant
difference in other groups. In contrast, the corticomotor activity
of non-stimulating hemisphere did not change in this study.

Single Walking Performance
Table 4 shows the single walking performance after different
tDCS interventions. We found no significant time and group
interaction for all gait parameters of single walking but a
significant time effect. The post hoc paired t-test showed that
a significant increase in gait speed [t(8) = −2.528, p = 0.035]
and cadence [t(8) = −3.291, p = 0.011] after DLPFC tDCS
intervention. In M1 tDCS group, the post hoc paired t-test
showed a significant increase in stride length [t(8) = −3.315,
p = 0.011] after tDCS intervention.

Timed Up and Go Performance
The results of TUG after different tDCS are shown in Table 4. We
found no significant group effect [F(3, 32) = 0.289, p = 0.832],
time effect [F(3, 32) = 0.006, p = 0.939], and group × time
interactions [F(3, 32) = 1.174, p = 0.335]. In addition, there was
no significant difference in intragroup comparisons.

DISCUSSION

This randomized, double-blinded, controlled trial was the first
study to compare the immediate neuromodulation effects of
different tDCS targets on dual-task walking performance in
individuals with PD. In this study, we found that only the tDCS
on DLPFC increased cortical inhibition and exerted the most
beneficial effects to improve dual-task walking in people with PD
as compared with tDCS on M1 or Sham tDCS.

In this study, the improvements in dual-task walking
coupled with increased SP duration were demonstrated after
DLPFC tDCS. The change in dual-task gait speed was highly
correlated with change in SP (Spearman’s correlation ρ = 0.733,
p = 0.025). Wu et al. (2007) noted that shorter SP duration was
associated with worse PD symptoms. We previously found the
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TABLE 3 | Corticospinal activity after different tDCS interventions.

Group M1 group (n = 9) DLPFC group (n = 9) Cerebellum group (n = 9) Sham group (n = 9) p

Pre Post Pre Post Pre Post Pre Post

RMTIH (%) 51.00 55.00 58.00 58.00 65.00 65.00 61.80 62.00

(46.00, 58.00) (50.00, 62.00) (47.00, 67.00) (47.00, 70.00) (60.00, 69.00) (59.00, 69.00) (53.50, 73.50) (53.00, 74.00)

Change values 2.00 (0.00, 2.00) 0.00 (−1.00, 1.00) 0.00 (−1.00, 0.00) 0.00 (−1.00, 0.00) 0.063

RMTCH (%) 53.00 55.00 56.00 58.00 59.00 60.00 52.00 52.00

(49.00, 57.00) (48.00, 61.0 0) (49.50, 75.00) (50.00, 72.00) (48.00, 63.00) (53.00, 62.00) (45.00, 62.00) (45.00, 62.00)

Change values 2.00 (−1.00, 3.00) 0.00 (−2.50, 1.50) 2.00 (−1.00, 5.00) 0.312

MEPIH (uV) 418.66 341.38 416.77 315.18 630.78 763.50 329.06 292.61

(289.89, 593.17) (204.45, 773.70) (276.68, 610.96) (395.45, 208.47) (547.20, 858.11) (361.21, 1068.26) (159.31, 483.07) (138.75, 387.26)

Change values 30.79 (−164.05, 367.42) −71.10 (−285.29, −41.78) 69.07 (−76.46, 248.79) −3.01 (−69.25, 8.40) 0.240

MEPCH (uV) 533.55 696.96 408.38 491.19 589.37 516.62 415.82 431.05

(315.18, 939.84) (289.53, 967.77) (252.60, 580.35) (333.53, 773.04) (494.40, 778.99) (296.92, 750.30) (247.63, 601.53) (220.53, 556.67)

Change values 47.14 (−344.16, 348.62) 67.87 (−59.22, 224.94) −103.92 (−367.59, 177.84) −20.77 (−43.49, 8.17) 0.678

SPIH (ms) 144.59 140.02 138.21 139.33 142.29 145.58 141.98 137.44

(113.82, 165.44) (105.91, 163.32) (118.58, 159.36) (126.41, 169.31)# (117.51, 165.21) (127.09, 157.54) (118.17, 215.04) (106.77, 211.84)

Change values −5.11 (−13.52, 5.19) 8.50 (3.13, 14.79)a,s 2.48 (−3.36, 9.72) −5.25 (−8.67, −1.50) 0.007

SPCH (ms) 134.68 132.57 135.59 135.18 136.99 142.94 127.95 135.55

(124.78, 151.61) (118.94, 160.67) (116.16, 151.57) (117.18, 148.02) (123.75, 257.60) (126.98, 155.93) (118.98, 141.38) (121.44, 145.47)

Change values 2.25 (−14.66, 9.06) −0.41 (−2.84, 1.85) 0.83 (−3.69, 6.39) 1.84 (−6.51, 13.81) 0.822

Data are presented as the median (Interquartile range) (The Shapiro–Wilk test was used to determine the values are not normally distributed). IH, ipsilateral hemisphere
relatively to the stimulating side; CH, contralateral hemisphere relatively to the stimulating side. Change values were calculated by subtracting the baseline data from the
post-test data. ap < 0.05 as compared with M1 group; sp < 0.05 as compared with Sham group.

FIGURE 3 | Changes in silent period of ipsilateral hemisphere relatively to the stimulating side after different tDCS stimulations. Data are presented as the median
(interquartile range). #P < 0.05: intragroup comparison. *P < 0.05: intergroup comparison.

lengthening in SP duration and improvement of single walking
performance after the combination of high-frequency repetitive
transcranial magnetic stimulation (rTMS) and treadmill training
in patients with PD (Yang et al., 2013). Fisher et al. (2008)
demonstrated the SP lengthening associated with walking
improvements after treadmill training and thus speculated SP
lengthening could restore the normal motor processing in
people with PD. Recent studies have provided the evidence

for the potential of one session of DLPFC tDCS to enhance
dopamine release in the striatum (Fonteneau et al., 2018; Fukai
et al., 2019). A previous study also reported that dopaminergic
treatment could prolong SP duration in patients with PD and
suggested that SP may be modulated by the dopamine system
(Nakashima et al., 1995). Furthermore, the recent study showed
tDCS-induced dopamine release and GABA changes, which
contributes to the phenomenon of SP (Bunai et al., 2021). Taking
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TABLE 4 | Single walking and timed up and go performance after different tDCS interventions.

Group M1 group
(n = 9)

DLPFC group
(n = 9)

Cerebellum
group (n = 9)

Sham group
(n = 9)

Time Group Time × group

p-value, F-value p-value, F-value p-value, F-value, η2

Single walking

Speed (cm/sec) <0.001,
F (3,32) = 15.272

0.056,
F (3,32) = 2.800

0.197,
F (3,32) = 1.653, 0.134

Pre 113.94 ± 22.1 101.14 ± 21.4 87.19 ± 21.8 101.17 ± 18.9

Post 121.59 ± 26.6 114.30 ± 19.3# 92.18 ± 22.7 103.50 ± 19.4

Cadence (step/min) 0.012,
F (3,32) = 7.176

0.117,
F (3,32) = 2.119

0.058,
F (3,32) = 2.764, 0.206

Pre 120.09 ± 8.4 116.86 ± 12.0 107.78 ± 11.9 120.26 ± 8.4

Post 121.41 ± 12.0 124.44 ± 12.5# 112.16 ± 13.3 119.93 ± 10.0

ST (sec) 0.792,
F (3,32) = 0.070

0.102,
F (3,32) = 2.250

0.052,
F (3,32) = 2.858, 0.211

Pre 1.01 ± 0.1 1.04 ± 0.1 1.12 ± 0.1 0.88 ± 0.3

Post 1.01 ± 0.1 0.97 ± 0.1 1.09 ± 0.2 1.01 ± 0.1

SL (cm) <0.001,
F (3,32) = 16.406

0.067,
F (3,32) = 2.623

0.130,
F (3,32) = 2.023, 0.159

Pre 113.55 ± 18.8 103.31 ± 14.9 96.41 ± 16.4 100.68 ± 14.6

Post 120.33 ± 19.7# 110.27 ± 11.0 97.59 ± 17.7 102.92 ± 14.0

ST variability (%) 0.049,
F (3,32) = 4.190

0.298,
F (3,32) = 1.278

0.589,
F (3,32) = 0.650, 0.057

Pre 3.07 ± 1.4 3.08 ± 1.6 6.06 ± 5.5 6.07 ± 9.2

Post 1.89 ± 0.9 2.90 ± 0.8 3.38 ± 1.2 2.58 ± 1.7

SL variability (%) 0.134,
F (3,32) = 2.369

0.743,
F (3,32) = 0.415

0.496,
F (3,32) = 0.813, 0.071

Pre 4.10 ± 2.9 3.86 ± 3.1 4.86 ± 3.2 3.68 ± 1.8

Post 3.56 ± 2.8 4.25 ± 2.9 6.25 ± 3.4 2.53 ± 1.0

Timed up and go (sec) 0.939,
F (3,32) = 0.006

0.832,
F (3,32) = 0.289

0.335,
F (3,32) = 1.174, 0.099

Pre 9.59 ± 1.9 10.92 ± 2.1 13.56 ± 2.9 11.83 ± 4.0

Post 9.92 ± 1.9 10.58 ± 1.4 13.26 ± 2.2 12.18 ± 3.3

Data are presented as the mean ± SD (the Shapiro–Wilk test was used to determine the values are normally distributed).
ST, stride time; SL, stride length.
#P < 0.05 for intragroup comparison (analyzed using paired t-test).

together, the beneficial motor effects of DLPFC tDCS may be
related to dopamine release, therefore modulating the cortical
inhibition in individuals with PD.

In contrast, dual tasking exacerbates the gait impairments
in people with PD, suggesting the overloaded recruitment of
prefrontal cortex (cognitive overloaded) under dual-task walking
(Strouwen et al., 2015). DLPFC has been recognized as the
key area for executive function which involves in many daily
activities, especially dual-task walking (Lu et al., 2015). Therefore,
we speculated that the improvements in dual-task walking after
DLPFC tDCS may also be resulted from direct modulation of
DLPFC. In this study, the participants walked faster by 24%
under cognitive dual tasking after one session of DLPFC tDCS
intervention. Mishra and Thrasher (2021) also reported that
the increase of dual-task gait speed after a single session of
DLPFC tDCS was more than Sham tDCS in patients with
PD. Similarly, tDCS targeting the DLPFC has been reported to
improve dual-task gait performance in older adults and people
with stroke (Zhou et al., 2021). In contrast, we previously noted

that the dual-task gait training for 12 sessions resulted in a 20%
improvement of cognitive dual-task walking speed in people with
PD (Yang et al., 2019). Therefore, DLPFC tDCS is an effective
intervention to immediately improve dual-task walking ability for
individuals with PD.

However, it should be mentioned that the DLPFC tDCS
group did not improve significantly more in single walking and
TUG performance as compared with other groups, although the
DLPFC tDCS group showed a pre-post significant improvement
in single walking. This may indicate that the dual-task
walking performance is more sensitive to reflect the response
to intervention, and single walking and TUG performance
may need cumulative tDCS interventions for a significant
improvement. In addition, it is interesting to note that the RMT
and MEP did not change significantly after DLPFC tDCS. Studies
have reported that RMT is normal and MEP is variable in
people with PD (Lefaucheur, 2005; Rossini et al., 2015). However,
decreased SP has been reported consistently in patients with
PD (Wu et al., 2007). Therefore, measurement of SP may be a
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better indicator to reflect cortical activity changes during disease
progression and in response to treatment than RMT and MEP in
individuals with PD.

Regarding the cerebellum tDCS, Workman et al. (2020) did
not observe a significant single-session effect in single walking
performance in people with PD. However, Jayaram et al. (2012)
found that one session of anodal cerebellum tDCS resulted in
better adaptation on a split-belt treadmill than Sham tDCS in
healthy subjects. This study noted that the cerebellum tDCS
exerted a significant within-group improvement in dual-task
walking but not in single walking and TUG performance.
However, such within-group improvement did not couple with
significant changes in SP duration. This result lent us to
speculate the vestibulocerebellum pathways, which are majorly
involved in posture and balance control (Purves et al., 2001),
may be modulated by cerebellum tDCS, but this warrants
further exploration.

It also drew our attention that one session of anodal tDCS
over M1 did not improve the walking performance, and such
results were consistent with the results reported by Verheyden
et al. (2013). Although Fregni et al. (2006) demonstrated that M1
tDCS improves UPDRS motor scores, limited improvement in
the UPDRS gait-related items was noted. Moreover, Schabrun
et al. (2016) demonstrated that M1 tDCS did not enhance the
effect of dual-task gait training and suggested that M1 tDCS may
not be an effective application to improve dual-task walking in
individuals with PD. Considering the results of previous studies
and this study, it still needs more investigations to establish
the beneficial effects of tDCS over M1 on walking performance
in people with PD.

Some limitations should be mentioned regarding this study.
First, the relatively small number of participants in each
group may lead to type II error. The limited sample size and
heterogeneity of patients with PD must be considered when
generalizing the study results. Second, the included participants
were with mild to moderate disease severity (Hoehn and
Yahr stages I–III), and the outcomes were measured only at
“on” status. Therefore, our findings may only be applicable to
individuals with mild to moderate PD at “on” status. Third,
we only investigated the post-intervention effects of single-
session tDCS, but the maintenance effects or accumulative effects
of tDCS are not known. Fourth, we applied 2 mA for all
targets because the current with 2 mA was most commonly
used in the previous studies, especially in the studies focusing
on walking ability (Ferrucci et al., 2015; Liu et al., 2021).
However, the best parameter for tDCS in different targets may
be different. Therefore, the results may not represent the best
effect of tDCS in these targets. Further studies may need to
establish the best stimulating intensity of tDCS in various targets.

Finally, it has been noted that a single session of DLPFC tDCS
could improve cognitive function according to the results of a
meta-analysis (Dedoncker et al., 2016). However, we did not
measure cognitive performances in this study. Therefore, the
cognitive improvement cannot be excluded from the beneficial
effects of DLPFC tDCS.

CONCLUSION

The results suggest that one session of DLPFC tDCS can be
recommended to improve dual-task walking. Further research is
needed to explore the effects of multisessions of DLPFC tDCS.
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