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Abstract

Background: Infant birth weight is a complex quantitative trait associated with both neonatal and long-term
health outcomes. Numerous studies have been published in which candidate genes (IGF1, IGF2, IGF2R, IGF binding
proteins, PHLDA2 and PLAGLT) have been associated with birth weight, but these studies are difficult to reproduce
in man and large cohort studies are needed due to the large inter individual variance in transcription levels. Also,
very little of the trait variance is explained. We decided to identify additional candidates without regard for what is
known about the genes. We hypothesize that DNA methylation differences between individuals can serve as
markers of gene “expression potential” at growth related genes throughout development and that these
differences may correlate with birth weight better than single time point measures of gene expression.

Methods: We performed DNA methylation and transcript profiling on cord blood and placenta from newborns.
We then used novel computational approaches to identify genes correlated with birth weight.

Results: We identified 23 genes whose methylation levels explain 70-87% of the variance in birth weight. Six of
these (ANGPT4, APOE, CDK2, GRB10, OSBPL5 and REGI1B) are associated with growth phenotypes in human or mouse
models. Gene expression profiling explained a much smaller fraction of variance in birth weight than did DNA
methylation. We further show that two genes, the transcriptional repressor MSX1 and the growth factor receptor
adaptor protein GRB10, are correlated with transcriptional control of at least seven genes reported to be involved
in fetal or placental growth, suggesting that we have identified important networks in growth control. GRB10
methylation is also correlated with genes involved in reactive oxygen species signaling, stress signaling and oxygen
sensing and more recent data implicate GRB10 in insulin signaling.

Conclusions: Single time point measurements of gene expression may reflect many factors unrelated to birth
weight, while inter-individual differences in DNA methylation may represent a “molecular fossil record” of
differences in birth weight-related gene expression. Finding these “unexpected” pathways may tell us something
about the long-term association between low birth weight and adult disease, as well as which genes may be
susceptible to environmental effects. These findings increase our understanding of the molecular mechanisms
involved in human development and disease progression.
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Background

One common non-disease phenotype that puts children
at increased risk for multiple adverse outcomes is “low
birth weight”. Low birth weight is simply the transforma-
tion of the quantitative phenotype of birth weight into a
discrete trait by truncation at the lowest decile of infant
birth weights; i.e., a birth weight of less than 2,500 g. Low
birth weight increases the risk of neonatal death by four-
fold in comparison with infants weighing 2,500-2,999 g
and by 10-fold in comparison with infants weighing
3,000-3,499 g [1]. This increased risk continues after
birth [1]. The financial cost of low birth weight is also
substantial. In the United States, low birth weight babies
account for 47% of the cost of all infant hospitalizations
and 42% of these costs are borne by Medicaid [2]. The
long-term costs continue to accumulate throughout life
because low birth weight is associated with cognitive
impairment [3] and increased risk of childhood and adult
diseases, including obesity, hypertension, cardiovascular
disease and type II diabetes [4-7].

Epidemiological studies have also shown a 2.6x
increased risk of low birth weight in children conceived
using assisted reproduction techniques (ART) such as in
vitro fertilization (IVF) [8]. In 2009, ART resulted in
60,190 infants, contributing to > 1% of annual births in the
United States [9]. To date there have been over 3.75 mil-
lion ART births worldwide [10], and as the oldest of these
children are only now entering their 30s, there is concern
regarding any long-term health effects associated with low
birth weight in this population.

The mechanisms linking low birth weight to adverse
long-term health outcomes are not well understood but
may be related to defective placentation [11-13], abnormal
programming of metabolic pathways, including glucose
utilization [4,14] and restrictions in the size of stem cell
populations that lead to reduced organ size and function
[15,16]. The overall lack of direct information concerning
the mechanisms by which low birth weight is coupled to
childhood and adult diseases provides a compelling reason
for defining the factors that affect birth weight.

Numerous studies have been published in which the
expression of genes known to affect growth have been sur-
veyed with respect to birth weight, including insulin-like
growth factor 1 (IGFI), IGF2, IGF2 receptor (IGF2R), IGF
binding proteins, pleckstrin homology-like domain family
A, member 2 (PHLDA?2) and pleiomorphic adenoma gene-
like 1 (PLAGLI) [13,17-26]. However, few of the associa-
tions have been replicated in independent populations and
very little of the trait variance is explained by these mea-
sures. For example, we failed to find significant correlation
between infant birth weight and transcript levels of IGF2,
IGF2R or the ratio of IGF2/IGF2R transcripts in cord
blood and placenta from newborns, measured at delivery
[27].
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Birth weight is a complex phenotype that represents
the sum of many processes and gene expression patterns
operating throughout embryonic and fetal development.
It is, perhaps, not surprising that a strong association
between birth weight and the expression of any particular
gene, measured at a single time point (delivery, in most
cases), has proven elusive, even for genes which have
mechanistic links to growth. It is possible that the
mechanism-based candidates are, indeed, the genes that
are most relevant to birth weight but that the expression
of these genes at delivery is not the appropriate measure
of their action. Alternatively, it is possible that the activ-
ities of other genes, yet to be defined, are more predictive
of birth weight than the current candidates.

The failure of mechanism-based candidate gene tran-
script approaches to explain a substantial fraction of
birth weight trait variance (e.g. [27]) prompted us to con-
sider a more agnostic approach. In the present study, we
have used gene promoter-specific DNA methylation
levels as a quantitative measure of “expression potential”
to identify additional candidate genes. We chose this
measure because at least 50% of human genes show an
inverse correlation between promoter DNA methylation
levels and gene expression [28,29]. We combined DNA
methylation profiling with a novel “machine learning”
approach to identify additional candidate genes that are
correlated with birth weight. We also evaluated whether
DNA methylation levels of a suite of mechanism-based
candidates explains birth weight trait variance better than
transcript level of the same genes.

Methods

Ethics statement and samples

Written, informed consent was obtained in advance
from the mother of each newborn (University of Penn-
sylvania I.R.B. approved protocol no. 804530).

We have provided the demographic data showing
maternal age, race, parity, fetal sex, gestational age, birth
weight (at delivery) and birth weight percentiles for the
individuals in the GoldenGate and Infinium Methylation
Assays in an additional file (Additional file 1).

Sample collection and processing

Cord blood and placenta samples were collected from
each newborn. All cord blood samples were collected
within 20 minutes of delivery. The umbilical cord was
wiped with sterile saline solution to minimize maternal
blood contamination and the cord vein was punctured
with a 21 G needle. Whole cord blood (6-10 ml) was col-
lected in an EDTA-Vacutainer tube. An aliquot (3 ml) of
cord blood was transferred to a 15 ml Falcon tube con-
taining RNALater RNA Stabilization Reagent (Ambion,
USA), following the manufacturers guidelines, to stabilize
the RNA. The remaining cord blood was saved for DNA
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extraction. All cord blood DNA and RNA samples were
initially stored at 4°C, and nucleic acid extractions were
performed within 2-4 days of collection.

Tissue samples were collected and processed within five
hours of delivery [30]. Placental tissue (1.5-2.5 cm®) was
excised from the fetal surface of the placenta, directly
behind the cord insertion site. The sample was rinsed
extensively with sterile saline solution to minimize mater-
nal blood contamination. Half of the tissue sample was
sectioned into smaller pieces (0.5 cm?), transferred to a
15 ml Falcon tube and immersed in RNALater RNA Stabi-
lization Reagent (Ambion, USA), following the manufac-
turers guidelines. The remaining tissue was transferred to
a 15 ml Falcon tube for DNA extraction. All tissue DNA
and RNA samples were initially stored at 4°C, and nucleic
acid extractions were performed within 2-4 days of collec-
tion. Approximately 4-5 mg of tissue was used to extract
genomic DNA and RNA. The remaining tissue was stored
at -80°C.

DNA and RNA isolation

Cord blood DNA was isolated using the Archive Pure
DNA Blood Kit (Fisher Scientific Company, USA), follow-
ing the manufacturers guidelines. Placenta genomic DNA
was extracted using standard phenol-chloroform extrac-
tion methods. The isolated DNA was resuspended in
TrisCl (10 mM, pH 8.0) and stored at -80°C until further
use. Cord blood RNA was isolated using the PerfectPure
RNA Blood Kit (Fisher Scientific Company, USA), follow-
ing the manufacturers guidelines. Placenta total cellular
RNA was extracted using TRIzol® Reagent (Invitrogen
Corporation, USA), following the manufacturers guide-
lines. The isolated RNA was resuspended in Milli-Q water
and stored at -80°C until further use. Isolated DNA and
RNA were analyzed by agarose gel electrophoresis and
quantified using a NanoDrop ND1000 (Thermo Fisher
Scientific, USA). RNA samples were further assessed for
quality using the Agilent 2100 Bioanalyzer (Santa Clara,
USA) prior to the whole genome expression analysis.

Transcriptome profiling

Whole genome expression was analyzed in cord blood and
placenta RNA template for 48 individuals using Illumina’s
HumanHT-12 v3 Expression BeadChip (Illumina, USA),
which provides coverage for more than 47,000 transcripts
and known splice variants across the human transcriptome.
Isolated total RNA was quantified using a NanoDrop
ND1000 (Thermo Fisher Scientific, USA) and assessed for
quality using the Agilent 2100 Bioanalyzer (Santa Clara,
USA) prior to the whole genome expression analysis. By
[lumina criteria, RNA samples for gene expression array
analysis were required to have a RIN > 7, an OD 260:280
of 1.9-2.0, an OD 260/230 of > 1.8 and a 28S:18S ratio of
the ribosomal bands of > 1.5. Expression profiling was
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accomplished using the HumanHT-12 v3 whole-genome
gene expression direct hybridization assay (Illumina, USA),
following the manufacturers guidelines. Illumina’s Total
Prep RNA Amplification Kit (Ambion, USA) was used to
transcribe 200 ng total RNA to cDNA, followed by an in
vitro transcription step to generate labeled cRNA, following
the manufacturers guidelines. The labeled probes were
then mixed with hybridization reagents and hybridized at
58°C for 16 h to the Bead Chips. The Bead Chips were
washed and stained, as per the manufacturer’s instructions,
and then scanned using the Illumina Bead Array Reader.
The Bead Scan Software (Illumina, USA) was used to mea-
sure fluorescence intensity at each probe, which corre-
sponds to the quantity of the respective mRNA in the
original sample. Illumina’s GenomeStudio Gene Expression
Module v1.0 was used to analyze the data. Briefly, raw
intensity data was corrected by background subtraction in
the Genome Studio module and normalized using the
Quantile normalization algorithm.

Quantitative real time RT-PCR

First-strand cDNA was obtained using Superscript™ III
Reverse Transcriptase (RT) (Invitrogen Corporation,
USA). To produce cDNA from total RNA, a mixture con-
taining 1 pg extracted total RNA, 0.5 pg oligo(dT)18 pri-
mer and 1 pl ANTP mix (10 mM each base) in final 13 pl
of solution was heated to 65°C for 5 min, cooled down on
ice for 2 min, and then added to a 7 pl of reaction mixture
(4 pl Superscript™ III RT buffer (10x), 1 ul DTT (0.1 M),
1 pl RNaseOUT™ Recombinant RNase inhibitor (40 U/pl;
Invitrogen Corporation, USA) and 1 pl Superscript™ III
M-MLV reverse transcriptase (200 U/pl), for reverse tran-
scription at 50°C for 60 min. Reactions were terminated at
70°C for 15 min. RT products were stored at -20°C until
use. Quantitative real time RT-PCR assays were carried
out using a 7700 Sequence Detector (Applied Biosystems,
USA). All probes spanned exon/intron boundaries to pre-
vent genomic DNA amplification.

Steady state mRNA levels of IGF2BP2, IGFBPI,
IGFBP2, IGFBP3, PLAGL1 and housekeeping genes
GAPDH and TBP were measured using gene-specific
TaqMan probes (Applied Biosystems, USA, product
numbers: Hs01118009 _m1, Hs00236877_m1, Hs0104
0719_m1, Hs00426289_m1, HS00414677_m1, HS027
58991_G1 and HS00920497_M1, respectively). Tagman
PCR reactions were performed by mixing 1 ul of cDNA
(50 ng/pl) with 19 pl of reaction mixture (10 ul Tagman
Master Mix (2x), 1 pul Tagman primer (20x), and 8 pl
nuclease free dH,0) and amplified under the following
conditions: 50°C for 2 min, 95°C for 10 min, followed by
45 cycles of 95°C for 15 s and 60°C for 60 s.

Steady state mRNA levels of IGF2, IGF2R and house-
keeping gene GAPDH were measured using gene-specific
primers (IGF2 forward 5-TCTGACCTCCGTGCCTA-3,
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IGF2 reverse 5-TTGGGATTGCAAGCGTTA-3’, IGF2R
forward 5-ACCTCAGCCGTGTGTCCTCT-3’, IGF2R
reverse 5-CTCCTCTCCTTCTTGTAGAGCAA-3,
GAPDH forward 5-GAGTCAACGGATTTGGTCGT-3’
and GAPDH reverse 5-TTGATTTTGGAGGGATCTCG-
3’) and QuantiFast SYBR Green PCR Master Mix (Qiagen,
USA). PCR reactions were performed by mixing 1 pl of
c¢DNA (50 ng/ul) with 24 pl of reaction mixture (10 pl
QuantiFast SYBR Green PCR Master Mix (2x), 2.5 pl
forward primer (10 pM), 2.5 pl reverse primer (10 uM),
and 6.5 pl nuclease free dH,O) and amplified under the
following conditions: 95°C for 5 min, followed by 45 cycles
of 95°C for 10 s and 60°C for 30 s. A melting curve analy-
sis of the PCR products was performed to verify their spe-
cificity and identity. Relative gene expression levels were
obtained using the AACt method [31].

Bisulfite conversion

Unmethylated cytosine in genomic DNA (0.5-1 pg) was
converted to uracil by treatment with sodium bisulfite
using the EZ DNA Methylation Kit™ (Zymo Research
Corp., USA), following the manufacturers guidelines. The
bisulfite-converted DNA was resuspended in 20 pl TrisCl
(10 mM, pH 8.0) buffer and stored at -20°C until further
use. All converted DNA samples were used within one
month of the bisulfite conversion.

GoldenGate methylation assay

Site-specific CpG methylation was analyzed in the bisulfite
converted cord blood and placenta DNA template for 22
individuals, in duplicate, using a custom-designed methy-
lation bead array platform, following the manufacturers
guidelines (Illumina, USA) and as previously described
[32]. The GoldenGate methylation array contained probes
for 1,536 CpG dinucleotides located in the promoters of
more than 700 genes (Illumina Inc., USA) [33,34]. In addi-
tion, the array includes CpGs for all known human
imprinted genes. Illumina’s GenomeStudio Methylation
Module v1.0 was used to analyze the data and assign site-
specific DNA methylation 3-values to each CpG site. The
extent of methylation (B-value) at each CpG site was
determined by comparing the proportion of signal from
methylated and unmethylated alleles in the DNA sample.

Infinium methylation assay

Site-specific CpG methylation was analyzed in the bisulfite
converted cord blood and placenta DNA template for 48
individuals using Illumina’s HumanMethylation27 Bead-
Chip array, following the manufacturers guidelines (Illu-
mina, USA). The array contained probes for 27,578 CpG
dinucleotides located in the proximal promoter regions of
over 14,000 consensus coding sequences (CCDS) genes
throughout the genome. In addition, the array included
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110 miRNA promoters and imprinted genes. Four bead
chips were used for each tissue type, and these were pro-
cessed simultaneously. Briefly, 1 ug of bisulfite converted
DNA was isothermally amplified at 37°C overnight. The
amplified DNA product was fragmented by an endpoint
enzymatic process and the fragmented DNA was precipi-
tated, resuspended and applied to the array and hybridized
overnight. A single-base extension reaction was carried
out and the fluorescently stained chip was imaged using
the Illumina Bead Array Reader and the Bead Scan Soft-
ware (Illumina, USA). The assay contained controls to
assess the following parameters: staining, hybridization,
target removal, extension, bisulfite conversion, G/T mis-
match, as well as negative controls and non-polymorphic
controls. The experiments passed all quality controls suc-
cessfully (Please see Illumina’s “GenomeStudio Methyla-
tion Module User Guide” manual for greater details
regarding the criteria used to assess the controls). Illumi-
na’s GenomeStudio Methylation Module v1.0 was used to
analyze the data to assign site-specific DNA methylation
B-values to each CpG site. The extent of methylation (-
value) at each CpG site was determined by comparing the
proportion of signal from methylated and unmethylated
alleles in the DNA sample.

Pyrosequencing methylation assay
Site-specific CpG methylation was analyzed in the bisulfite
converted cord blood DNA template for PRSS21, and in
the placenta DNA template for ANGPT4, PGRMCI and
RGS14, using custom designed bisulfite pyrosequencing
assays (Qiagen, USA). The assays were designed to target
the same CpGs interrogated by the GoldenGate and Infi-
nium arrays. Briefly, 500 ng bisulfite converted DNA was
used for generating PCR amplified templates for pyrose-
quencing. The primer sequences are following: ANGPT4
forward (5° GGGTTGAATGGATTTTTGTTGGAT-
GAATG 3)), reverse (5 CCTTCCCTAAACACAAAAAAC
TATCTCT 3’) and sequencing (5° ACTAACAACC-
TAACTCTT 3’); PGRMCI1 forward (5> TGTTTGGT
GATTGAGTAAATTAGTAATTGT 3’), reverse (5 TCC
TTAATAACCCTTCCCCAATTC 3) and sequencing (5’
GTTGTGTATTGATTTTAGTAATTT 3’); PRSS21 for-
ward (5 GGGTTTGGGTTATATTAAGAAGTGT 3’),
reverse (5 TTCACCCTCCTAAACCCAAAAACTATT 3)
and sequencing (5 AGTGTGGTTGAAGAT 3’); RGS14
forward (5 GGGTAGGTAGTGGAGAGAGT 3’), reverse
(5 CTCTCTTAAACCTTACTTCTTTCTATAATT 3)
and sequencing (5° GTGGAGAGAGTTTGAT 3’). For
ANGPT4 the 5-biotin modification is on the forward pri-
mer, whereas for PGRMC1, PRSS21 and RGS14 the 5-bio-
tin modification is on the reverse primer.

The PCR reaction (30 pl) was following: 25 ng of
bisulfite DNA, 0.75 U HotStar Taq Polymerase (Qiagen,
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USA), 1x PCR buffer, 3 mM MgCl,, 200 uM of each
dNTP, and 6 pmol of each forward and reverse primer.
Recommended PCR cycling conditions were: 95°C for
15 min; 45 cycles (95°C for 30 s; 60°C for 30 s; 72°C for
30 s); 72°C for 5 min. The biotinylated PCR product
(10 pl) was used for each assay with 1x the respective
sequencing primer. Pyrosequencing was done using the
PSQI96HS system using the PyroMark Gold Reagent Kit,
following the manufacturers guidelines (Qiagen, USA).
Methylation was quantified using PyroMark Q-CpG
Software (Qiagen, USA), which calculates the ratio of
converted C’s (T’s) to unconverted C’s at each CpG and
expresses this as a percentage methylation.

Regression analyses methodology

In order to have a reliable and meaningful comparison of
gene expression and DNA methylation levels, the values
were balanced by a min-max normalization procedure
which transformed them to (0,1) range [35]. After normal-
ization, the L;-reqularized linear regression procedure [36]
was applied to identify candidate genes associated with
birth weight. L;-regularized regression outperforms Ridge
regression [37] and L2-regression [38], and enforces
removing outliers and irrelevant genes, focusing on a
small number of relevant genes [39-41]. The procedure
was applied to two groups of DNA methylations with dif-
ferent numbers of CpG sites and gene expressions, which
are referred to as “predictors” hereafter. Finally, the boot-
strap method was used [42] to assess the significance of
the models selected by the L;-regularized regression
procedure.

L,-regularized regression

Assuming one is given n samples S = (X3, 1), ., (X,» )
where each sample consists of k real-valued predictors
X; [ R* which represent array signal intensities, and a
real valued dependent variable y; which represents the
birth weight percentiles. The problem was to find the
effect of those predictors X; on the dependent variable
y;. Li-regularized regression accomplished this by find-
ing a coefficient vector 3 that minimizes

PO UETEC0) S DA

where

1 ﬁ]XU + &

f ) =por Y

Here, ¢ is the error induced by the model and/or noise
in the data which is independent of the birth weight,
and A controls the tradeoff between fitting the data and
having a small number of parameters.
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Two-stage L,-regularized regression

In the first stage of this process, L;-regularized regres-
sion was applied to eliminate irrelevant predictors while
keeping a small number of relevant predictors. Since
regression models usually suffer from over fitting when
applied to small sample sizes, a leave-one-out cross vali-
dation (LOOCYV) was used to assess the model. In this
process, one sample was excluded while the regression
model was trained on the remaining samples. The per-
formance of the trained model was then evaluated on
the hold-out sample. This process was repeated # times
where each time, a different sample was held out for
testing. After applying L;-regularized regression n times,
the number of times each predictor appeared in all #
cross validation experiments was counted. A predictor
was called m-stable if it appeared in m cross validations.
All m-stable predictors for the m-model were selected;
the value of the m was determined later. The m-model
was called stable if L;-regularized regression was applied
on /& predictors and the final m-model contained all %
predictors. If the m-model was not stable, the LOOCV
process was repeated on the predictors in the m-model
several times, until a stable model was achieved. The
stable m-model was a linear combination of a subset of
the original predictors. However, a linear combination
of predictors might not express the response variable
very well. Therefore, the second stage effects were
explored by analyzing all pair wise interactions among
candidate stable predictors selected in the first stage. A
new set of predictors was generated which contained
the predictors in the m-model, as well as all pair wise
interactions between the predictors in the m-model. The
same process as in the first stage was applied to get a
stable model, which explored not only the marginal
effects of the predictors but also the joint interaction
effects between those predictors. Given n samples, an
application of the proposed two-stage L;-regularized
regression process n times resulted in n m-models,
where m = 1,.., n.

Choosing the best model

To test the accuracy of the model, we computed the
adjusted R?, which is a modification of R? that adjusts
for the number of explanatory terms in a model. Unlike
R?, the adjusted R* increases only if the new term
improves the model more than would be expected by
chance. In other words, the adjusted R? is the amount
of variance in the outcome that the model explains in
the population. It was discovered that the model that
had the largest adjusted R* value also had low stability.
In order to get a model that was stable as well as accu-
rate, all n m-models, starting from the more stable n
-model, were searched in a greedy fashion, until a
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model with an adjusted R* value larger than 0.5 was
found, which was called the k -model. Then all # -mod-
els were searched, where /1 = k-1,..,1, that had the same
predictors as the k -model. The aim of this search was
to find another model that had the same number of pre-
dictors as in the k -model, but also achieved a higher
adjusted R” value than the k -model. This model had
the advantage of being optimized to contain a small
number of predictors, while also being stable and
accurate.

Bootstrap method

A popular way of evaluating the reliability of any computa-
tional method is using the bootstrap analysis [43,44]. The
first step in a bootstrap analysis is to re-sample the set of
genes. Then the L; procedure is applied to the re-sampled
dataset. The adjusted R* of the re-sampled dataset repre-
sents an estimate of how a different set of genes explain
the variance of the birth weight. If the R? on the re-
sampled dataset is similar to or less than the R* on the
whole set of genes computed by the L; procedure, this
increases the confidence in the model generated by apply-
ing the L; procedure on the whole set of genes. By re-sam-
pling a number of times it is possibly to draw the
distribution of the R* and hence compute the reliability of
the L; procedure.

Statistical analysis

To measure the correlation between expression and
methylation genes, Pearson’s linear correlation two-tailed
test was used, with the hypothesis of no correlation using
a Student’s ¢ distribution for a transformation of the corre-
lation. The null hypothesis of the Pearson’s linear correla-
tion was that there is no correlation between the two
predictors. The P value determined whether the null
hypothesis was rejected, or if there was no evidence to
reject it. P-values 0.01 were considered significant.

Software

Math works Matlab R2010b software was used to run all
the experiments. The glmnet implementation of lasso
regression [45,46] was used for generalized linear mod-
eling. This algorithm was based on convex penalties and
cyclic coordinate descend, computed along the regulari-
zation path, which can handle large problems in reason-
able time. The algorithm had an embedding strategy for
choosing the best value of lambda which determines the
weight of the penalized regularization term.

Results and discussion

Mechanism-based candidate gene transcription and birth
weight

We measured global transcription patterns in cord
blood and placenta of 48 newborns using Illumina’s
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HumanHT-12 v3 Expression BeadChip (see Methods).
We also measured transcript levels of selected candidate
genes in a larger group of individuals (n = 105-254) by
real time RT-PCR. We then performed linear regression
of birth weight, corrected for gestational age (birth
weight percentile), against cord blood and placenta tran-
script levels of IGF1, IGF1 receptor (IGF1R), IGF2, IGF2
mRNA binding proteins 1-3 (IGF2BP1-3), IGF2R, IGF
binding proteins 1-7 (IGFBP1-7), insulin (INS), INS
receptor (INSR), INSR-related receptor (INSRR),
PHLDA?2 and PLAGL1. We did not observe any strong
correlation between birth weight and transcript level of
any of these “mechanism-based” candidate genes, with
the strongest correlation (R* = 0.058) found for INSR in
cord blood (Table 1). The associations with the best
correlations are plotted in Figure 1 to illustrate the
strength, or lack thereof, of the associations. Correlation
coefficients for all candidate genes are given in Table 1.

We also used L, regularized regression ([36,39-41] and
see Methods) to evaluate the contribution of transcript
levels of these 19 growth-related genes, collectively, to
explain birth weight trait variance. This analysis was
performed using the transcript levels and birth weights
of the 48 individuals profiled on the whole transcrip-
tome array. L; regression analysis is a machine-learning
approach that seeks to identify features relevant to a
particular phenotype from amongst a large background
of irrelevant features (although the relevant features in
the present experiment were defined as transcript levels
of the 19 mechanism-based candidates). It evaluates the
strength of association for each feature (transcript) by
performing successive “leave one sample out” experi-
ments and determines how many of the resample data
sets exhibit non-zero correlations between transcript
level and birth weight. A threshold of 45/48 (94%) non-
zero correlations was adopted for this analysis. The 19-
gene mechanism-based candidate model (using all of the
genes in Table 1) resulted in an adjusted R* of 0.24.
Although this is a significant improvement over the
birth weight trait variance explained by any individual
gene, it still leaves more than 75% of the trait variance
unexplained.

Evaluation of DNA methylation differences in mechanism-
based candidates

We then evaluated whether promoter DNA methylation
levels of the mechanism-based candidate genes would per-
form better than single time-point transcript level to
explain birth weight trait variance in two methylation pro-
filing experiments. In the first experiment, we measured
DNA methylation levels at 1,536 CpG sites in cord blood
and placenta of 22 individuals using a custom-designed
DNA methylation array (which uses the “GoldenGate”
assay to measure methylation levels; Illumina, Inc. USA,



Turan et al. BMC Medical Genomics 2012, 5:10
http://www.biomedcentral.com/1755-8794/5/10

Table 1 Correlation of mechanism-based candidate gene expression levels with birth weight
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Gene Symbol Transcript ID HumanHT-12 v3 Expression Real Time RT-PCR Expression
vs. Birth Weight % (R?) vs. Birth Weight % (R?)
Cord Blood Placenta Cord Blood Placenta
(n = 48) (n = 48)
IGF1 ILMN_2056087 2.0E-04 0.017 nd nd
ILMN_1709613 0.003 0.002
IGF1R ILMN_1675048 0.009 0.045 nd nd
IGF2 ILMN_1699867 1.3E-05 0.004 1.2E-04 (n = 190) 4.5E-04 (n = 254)
ILMN_2298035 0.008 0.001
ILMN_2413956 0.003 0.003
IGF2BP1 ILMN_1733807 0.007 1.0E-04 nd nd
IGF2BP2 ILMN_1702447 0.003 0.016 0.022 (n = 119) 1.0E-07 (n = 114)
IGF2BP3 ILMN_1807423 0.056 0.007 nd nd
IGF2R ILMN_1807662 0.006 3.0E-04 0.005 (n = 194) 6.1E-04 (n = 241)
IGFBP1 ILMN_2387385 0.014 0.001 ne 0.052 (n = 150)
ILMN_1728445 0.001 0.001
IGFBP2 ILMN_1725193 0.006 0.031 ne 0.003 (n = 110)
IGFBP3 ILMN_1746085 0.007 0.002 ne 0.001 (n = 135)
ILMN_2396875 0.009 0.002
IGFBP4 ILMN_1665865 0.006 0.003 nd nd
IGFBP5 ILMN_2132982 0.014 0.002 nd nd
ILMN_1750324 0.001 0.003
IGFBP6 ILMN_1669362 0.001 0.009 nd nd
IGFBP7 ILMN_2062468 2.5E-05 0.005 nd nd
INS ILMN_1666966 0.022 0.034 nd nd
INSR ILMN_1670918 0.058 0.031 nd nd
INSRR ILMN_1715374 0.007 3.9E-05 nd nd
PHLDA2 ILMN_1671557 0.036 0.001 nd nd
PLAGL1 ILMN_1815121 0.001 0.009 0.006 (n = 105) 0.013 (n = 136)
ILMN_2356955 0.014 0.004
IGF2/IGF2R* n/a n/a 0.002 (n = 186) 0.002 (n = 241)

Multiple entries represent data for multiple transcripts on the array. The best correlation obtained in each group is shown in bold

* Ratio IGF2/IGF2R expression
n/a = not applicable

nd = not done

ne = not expressed

see Methods and [32]). The 1,536 CpG sites examined
were located in 740 loci that were selected for functions in
cell growth, proliferation or embryonic development [32].
CpGs in 16 of the mechanism-based candidate genes were
included on the array, as well as probes for the IGF2/HI19
DMR (the array did not contain probes for IGF2BP1,
IGF2BP2 or INSRR). In the second experiment, methyla-
tion levels at 27,578 CpGs in 14,495 genes were assayed
(using an Ilumina Infinium array; Illumina, Inc. USA) in
the same 48 individuals for whom transcription was evalu-
ated in Table 1. CpGs in 17 of the mechanism-based can-
didate genes were included on the array (the array did not
contain probes for INSR or INSRR). We did not observe a
strong correlation between birth weight and methylation
level of any of these “mechanism-based” candidate genes
(Table 2), with the strongest correlation (R* = 0.163)

found for PHLDA2 methylation levels in placenta on the
GoldenGate array (Table 2).

We then used the same L; regularized regression
method used to evaluate the contribution of transcript
level to birth weight trait variance, above. Methylation
levels at these genes explained 26% of birth weight trait
variance in the first data set and 46% of trait variance in
the second data set, suggesting that promoter methyla-
tion levels are at least as good, and possibly better, at
explaining birth weight trait variance than transcript
level.

Identification of additional candidate genes through
machine-learning

The great strength of L; regularized regression is the de
novo identification of relevant features among a large
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Figure 1 Expression levels of mechanism-based candidate genes versus birth weight. lllumina’s HumanHT-12 v3 Expression of (A) INSR
(transcript ID: ILMN_1670918) in cord blood (n = 48), and (B) IGF1R (transcript ID: ILMN_1675048) in placenta (n = 48). Real time RT-PCR
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background of irrelevant features. In the second phase
of the analysis, it evaluates each relevant feature, singly
and in combination with each other, for non-zero con-
tributions to trait variance. We performed L; regression
on promoter methylation levels of the 740 genes in the
22 individual data set used to evaluate the mechanism-
based candidate genes, above, to determine which of the
genes, singly or in combination, contributed the largest
fraction to birth weight trait variance.

This approach identified six genes (APOE, MSXI,
GRBI10, PGRMC1, RGS14 and SHMT?2), whose methyla-
tion level in cord blood and/or placenta accounted for
78% of the variance in birth weight, which is substan-
tially higher than the fraction of trait variance explained
by the 19 mechanism-based candidates (26%). We note
that at least two of the candidate genes have been linked
to growth related phenotypes. APOE has been associated
with body mass index (BMI) [47,48] and bone density
[49] in humans and Grb10 has been linked to both pla-
cental and fetal growth in the mouse [50,51].

We validated the array-based methylation levels of
these new candidates by bisulfite pyrosequencing of
individuals at the highest and lowest ends of the birth
weight distribution (Figure 2). Although the absolute

levels of methylation measured differ slightly between
the two techniques, methylation levels at each validated
locus are correlated with birth weight in both cases
(Figure 2).

We then tested whether cord blood and placenta
methylation levels at these six candidate genes were also
correlated with birth weight in the second sample of 48
individuals. Although the individual CpG sites assayed
for each gene were not identical between the two arrays,
promoter methylation levels at these six candidates were
also correlated with birth weight in the second sample
of 48 individuals, accounting for 50% of the trait
variance (Table 3).

Although the replication of a correlation between birth
weight and methylation level provides a measure of confi-
dence that the candidate genes identified in the training
sample of 22 individuals are involved in birth weight, we
note that the candidate genes were identified from an ori-
ginal sample of only 1,536 CpGs in 740 loci [32]. In the
second sample of 48 individuals, methylation levels were
examined at 27,578 CpG sites in 14,495 genes, providing
an opportunity to identify birth weight-related methylation
differences in many more CpGs/candidate genes. We
repeated the L;-regularized regression procedure using the
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Table 2 Correlation of mechanism-based candidate gene methylation levels with birth weight

Gene Symbol GoldenGate CpG ID GoldenGate Methylation Infinium Infinium Methylation
vs. Birth Weight % (R?) CpG ID vs. Birth Weight % (R?)
Cord Blood Placenta Cord Blood Placenta
(n = 22) (n = 23) (n = 48) (n = 48)
IGF1 cg17084217 0.004 0.004 cg01305421 0.005 0.007
€g25163611 1.0E-04 0.031 cg14568338
IGF1R €g19714640 0.097 0.038 €g22375192 0.011 0.021
920742855 0.005 0.018 cg02166532 0.006 0.001
IGF2 €g10649864 0.007 0.077 cg02807948 0.049 40E-04
cg17626526 0.040 0.026 cg13756879 40E-04 0.001
cg17084217 0.011 3.0E-04 €g20339650 0.014 4.0E-04
€g22956483 3.0E-04 0.001
cg01305421 0.032 0.003
IGF2BP1 n/a n/a cg06638433 0.005 0.044
cg13877465 0.019 83E-05
IGF2BP2 n/a n/a €g18234011 0.005 0.024
€g24450631 0.005 0.006
IGF2BP3 cg00508334 3.5E-05 0.028 €g02860543 0.049 1.2E-05
€g21413760 0.062 31807 €g19042950 1.2E-05 0.002
IGF2R cg07148501 0.009 0.076 €g00230368 0.007 0014
cg12721534 0014 0.063 cg14556618 84E-05 1.0E-04
IGFBP1 €g20666158 0.015 0.059 €g05660795 0.033 0014
€g23864854 0.048 0.028 €g27447599 0.021 0.018
IGFBP2 cg07828219 0.032 0.018 €g25854162 0.004 0.011
cg17207942 0.035 0.001 €g26187237 6.7E-05 0.015
IGFBP3 €g12826145 0.023 0.012 cg04796162 0014 0.036
€g14625938 0.001 0.010 cg06713098 0.027 0.002
cg08831744 0.001 0.003
€g 15898840 0.026 0.003
€g22083798 0.029 0.042
IGFBP4 cg03940014 0.054 0.008 cg00512374 0.008 0.022
€g22392383 0.018 0.042
IGFBP5 €g20419545 0.066 0.001 €g 19008649 0.021 0.005
€g24617085 0.067 0.017 €g22467567 0.001 0.006
IGFBP6 cg00122038 0.009 0.011 cg01773854 0.051 1.0E-04
€g22732012 0.072 2.0E-04 €g08629913 0.024 0.003
IGFBP7 cg00431950 0.023 0.037 cg00884221 0.002 0.001
€g16546204 0.026 0014 €g03876618 3.3E-05 0.001
INS €g 13349859 0.001 0.020 cg00613255 0.001 0.005
914426263 0.008 0.005 €g03366382 1.0E-04 0.044
€g13993218 0.003 0.012
€g25336198 0.005 0.008
INSR cg05427477 0.002 0.084 cg01263716 n/a n/a
€g19110381 0.072 0.001 cg01505590
PHLDA2 cg03637064 0.019 0.163 €g04720330 4.0E-05 0.062
€g18242686 0.024 0.006 cg11961618 0.039 0.014
cg14415214 0.001 0.081
€g21259253 40E-04 0.031
€g26799802 3.0E-04 0.035
€g00702231 0.019 0.031
cg07077459 0.055 0.006
PLAGL1 €g10923987 0.002 0.052 €g08263357 3.8E-06 0.006

€g12757684 0.067 0.062 €g12757684 0.001 0.013
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Table 2 Correlation of mechanism-based candidate gene methylation levels with birth weight (Continued)

0.001
0.002

IGF2/H19* €g25871270

cg19731870

cg14161241 0.002 0.030
cg17895149 0.001 0.009
€g22378065 0017 0.034
€g25350411 0.002 0.001
cg00613255 0.007 0.003
cg03366382 0.010 0.001
0.065 n/a n/a

0.008

Multiple entries represent data from multiple CpG sites. The best correlation obtained in each group is shown in bold

* IGF2/H19 differentially methylated region (DMR)
n/a = not applicable i.e. no probes on array

larger data set and identified an additional set of seven
genes (ATP6API, PRSS21, RCORI, ANGPT4, CDK2,
EVPL and NAT8L), whose methylation levels explained
70% of the variance in birth weight, independently (Table
3). We note that mouse orthologues of two of these genes
(Angpt4 and Cdk2) are associated with growth-related
phenotypes [52,53]. CDK2 is a central regulator of cell
division and ANGPT4 is an angiogenesis factor that is
expressed in a wide variety of human tissues [54]. Valida-
tion of array-based inter-individual methylation differences
that correlated with birth weight was performed for
selected CpGs by bisulfite pyrosequencing (Figure 3).

The combined model, using methylation levels at all
13 candidate genes identified in both experiments,
explains 84% of the variance in birth weight in the sam-
ple of 48 individuals (Table 3).

Transcript levels of candidate genes at delivery are not
correlated strongly with birth weight

Transcript levels of 12 of the 13 candidate genes from
Table 3 (NATSL is not interrogated by the array), mea-
sured at the single time point of delivery, were subject to
the L, regression procedure to determine whether methy-
lation levels or transcript levels were better correlated with
birth weight. Notably, the single time point transcript
levels of these genes do not correlate strongly with birth
weight, explaining a maximum of 16% of trait variance
(and this maximum correlation is obtained only when the
stability of the model is reduced to non-zero regression
coefficients in only 42 out of 48 “leave one individual out”
validations).

We asked whether the reason that transcript level dif-
ferences in the 13 candidate genes did not explain var-
iance in birth weight as well as DNA methylation
differences was that DNA methylation levels were not
correlated with transcript levels of these genes at birth, in
cis. In fact, only two of the candidates, EVPL and GRBIO0,
showed significant correlation between methylation of
CpG sites at the locus and transcript level, measured at
delivery, and only in placenta (Table 4). Interestingly,

methylation of CpG sites in MSXI (a homeobox tran-
scriptional repressor) is correlated with transcript level of
four of the candidates (Table 5), methylation of CpG
sites in CDK?2 is correlated with transcript level of three
of the candidates (Table 5) and methylation of CpG sites
in GRBIO is correlated with transcript level of four of the
candidates (Table 5). In all but two cases, correlations
between multiple CpGs in one candidate and transcript
level in the other are in the same direction and of similar
magnitude (Table 5), suggesting that the effects we
observe are not anomalous or limited to single CpG sites
but that methylation levels over broad regions of MSX1,
CDK2 and GRBI10 (4,272 bp, 372 bp and 12,177 bp,
respectively) are correlated with transcript level of the
other candidates.

We next applied the L;-regularized regression proce-
dure to all 48,000 transcripts and identified five candi-
date genes whose transcript levels are correlated with
birth weight (Table 6). These five candidates (only one
of which corresponds to an annotated gene) explain
55% of the variance in birth weight, compared with the
methylation candidates 70-84% of trait variance
explained (Table 3).

Comparison of the L;-regularized regression with
“bootstrap” models

The substantial fraction of birth weight trait variance (46-
84%) explained by promoter methylation levels at a mod-
est number of genes (between six and 19) is somewhat
surprising and caused us to consider the possibility that
random collections of similar numbers of genes might
perform as well.

As a way of determining the likelihood of obtaining
models that explain such a large fraction of variance by
chance, we compare the machine learning L;-regularized
regression procedure with random permutations of six
and seven genes to determine what fraction of randomly
generated data sets would explain as large or larger a
fraction of birth weight variance as the L; procedure. We
computed the R? of each model to generate a distribution
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Figure 2 Methylation levels of candidate genes versus birth weight. “Beta value” is fraction of methyl C observed at the PGRMCT (CpG ID:
€g19606309) site (A) and RGS14 (CpG ID: cg09010421) site (B) on lllumina GoldenGate array in placenta (n = 22, in duplicate). Methylation levels
assayed at same site by bisulfite pyrosequencing also correlated with birth weight for PGRMC1 (C) and RGS14 (D) in placenta (n = 13).

Birth weight (%)

of random permutation R”s. The probability of obtaining
a model as good or better than the L; model at random
is thus the fraction of random permutation models
whose R? equals or exceeds the R? of each L; model.

We applied the L;-regularized regression procedure to
1,000 iterations of random sets of six genes, selected
from the 1,536 CpGs in the first methylation array
(from which the six gene L; model was derived), and
computed their adjusted R®. We found that only five of
the random models had an adjusted R* greater than the
direct L;-regularized regression model (i.e., “boot-
strapped” significance of the L; model, P = 0.005). We
then tested each of the five random six-gene models in
the second data set to assess what fraction of birth
weight variance was explained in an independent experi-
ment. Only two of these six-gene models had positive
regression coefficients when applied to the second data
set (Adjusted R* = 0.59, stability 46/48, and R* = 0.48,
stability 44/48, Table 7), indicating that only two of the
1,000 random models generated were robust in explain-
ing birth weight variance.

We also generated 1,000 random seven-gene models
from the 48-sample Infinium data set and computed R*
for each. Twenty-five of these models had adjusted R*
as high or higher than the direct L; seven-gene model
(“bootstrapped” significance of the L; model, P =
0.025). We then combined the two, six-gene models
which also explained variance in the second data set (i.
e., achieved a positive R? on the Infinium data) with
each of the 25, seven-gene models to create 50, 13-
gene models and asked what fraction of these explained
as high or higher a fraction of variance as the L;, 13-
gene model. We found that only one of the 50 result-
ing models achieved an R* greater than the L; 13-gene
model (i.e., P = 0.02) (Table 8). These data indicate
that the L;-regularized regression procedure is a valu-
able method for identifying small groups of genes
whose methylation levels are correlated with birth
weight and that random groups of genes of the same
size perform as well only rarely.

The random permutation model that explained the
highest fraction of birth weight trait variance combined



Table 3 Candidate genes whose methylation is correlated with birth weight

Data Set L,-regularized Non-zero regressions/total “leave one Tissue Genes in model Gene ID
regression out” regressions at maximum L, R?
R2 1
22 newborns, methylation at 1,536 CpGs 0.78 21/22 Blood APOE Apolipoprotein E
assayed using lllumina’s GoldenGate array
MSX1 Msh homeobox 1
Placenta GRB10 Growth factor receptor-bound
protein 10
PGRMCT Progesterone receptor
membrane component 1
RGST4 Regulator of G-protein signaling
14
SHMT2 Serine hydroxymethyl transferase
2 (mitochondrial)
48 newborns, methylation at 27,578 CpGs 0.50 44/48 Blood and Six genes, above
assayed using lllumina’s Infinium array placenta, as
above
48 newborns, methylation at 27,578 CpGs 0.70 45/48 Blood ATP6AP1 Atpase, H + transporting,
assayed using lllumina’s Infinium array lysosomal accessory protein 1
PRSS21 Protease, serine, 21 (testisin)
RCOR1 REST co-repressor 1
Placenta ANGPT4 Angiopoietin 4
CDK2 Cyclin-dependent kinase 2
EVPL Envoplakin
NATSL FLJ37478: N-acetyltransferase 8-
like (GCN5-related, putative)
48 newborns, methylation at 27,578 CpGs 0.84 44/48 Blood and All 13 genes from both
assayed using lllumina’s Infinium array Placenta, as experiments, combined
above

! The maximum L;-regularized regression correlation obtained for the gene model in which more than 90% of the “leave one out” cross-validations exhibited non-zero regression parameters (third column)
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Figure 3 Methylation levels of candidate genes versus birth weight. “Beta value” is the fraction of methyl C observed at the ANGPT4 (CpG
ID: cg26540515) site (A) in placenta and PRSS2T (CpG ID: cg21085768) site (B) in cord blood on the lllumina Infinium array (n = 48). Methylation
levels assayed at same site by bisulfite pyrosequencing also correlated with birth weight for ANGPT4 (C) in placenta (n = 26) and PRSS21 (D) in
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the six-gene GoldenGate model (BESTI, IMPDH?2,
OSBPL5, PAX3, PSMC3 and SERPINFI) with the seven-
gene Infinium model (CTTN, GMDS, REGIB, VPS52,
RUVBLI and KIAA241). When the L; procedure is
applied to the 13 genes in the combined model, irrelevant
features are eliminated and the resulting model contains

only 10 relevant genes (CTTN, GMDS, IMPDH?2,
OSBPL5, PAX3, PSMC3, REG1B, RUVBL1, SERPINFI
and VPS52). This 10-gene model achieved an adjusted
R? of 0.87 and three (OSBPLS, PAX3 and REGIB) of the
10 genes are likely to have a role in growth-related
phenotypes.

Table 4 Correlation between DNA methylation and transcription of candidate genes

Tissue Methylation Genes CpG ID Transcript ID Correlation’ P value
Placenta EVPL €g24697031 ILMN_1727288 -0.30 0.04
GRB10 cg06386517 ILMN_1669617 034 0.02
€g20651681 0.39 0.01
cg06790324 0.29 0.04
cg03104936 0.29 0.05
cg03104936 ILMN_1652662 037 0.01
cg06386517 ILMN_2340919 033 0.02
€g20651681 034 0.02
€g24183958 038 0.01
cg06790324 039 0.01

! Pearson correlation coefficient
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Table 5 Correlation between DNA methylation and transcription in the candidate genes

Tissue Methylation Candidate CpG ID Gene Transcript Transcript ID Correlation’ P value
Blood MSX1 cg14167596 APOE ILMN_1740938 0.76 < 0.001
911930592 ATP6AP1 ILMN_1697694 032 0.03

cg15755084 032 0.03

€g20891301° -0.30° 0.04

€g26615830 032 0.03

€g15696627 044 0.002

cg03717979 051 < 0.001

cg15755084 PRSS21 ILMN_2382964 -0.38 0.01

cg15696627 -0.37 0.01

€g20588069 -042 0.003

cg06677140 -0.29 0.04

cg09573795 ILMN_1774256 -0.34 0.02

cg03199651 -0.30 0.04

€g20588069 -0.36 0.01

€g22609784 -0.31 0.03

€g15696627 RCOR1 ILMN_1743421 -0.28 0.05

cg03717979 ILMN_1743421 -0.29 0.04

cg06677140 ILMN_1743421 -0.38 0.01

Placenta CDK2 cg09106999 GRB10 ILMN_1667771 032* 0.03
cg00129774 ILMN_1669617 051 < 0.001

cg00129774 ILMN_2340919 0.46 0.001

cg04108502 037 0.01

€g09304040 PGRMC1 ILMN_1684771 -0.34 0.02

cg09106999 RGS14 ILMN_1696828 -0.31 0.03

EVPL €g24697031 EVPL ILMN_1727288 -0.30 0.04
GRB10 €g20651681 CDK2 ILMN_1653443 -0.29 0.04
cg15774495 -0.28 0.05

cg06790324 -0.36 0.01

cg06386517 GRB10 ILMN_1669617 034 0.02

€g20651681 039 0.01

cg06790324 029 0.04

cg03104936 029 0.05

cg03104936 ILMN_1652662 037 0.01

906386517 ILMN_2340919 033 0.02

€g20651681 034 0.02

€g24183958 038 0.01

cg06790324 039 0.01

€g20651681 PGRMC1 ILMN_1684771 -0.30 0.04

cg03104936 -0.29 0.05

€g20651681 RGS14 ILMN_1696828 -0.34 0.02

NATSL cg08211091 GRB10 ILMN_1669617 -0.31 0.03

! Pearson correlation coefficient

2 MSX1 has five CpGs that are positively correlated with ATP6AP1, however, cg20891301, which is anomalously negatively correlated is located at the end of the

CpG island

3 CDK2 has three CpGs that are positively correlated with GRB10, however, one CpG, cg09106999 is negatively correlated

Conclusions

DNA methylation differences may serve as a record of
differences in “potential” transcript level or transcript
level integrated over time

We have used three approaches to identify genes whose
DNA methylation levels or transcript levels may explain

a significant fraction of trait variance in individual birth
weight. In the first approach, we analyzed 19 genes iden-
tified as growth- or birth weight-associated in the litera-
ture. We found that although transcript levels of none of
the 19 candidates explained very much of the trait var-
iance individually, the 19 candidates, in aggregate,
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Table 6 Candidate genes whose transcript levels are correlated with birth weight

Data Set L,- Non-zero regressions/total Tissue Genesin  Description
regularized “leave one out” model
regression  regressions at maximum
R? L, R?
48 newborns, expression at 47,000 0.55 45/48 Blood HS.406106  BX090408 Soares fetal liver spleen
transcripts assayed using lllumina’s INFLS Homo sapiens cDNA clone
HumanHT-12 v3 Expression BeadChip IMAGP998E08415; IMAGE:211951
LOC255130 PREDICTED: Homo sapiens
hypothetical LOC255130
(LOC255130)
Placenta HS.568324  AGENCOURT_7975600
NIH_MGC_113 Homo sapiens cDNA
clone IMAGE:6215286 5
HS.572889  DA236664 BRAWH3 Homo sapiens
cDNA clone BRAWH3033381 5
NBPF10 Homo sapiens neuroblastoma

breakpoint family

explained 24% of trait variance. Interestingly, promoter
DNA methylation levels of these genes explained as
much (26% in the first data set) or more (46% in the sec-
ond data set) of trait variance than did transcript levels.

In the second approach, we used a machine-learning
technique (L; regularized regression) to identify genes
whose methylation level explained a significant fraction
of birth weight trait variance. L; regularized regression
selects CpG sites whose methylation levels are correlated
with birth weight and tests whether the association is
robust by performing multiple “leave one sample out”
tests of whether the correlation remains. Genes with con-
sistent correlations are kept and added to the model and
irrelevant genes are discarded. The contribution of each
gene is then evaluated individually and in combination
with the other candidates until additional features no
longer make a significant impact on the adjusted R*. This
procedure identified six genes whose methylation levels
explained 78% of birth weight trait variance. Only two of
the six genes, APOE and GRBI10, have been identified
previously as associated with growth phenotypes. How-
ever, the contribution of these six genes to birth weight
appears robust because they explained 50% of the var-
iance in an independent data set and explained an equal
or greater fraction of birth weight trait variance in both
data sets than did the 19 mechanism-based candidate
genes (78% vs. 26% and 50% vs. 46%) tested in the first
approach. We also used the L; regression approach to
identify candidate genes from amongst the much larger
number of candidates evaluated in the second data set
and identified seven genes, of which only two (ANGPT4
and CDK?2) were associated previously with growth. The
combination of all 13 L; candidate genes gave an
adjusted R? of 0.84 in the larger data set, indicating that
this method of identifying genes that affect birth weight
is superior to the mechanism-based candidate gene
approach.

Because DNA methylation levels of this small number
of genes unexpectedly explained such a large fraction of
trait variance, we added a third approach and compared
the efficacy of random collections of six and seven
genes to explain a similar fraction of trait variance. We
found that only two of 1,000 six gene models (P =
0.002), 25 of 1,000 seven gene models (P = 0.025) and
only one of the 50 resulting combined models (P =
0.02) performed as well as the L; model. From a com-
putational standpoint, the L; method has substantial
advantages over the random permutation method
(beginning with the uncertainty of how many genes to
sample at a time in the random permutation/bootstrap
method) and is likely to become even more valuable
when larger data sets involving more individuals and
more irrelevant features (larger CpG arrays) become
available.

It is noteworthy that none of the transcript level-based
models did as well in explaining birth weight trait variance
as the corresponding methylation level-based models
(Tables 3, 7, 8). This circumstance suggests that the candi-
date genes exert their largest effect on fetal or placental
growth cumulatively or at some period prior to delivery.
While this assertion is not surprising, it suggests, further,
that inter-individual differences in candidate gene DNA
methylation may serve as a kind of “fossil record” of candi-
date gene expression differences during development.
Such inter-individual differences that track birth weight
via the DNA methylation of candidate loci may be less
likely to change dramatically over the course of develop-
ment than transcript levels that are dependent largely on
the action of factors that act in trans [55,56].

A major question posed by the data in Tables 3, 7 and 8
concerns the fact that the best models share no genes in
common. This circumstance suggests that very little preci-
sion or predictive ability is to be gained by increasing the
number of genes in a model beyond six - 13. While this
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Table 7 Five random permutation models with higher R? than the L, model and the adjusted R* when tested on the

Infinium data-set

Data Set R? Adjusted R? and stability Genes in  Gene names
when tested on Infinium model
Data
22 newborns, methylation at 1,536 CpGs  0.86 0.59 (46/48) ADAM9 ADAM metallopeptidase domain 9
assayed using lllumina’s GoldenGate array
DPYSL3  dihydropyrimidinase-like 3
FABPS fatty acid binding protein 5
HOXB4 homeobox B4
MHC2TA  CIITA, class I, major histocompatibility complex,
transactivator
PRO1853  C2orf56, chromosome 2 open reading frame 56
0.82 negative GRB10 growth factor receptor-bound protein 10
HRASLS3  PLA2GI16, phospholipase A2, group XVI
MYH14 myosin, heavy chain 14, non-muscle
NM15555
WNT16 wingless-type MMTV integration site family,
member 16
0.81 048 (44/48) BEST1 bestrophin 1
IMPDH2 ~ IMP (inosine 5-monophosphate) dehydrogenase 2
OSBPL5  oxysterol binding protein-like 5
PAX3 paired box 3
PSMC3 proteasome (prosome, macropain) 26S subunit,
ATPase, 3
SERPINF1  serpin peptidase inhibitor, clade F (alpha-2
antiplasmin, pigment epithelium derived factor),
member 1
0.80 0 (45/48) CBX1 chromobox homolog 1
EOMES eomesodermin
PABPC4 poly(A) binding protein, cytoplasmic 4 (inducible
form)
PIK3CG phosphoinositide-3-kinase, catalytic, gamma
polypeptide
SLCI6AT  solute carrier family 16, member 1 (monocarboxylic
acid transporter 1)
TMPO thymopoietin

0.79 negative

CITTORF15 TMEMO9B, TMEM9 domain family, member B

CCT3 chaperonin containing TCP1, subunit 3 (gamma)
MYH9 myosin, heavy chain 9, non-muscle

PROX1 prospero homeobox 1

REST RE1-silencing transcription factor

RPS2 ribosomal protein S2

conclusion does not imply that only a very small number
of genes are involved in controlling birth weight, it does
suggest that methylation levels of genes in one model are
correlated with methylation of genes in the other models
such that any of a suite of correlated genes will predict
birth weight as well as any of the others in the same suite.
The fact that each model contains genes that have been
demonstrated to affect growth in functional studies pro-
vides some assurance that the genes identified are actually
affecting birth weight in a significant way. Even if many
genes contribute incrementally to growth, our analysis
indicates that relatively few explain a large enough fraction

of variance that they will be identified by examining small
populations.

Potential roles of the candidate genes in determining
birth weight

Overall, we have identified 23 genes whose methylation
levels are correlated strongly with birth weight. In addition
to the four genes known to affect growth in the 13 gene L;
model (APOE, GRB10, ANGPT4 and CDK?2), several of the
genes identified in the random permutation model are
likely to be involved in weight regulation and/or appear to
play a role in growth and development. Oxysterol binding



Turan et al. BMC Medical Genomics 2012, 5:10
http://www.biomedcentral.com/1755-8794/5/10

Page 17 of 21

Table 8 Each of the two random permutation six-gene models that also had positive R? in the Infinium data set (from
Table 7) were combined with each random permutation seven-gene model that achieved an R? higher than the L,
Infinium model (25 models) for a total of 50, 13 gene models

Data Set Genes  Adjusted R? and stability Genes in Gene name
in when tested on Infinium resulting
model Data model
GoldenGate gene BESTT 0.87 (44/48) CTIN Cortactin
model which achieved R? = 0.48 IMPDH?2 GMDS GDP-mannose 4,6-dehydratase
(stability 44/48) on the Infinium
Data
OSBPL5 IMPDH2 IMP (inosine 5-monophosphate) dehydrogenase 2
PAX3 OSBPL5 oxysterol binding protein-like 5
PSMC3 PAX3 paired box 3
SERPINF1 PSMC3 proteasome (prosome, macropain) 26S subunit,
ATPase, 3
Infinium gene model CTTN REGI1B regenerating islet-derived 1 beta
which achieved better
R? than our model
GMDS RUVBLT RuvB-like 1 (E. coli)
REG1B SERPINF1 serpin peptidase inhibitor, clade F (alpha-2
antiplasmin, pigment epithelium derived factor),
member 1
VPS52 VPS52 vacuolar protein sorting 52 homolog
RUVBLT
KIAA241

Only one of the 50 models achieved higher R? than the L; 13 gene model. Genes in bold have suggested role in fetal or placental growth and development

protein-like 5 (OSBPLS5), an imprinted gene with preferen-
tial expression from the maternal allele (only in placenta),
plays a key role in the maintenance of cholesterol balance
in the body. Fatty acid binding protein 5 (FABPS5) plays a
role in fatty acid uptake, transport and metabolism and
polymorphisms in this gene are associated with type 2 dia-
betes. Furthermore, mice homozygous for disruptions in
this gene display resistance to diet-induced obesity
(depending on the allele), showing decreased adipose tis-
sue and improved glucose tolerance and insulin sensitivity.
The protein encoded by the homeobox B4 (HOXB4) gene
functions as a sequence-specific transcription factor that is
involved in development, and the transcription factor
paired box 3 (PAX3) may play a critical role during fetal
development. Regenerating islet-derived 1 beta (REG1B)
encodes a protein secreted by the exocrine pancreas that
is highly similar to the REGIA protein, which is associated
with islet cell regeneration and diabetogenesis, and may be
involved in pancreatic litho genesis. Mice homozygous for
a null allele also exhibit impaired suckling.

Potential confounders of the role of candidate gene
methylation in determining birth weight

There are two sources of error that could influence the
results of our analysis and diminish the strength of the
associations observed. The first is error in assigning the
correct birth weight to any individual child. Birth weight
is a complex phenotype, influenced by gestational age,
maternal weight and age, parity, infant sex and race

[57,58], as well as other factors. Although our sample
(Additional file 1) has small numbers of non-Caucasian
infants, we have adjusted birth weight percentile consid-
ering only gestational age. While it is possible that con-
sideration of these multiple additional confounders
would alter slightly the placement of individual babies in
the birth weight distribution, it is also possible that such
adjustments would be performed erroneously. For exam-
ple, the major objection to including non-Caucasian
infants in the analysis is likely to be that Asian and Afri-
can American infants are smaller than Caucasian infants.
However, the two African American children in our sam-
ple are at the 89'™ and 96 birth weight percentile and
the one fully Asian child is at the 80" percentile (Addi-
tional file 1). We decided to use the single most impor-
tant contributor to birth weight (gestational age) as our
only adjustment to the primary phenotype to avoid the
potential for multiple confounder adjustment to categor-
ize phenotype erroneously.

The second source of error that would reduce the repro-
ducibility of the model is the potential for assigning methy-
lation levels incorrectly. This could happen as a result of
intra-individual variation in methylation levels because of
placental tissue mosaicism or variation in subpopulations
of cord blood lymphocytes. Although such variation does
have the potential to result in mis-assigning methylation
levels, the actual influence of these variations is likely to be
small, in practice. Even though flow-sorted subpopulations
of lymphocytes may show significant gene-specific
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variation in methylation levels (e.g., B cells vs. CD4 T-cells
vs. CD8 T-cells in Figure 1 in Rakyan et al. 2008) longitudi-
nal measures of site-specific DNA methylation in total lym-
phocytes taken from the same individuals, decades apart,
rarely change by more than a few percent [59-61]. We
have also examined the effect of inflammatory markers
(erythrocyte sedimentation rate and levels of C-reactive
protein) likely to be associated with specific leukocyte sub-
populations, as well as total white blood cell count in longi-
tudinal studies of 111 individuals [61] and none of these
parameters was related to any methylation differences
observed [61]. Similarly, in terms of placental subpopula-
tions, we have compared DNA methylation levels at the
IGF2/H19 and IGF2R DMRs in five section of placenta
both within and between individuals. Although there is
some variation within a placenta, there is substantially
more variation between individuals than within an indivi-
dual [27]. These observations suggest that intra-individual
variation in placental or cord blood DNA methylation are
unlikely to change the correlations observed between can-
didate gene methylation and birth weight.

Candidate gene interaction may identify novel regulatory
networks and provide links between low birth weight
and adult disease

Of the birth weight-associated candidate gene DNA
methylation differences identified in the L; procedure

Page 18 of 21

(Table 3), three are of particular interest. Methylation
levels of the homeobox transcriptional repressor MSXI in
cord blood are correlated with the transcript level of four
of the other candidate genes (APOE, ATP6API1, PRSS21
and RCORI (Table 5)). In fact, at least seven of the top 10
genes whose transcript level is correlated with methylation
of CpG sites in MSX1 (Table 9) are suspected to play roles
in fetal or placental growth. On the placental side, methy-
lation levels of multiple sites in CDK2 are correlated with
expression of three of the other candidates and multiple
CpG sites in CDK?2 are correlated with transcript levels of
GRB10 (Table 5). Methylation levels of multiple sites in
GRBI0 are correlated with transcript levels of four of the
seven candidates (CDK2, GRBI10, PGRMCI and RGS14),
including itself (Table 5), and two of the genes in the top
ten GRBI10 transcript level correlations (Table 9) have
been found to have an effect on growth.

The mechanisms linking low birth weight to adverse
long-term health outcomes are not well understood but
may be related to defective placentation, restrictions in the
size of stem cell populations that lead to reduced organ
size and function, and/or abnormal programming of meta-
bolic pathways including glucose utilization. In this regard,
it is noteworthy that methylation levels of three CpGs in
the MSX1 transcriptional repressor are correlated with
transcript levels of the glucose transporter SLC2A3 (Pear-
son correlation coefficient 0.42).

Table 9 Top ten genes whose transcript levels are correlated with methylation of CpG sites in MSX1, CDK2 and GRB10

Tissue  Methylation CpG ID Expression Transcript ID  Correlation’ Gene Name
Gene Gene

Blood MSX1 cg14167596 APOE ILMN_1740938 0.76 Apolipoprotein E
cg14167596 CGA ILMN_1734176 0.70 Glycoprotein Hormones, Alpha Polypeptide
€g03199651 KRT6C ILMN_1754576 0.69 Keratin 6 C
cg14167596 PAPPA ILMN_1721770 0.67 Protein Kinase C And Casein Kinase Substrate in Neurons

1
cq14167596 PSG4 ILMN_1693397 0.67 Pregnancy Specific Beta-1-Glycoprotein 4
€g26615830 DCN ILMN_2347145 0.65 Decorin
cg14167596 PSG6 ILMN_2309615 0.65 Pregnancy Specific Beta-1-Glycoprotein 6
cg14167596 CSH1 ILMN_1693617 0.65 Chorionic somatomammotropin hormone 1 (placental
lactogen)

cg14167596 GH2 ILMN_1659354 0.65 Growth Hormone 2
cg14167596 ADAM12 ILMN_1726266 0.65 ADAM Metallopeptidase Domain 12

Placenta CDK2 cg04108502 CXCL11 ILMN_2067890 0.74 Chemokine (C-X-C Motif) Ligand 11
cg04108502 HLA-DPB1 ILMN_1749070 0.70 Major Histocompatibility Complex, Classii, DP Beta 1
€cg04108502 CXCL9 ILMN_1745356 0.68 Chemokine (C-X-C Motif) Ligand 9
cg04108502 GBP4 ILMN_1771385 0.68 Guanylate Binding Protein 4
cg04108502 GBP5 ILMN_2114568 067 Guanylate Binding Protein 5
cg04108502 UBD ILMN_1678841 0.66 Ubiquitin D
cg04108502 VCY ILMN_1683872 0.66 Variable charge, Y-linked
cg04108502 HLA-DRB3 ILMN_1717261 0.66 Major Histocompatibility Complex, Class I, DR Beta 3
cg04108502 CD3D ILMN_2261416 0.65 CD3d molecule, delta (CD3-TCR complex)
cg04108502 CETP ILMN_1681882 0.65 Cholesteryl ester transfer protein, plasma

GRB10 €g20651681 SHROOM?2 ILMN_1681777 0.68 Shroom Family Member 2
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Table 9 Top ten genes whose transcript levels are correlated with methylation of CpG sites in MSX1, CDK2 and GRB10

(Continued)
€g20651681 MESDC1 ILMN_1781565
€g20651681 CCDC146 ILMN_1790555
€g20651681 VANGL2 ILMN_1715647
cg06790324 SCG2 ILMN_1703178
€g20651681 STGC3 ILMN_1807244
cg06790324 ABHD14B ILMN_2227533
€g20651681 TLL1 ILMN_1699814
€g20651681 SOD1 ILMN_1662438
cg06790324 INPP5E ILMN_1811301

0.67 Mesoderm Development Candidate 1

0.67 Coiled-Coil Domain Containing 146

067 Vang-Like2 (Vangogh, Drosophila)

0.66 Secretogranin |l

0.66 hypothetical STGC3

0.66 Ab Hydrolase Domain Containing 14B

0.66 Tolloid-Like 1

-0.65 Superoxide Dismutase 1, Soluble

0.65 Inositol polyphosphate-5-phosphatase, 72 kDa

Genes in bold have suggested role in fetal or placental growth and development

! Pearson correlation coefficient (P < 0.01)

Furthermore, GRBI0 methylation is also correlated with
expression of genes involved in reactive oxygen species
(ROS) signaling, stress signaling and oxygen sensing. This
is of interest because GRBI0 is transcriptionally imprinted
in human villous trophoblasts (and brain) and prolifera-
tion/differentiation of trophoblast cells is responsive to
oxygen tension [62-64]. GRB10 has known major effects
on placental growth. More recent data implicate GRBIO in
insulin signaling [65,66], which suggests a mechanism and
pathway by which a neonatal phenotype could be linked
to adult disease. Discovery of such “unexpected” pathways
may inform about the long-term association between low
birth weight and adult disease, as well as which genes may
be susceptible to environmental effects.

The association we have identified between candidate
gene methylation levels (at birth) and birth weight suggests
that methylation levels of the candidates do not change sig-
nificantly during early development. Although we have not
documented that the methylation states of the candidate
genes do not change during development, we have shown
previously that fewer than 10% of individuals exhibit global
methylation changes of more than 20% when measured
longitudinally, over decades [61]. We also demonstrated
that only 21 genes, of 805 examined (2.6%), showed methy-
lation changes of greater than 20% over the same period
[61]; i.e., approximately 1% change per year. The fact that
these gene-specific changes were observed in individuals
from a single family with the greatest difference in global
methylation [66] between the two sampling times suggests
that large changes in DNA methylation levels over time are
relatively uncommon. Given such temporal stability, it may
be possible to understand how inter-individual epigenetic
differences, observed at birth, predispose some individuals
to undesirable outcomes later in life.

Additional material

Additional file 1: Demographic data for subjects in the GoldenGate
and Infinium Methylation Assays. Birth weights were corrected for
gestational age [57,58,67].
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