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Abstract

TCDD is one of the most persistent environmental toxicants in biological systems and its effect through aryl hydrocarbon
receptor (AhR) has been well characterized. However, the information on TCDD-induced toxicity in other molecular
pathways is rather limited. To fully understand molecular toxicity of TCDD in an in vivo animal model, adult zebrafish were
exposed to TCDD at 10 nM for 96 h and the livers were sampled for RNA-sequencing based transcriptomic profiling. A total
of 1,058 differently expressed genes were identified based on fold-change.2 and TPM (transcripts per million) .10. Among
the top 20 up-regulated genes, 10 novel responsive genes were identified and verified by RT-qPCR analysis on independent
samples. Transcriptomic analysis indicated several deregulated pathways associated with cell cycle, endocrine disruptors,
signal transduction and immune systems. Comparative analyses of TCDD-induced transcriptomic changes between fish and
mammalian models revealed that proteomic pathway is consistently up-regulated while calcium signaling pathway and
several immune-related pathways are generally down-regulated. Finally, our study also suggested that zebrafish model
showed greater similarity to in vivo mammalian models than in vitro models. Our study indicated that the zebrafish is a
valuable in vivo model in toxicogenomic analyses for understanding molecular toxicity of environmental toxicants relevant
to human health. The expression profiles associated with TCDD could be useful for monitoring environmental dioxin and
dioxin-like contamination.
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Introduction

Dioxin-like compounds are major environmental contaminants

that could pose serious threats to public health and the ecosystem

[1]. Since 1980s, it has been increasingly documented that dioxin-

like compounds cause various biological effects in laboratory

animals and human [2,3]. Among them, 2,3,7,8-tetrachlorodi-

benzo-p-dioxin (TCDD) is the most potent toxicant and it is

produced from both natural and anthropogenic processes includ-

ing incineration of chlorine-containing substances, bleaching of

paper, manufacturing of specific organochlorine chemicals, volca-

noes, and forest fires [4]. As an aromatic hydrocarbon, TCDD has a

long biological half-life and is heavily accumulated in the food

chain, which causes adverse effects on human health at environ-

mental levels [4,5]. Till now, many animal models, including fishes,

have been used in TCDD studies [6,7]. However, most of these

studies have focused on the physiological-biochemical parameters

and typical molecular markers, such as the gene cyp1a and the Aryl

hydrocarbon receptor (AhR) signaling pathway [7] and detailed

molecular toxicity of TCDD remains to be elucidated.

Genomic approaches have been increasingly used in toxicolog-

ical research in the past decade. Previous toxicogenomic studies

mostly used DNA microarray technology to capture the global

gene expression data and to evaluate the effects of toxicant

exposure [8,9]. However, there are several drawbacks in

microarray analysis, e.g. limited sensitivity, probe cross-hybridiza-

tion, incomplete genome coverage and a prerequisite for sequence

information in order to include new probes [10]. Recently, the

advent of next-generation sequencing (NGS) technologies has

significantly accelerated genomic research and provided a better

alternative for transcriptomic analysis [11]. By high-throughput

RNA sequencing, it is feasible to measure transcript abundance

and transcriptomic profiles with a broad dynamic range, therefore

providing a powerful tool to determine the potential adverse effects

of environmental contaminants on public health [8].

Comparative studies across different taxonomic groups are

important not only in understanding of organism diversity but also

for inferring important biological responses due to evolutionary

conservation [4]. In toxicology, animal models are widely used to

infer human responses to chemical exposure. Particularly, it is

valuable to use multiple animal models for comparative analyses in

order to determine conserved adverse responses or molecular

events. As lower vertebrates in evolution, fishes are particularly

important models for such comparative studies [12,13]. Now the
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zebrafish (Danio rerio) has become an increasingly popular model in

human disease studies because of its many advantageous properties

in laboratory experiments, such as its small size and easy availability

in a large number, short generation time for genetic manipulation,

and cost effectiveness for high-throughput studies. More impor-

tantly, many molecular and developmental studies have shown that

zebrafish and human share many common genes in conserved

developmental pathways in organogenesis and related physiological

processes as well as in carcinogenesis [14,15].

As there is so far no NGS based transcriptomic analysis for

molecular response to TCDD treatment, in the present study we

carried out RNA sequencing analyses of TCDD-treated in order

to carry out a genome-wide identification of novel TCDD responsive

genes and pathways, which should provide a comprehensive

understanding of the molecular mechanism of TCDD-induced

toxicity in mammals and human. We further compared the

zebrafish response with those from mammalian systems and thus

identified common molecular pathways deregulated in both fish

and mammals. We found that the zebrafish model is more similar

to mammalian in vivo models than in vitro models, thus indicating

a validity of the zebrafish as an emerging in vivo model in

comparative toxicological research.

Materials and Methods

Zebrafish
Experimental procedures were carried out following the approved

protocol by Institutional Animal Care and Use Committee of

Figure 1. Comparison of transcriptomic profiles between TCDD and control groups. (A) Distribution of transcript entries and total
transcript counts over different tag abundance categories in liver of zebrafish. The percentages of total transcript counts and number of different
transcript entries per category are plotted on a log scale (base10). (B) Relationship between the hepatic transcriptome changing range and its
expression level in zebrafish after TCDD treatment. The base of log value is 2.
doi:10.1371/journal.pone.0077292.g001
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National University of Singapore (Protocol 079/07). Adult

zebrafish (3-month old), which are Singapore wild type zebrafish,

were purchased from a local aquarium farm (Mainland Tropical

Fish Farm, Singapore) and acclimated for at least one week in our

aquarium before chemical exposure experiment. Fish were

maintained at ambient temperature of around 28uC with a 14-h

light and 10-h dark cycle in a flow-through water system.

Chemical exposure
TCDD was purchased from Sigma-Aldrich (USA) and dissolved

in dimethyl sulfoxide (DMSO). Male adult fish were used in the

exposure experiments by immersing in the TCDD water (10 nM)

for 96 h at ambient temperature (28uC) in a static condition.

Control fish were kept in water with 0.01% DMSO (vehicle) under

the same condition. Water was changed daily throughout the

treatment. After 96 hours of chemical exposure, treated and

control fish were sacrificed and liver samples were dissected from

each fish.

RNA sample preparation and SAGE library sequencing
Total RNA was extracted from livers (excluding gall bladders) of

individual fish using TRIzolH Reagent (Invitrogen) and treated

with DNase I (Invitrogen) to remove genomic DNA contamina-

tion. For RNA sequencing, RNA was pooled equally from 9 fish

for each group (TCDD and control). Poly A+ RNA was purified

using DynabeadsH Oligo (dT) EcoP (Invitrogen) and subjected to

cDNA synthesis. Synthesized cDNA was digested by NlaIII and

sequencing adapters were added to the cDNA fragments. SAGE

(serial analysis of gene expression) sequencing (tag length = 27

nucleotides) was performed by Mission Biotech (Taiwan) with ABI

SOLiDTM System 2.0 (Applied Biosystems). The RNA-sep data

reported in the present study was submitted to Gene Expression

Omnibu with an access number GSE49915.

Gene annotation and selection of differentially expressed
genes

All SAGE tags were mapped to the zebrafish Reference

Sequence database (http://www.ncbi.nlm.nih.gov/RefSeq) with

maximum 2 nucleotide mismatch. Uniquely mapped tag counts

for each transcript were normalized to TPM (transcripts/tags per

million). For biological implication analyses, genes with only

marginal expression, as defined by TPM,10 in both control and

TCDD groups, were excluded. As it has been previously reported

that the actual measured quantity of differential expression (fold

change or ratio) is more consistent and reproducible in identifying

differentially expressed genes than the statistical significance (p-

value) [16,17], in the present study, we selected differentially

expressed genes based on fold change.2 and TPM.10.

Gene Ontology enrichment analysis
Gene ontology enrichment analysis was performed using

DAVID (The Database for Annotation, Visualization and

Integrated Discovery) with the total zebrafish genome information

as the background and p-values based on a modified Fisher’s exact

t-test. Gene Ontology Fat categories were used for this analysis

and the cut-off p-value is 0.05.

Real-time PCR
Real-time PCR was performed using the LightCycler system

(Roche Applied Science) with LightCycler FastStart DNA Master

SYBR Green I (Roche Applied Science) according to the

manufacturer’s instruction. For comparison between real-time

Figure 2. RT-qPCR validation of top 20 up-regulated TCDD-induced genes. RT-qPCR was performed from five individual liver samples
collected from five fish treated by TCDD from a new experiment. The relative expression level of the genes was shown in color code as indicated on
the fight and the value is in log2 fold change as compared with a housekeeping gene, b-actin1. *-only reported in fish model; #-only reported in
mammalian model.
doi:10.1371/journal.pone.0077292.g002
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PCR and RNA-seq results, Cp (crossing point value) and TPM

values for each gene were normalized against Cp and TPM of b-

actin1 (GI_ID:18858334).

Analysis of the hepatic enriched gene list by GSEA and
IPA analysis

GSEA (Gene Set Enrichment Analysis) pre-ranked option was

used to analyze the entire set of differentially expressed genes (651

up- and 407 down-regulated genes). Briefly, the gene symbols of

human homologs of the enriched zebrafish Unigene clusters were

ranked using logarithm transformed fold change (base 2). The

number of permutation used was 1000. Pathways with false

discovery rate (FDR) ,0.25 were considered statistically signifi-

cant. For IPA (Ingenuity Pathway Analysis), the same set of

differentially expressed genes was uploaded to online Ingenuity

Pathways Knowledge Base for functional implication analyses.

Cross-species comparison
Six sets of transcriptomic data for in vivo and in vitro mammalian

models treated by TCDD (GSE10082, GSE10083, GSE10769,

GSE10770, GSE14555 and GSE34251) were retrieved from GEO

(Gene Expression Omnibus). GSEA was used to establish the

relatedness between zebrafish and mammalian models. The

zebrafish hepatic transcriptome lists were converted into human

and mouse homolog Unigene clusters. The statistical significance

of the enrichment score was estimated by using an empirical

phenotype-based permutation test. An FDR value was provided

by introducing adjustment of multiple hypothesis testing.

Results and Discussion

General features of SAGE tags in TCDD-treated and
control groups

There were 11.7 million and 17.9 million SAGE sequence tags

generated from the DMSO vehicle control and TCDD-treated

groups, respectively. About 2.7 million tags in the control group

and 3.2 million tags in the TCDD group could be mapped with

the known transcripts. The mapped tags were normalized to

transcripts per million (TPM) and the expression level of genes

ranged from 0.3 to 110844.2 TPM in the two groups, indicating a

dynamic range of more than six orders of magnitude in transcript

abundance. As shown in Figure 1A, transcript abundance profiles

in both groups were very similar. The transcriptomes consist of a

small number of high abundant transcripts and a large number of

low abundant transcripts, similar to those reported in many

previous RNA-seq studies [18,19]. The percentages of the

transcripts with relatively high expression level (TPM.256) were

3.8% in the TCDD group and 3.1% in the control group, but

contributed to 80.4% and 83.0% of the total transcripts

respectively. In contrast, the percentages of the transcripts with

the low expression level (TPM,16) were 67.1% and 76.3% in the

TCDD group and control group, contributing only 3.1% and

3.2% of the total transcripts.

Differentially expressed genes in response to TCDD and
their gene ontology profile

Figure 1B shows the relationship between the dynamic

transcript fold-change of hepatic transcriptome and its expression

level in zebrafish treated by TCDD. Differentially expressed genes

Table 1. Top up-regulated genes by TCDD in zebrafish liver.

GI_ID Gene Symbol Gene Name TPM Value Log2FC

Control TCDD

40538769 cyp1a cytochrome P450, family 1, subfamily A 1.49 225.60 7.24

41152043 pklr pyruvate kinase, liver and RBC 0.37 28.99 6.28

78214313 ahrra aryl-hydrocarbon receptor repressor a 0.30 20.48 6.09

118722331 rab36 RAB36, member RAS oncogene family 0.37 23.32 5.97

94536666 sycp3l synaptonemal complex protein 3 like 0.30 18.27 5.93

113679002 zgc:152916 zgc:152916 0.37 20.80 5.80

154147743 rnasel2 ribonuclease like 2 12.65 641.82 5.67

192447400 zgc:193690 zgc:193690 0.30 13.55 5.50

54400609 lrrc23 leucine rich repeat containing 23 0.30 12.29 5.36

66472791 irak1bp1 interleukin-1 receptor-associated kinase 1
binding protein 1

0.30 11.97 5.32

51010936 tnni2b.2 troponin I, skeletal, fast 2b.2 0.30 11.34 5.24

54400623 ccdc113 coiled-coil domain containing 113 0.37 13.86 5.22

18858248 actc1b actin, alpha, cardiac muscle 1b 1.12 39.07 5.13

41053926 odf3b outer dense fiber of sperm tails 3B 0.37 11.66 4.97

165972470 si:dkey-190
g11.7

si:dkey-190g11.7 0.74 23.00 4.95

51230510 sdf2 stromal cell-derived factor 2 1.49 45.06 4.92

45387810 fgf13b fibroblast growth factor 13b 0.37 10.40 4.80

50539781 hormad1 HORMA domain containing 1 1.49 39.39 4.73

50345117 tuba7l tubulin, alpha 7 like 0.74 19.53 4.71

18858724 mid1ip1 MID1 interacting protein 1 0.74 18.27 4.62

doi:10.1371/journal.pone.0077292.t001
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after TCDD treatment were first determined by comparison of the

two sets of mapped SAGE tags with fold-change.2 and TPM

.10. In total, 1,058 genes were identified, including 651 up-

regulated genes and 407 down-regulated genes. The top 20 most

up-regulated transcripts based on fold-change are listed in the

Table 1. After compared with TCDD responsive genes in CTD

(The Comparative Toxicogenomics Database, http://ctdbase.

org/), ten gens (cyp1a, ahrra, actc1b, odf3b, mid1ip1, pklr, lrrc23,

ccdc113, sdf2, and fgf13) have been reported to be related in fish

and/or mammalian models after TCDD exposure among the top

20 genes. Not surprisingly, cyp1a, the best known molecular

marker for TCDD exposure [20], was the most up-regulated gene

(151.4 fold) in the list, indicating that our TCDD treatment in the

experiment was effective. It is interesting to note that adrra (aryl

hydrocarbon receptor repressor a) is the second highest up-

regulated gene, while the two aryl hydrocarbon receptor genes

(ahr1a and ahr2) were not significantly up-regulated in our RNA-

seq data with a modest 50% increase for adr2 and slightly decrease

for adr1a (data not shown), 10 novel TCDD-responsive genes,

eight annotated (rab36, sycp3l, rnasel2, tnni2b.2, hormad1, tuba7l,

irak1bp1 and zgc:152916,) and two unannotated (zgc:193690 and

si:dkey-190g11.7), have been identified from the top 20 most up-

regulated genes. To confirm their inducibility of the 20 genes by

TCDD, real-time PCR was carried out with individual fish liver

samples from an independent set of TCDD treatment experiment.

As shown in Figure 2, 17 out of 20 genes showed up-regulation in

Table 2. Enriched GO terms in response to TCDD treatment in zebrafish liver (p,0.01).

Category Term Count % P-Value
Fold
Enrichment

Biological protein folding 19 2.98 1.05E-06 3.94

process cellular macromolecule catabolic process 24 3.77 4.61E-05 2.59

macromolecule catabolic process 26 4.08 5.61E-05 2.44

proteolysis involved in cellular protein catabolic process 22 3.45 7.17E-05 2.65

cellular protein catabolic process 22 3.45 7.17E-05 2.65

modification-dependent protein catabolic process 20 3.14 1.65E-04 2.66

modification-dependent macromolecule catabolic process 20 3.14 1.65E-04 2.66

protein catabolic process 22 3.45 2.53E-04 2.43

cell cycle 19 2.98 4.11E-04 2.56

protein maturation by peptide bond
cleavage

4 0.63 8.39E-04 17.76

proteolysis 41 6.44 1.40E-03 1.66

protein transport 26 4.08 1.59E-03 1.96

establishment of protein localization 26 4.08 1.59E-03 1.96

protein localization 27 4.24 1.80E-03 1.91

response to bacterium 8 1.26 2.08E-03 4.33

intracellular transport 19 2.98 2.14E-03 2.22

cellular protein localization 15 2.35 4.82E-03 2.33

cellular macromolecule localization 15 2.35 5.13E-03 2.31

Cellular endoplasmic reticulum 42 6.59 1.19E-13 3.67

component proteasome complex 16 2.51 2.67E-09 6.93

cytosol 21 3.30 6.39E-07 3.65

endoplasmic reticulum part 14 2.20 6.83E-06 4.57

endoplasmic reticulum membrane 11 1.73 1.89E-04 4.25

nuclear envelope-endoplasmic reticulum network 11 1.73 3.44E-04 3.96

proteasome core complex 6 0.94 4.41E-03 5.31

Molecular unfolded protein binding 12 1.88 2.85E-05 4.83

function oligosaccharyl transferase activity 4 0.63 5.94E-04 19.98

acid-amino acid ligase activity 12 1.88 1.74E-03 3.06

threonine-type peptidase activity 6 0.94 2.23E-03 6.24

threonine-type endopeptidase activity 6 0.94 2.23E-03 6.24

dolichyl-diphosphooligosaccharide-protein
lycotransferase activity

3 0.47 4.64E-03 24.98

ligase activity, forming carbon-nitrogen bonds 13 2.04 5.65E-03 2.50

translation initiation factor activity 8 1.26 5.92E-03 3.63

heme binding 12 1.88 8.31E-03 2.50

RNA binding 20 3.14 9.61E-03 1.89

doi:10.1371/journal.pone.0077292.t002
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at least three individual samples; among them, 13 genes had up-

regulation in all of the five individual samples. Thus, our RT-

qPCR data indicated a strong agreement with the RNA-

sequencing data and, more importantly, the validation was from

five independent biological samples. Interestingly, all of the 10

novel TCDD responsive genes found in the present study were

validated by RT-qPCR (Figure 2). Thus, our RNA-seq data

provided additional biomarker genes for TCDD exposure. Among

these validated biomarker genes, several of them apparently

encodes secreted protein (e.g. fgf13b and rnasel2) and their protein

products are also likely present in the circulating blood and may

offer convenient non-invasive assays for detection of TCDD

exposure. A notable exception in the validation experimental data

was lrrc23 that was constantly down-regulated in all five

individuals, indicating that irrc23 is not a reproducibly up-

regulated gene by TCDD. In future, these novel molecular

markers for TCDD exposure can be further tested for their time-

and dose-responsiveness.

Besides cyp1a, some other genes with high abundance were also

up-regulated by TCDD exposure in zebrafish (Table S1). The up-

regulation of pklr (pyruvate kinase, liver and red blood cell) in our

experiment was consistent with several previous reports that

TCDD affects pyruvate utilization for energy and thus glycolysis

and gluconeogenesis [21,22]. Gene expression of alas1, the first and

rate-limiting enzyme involved in heme biosynthesis [23], was up-

regulated in our study, suggesting that the heme biosynthesis was

deregulated in hepatic cells of fish exposed to TCDD. Hspa5 is a

member of the heat shock protein 70 (Hsp70) family and it has

been used as an endoplasmic reticulum (ER) stress sensor [24]. In

our study, the expression of hspa5 was up-regulated with 10.2 fold,

implying TCDD led to the ER stress and this event was a highly

conserved adaptive response induced by environmental toxicants.

Moreover, the gene pck1 (phosphoenolpyruvate carboxykinase 1),

as a key factor in gluconeogenesis, was up-regulated 6.8 fold,

indicating that TCDD exposure also affected the gluconeogenesis

by altering the expression of genes encoding key gluconeogenic

enzymes [25].

Through gene ontology analysis, the differentially expressed

genes were classified into different categories based on GO database

using DAVID software (Table 2). Among the up-regulated GO

categories, the most significant ones included Endoplasmic reticu-

lum (p-value = 1.19E-13) and Proteasome complex (p-va-

lue = 2.67E-09). Since most P450s (e.g. CYP1A enzymes) are

involved in xenobiotic metabolism and primarily located in

endoplasmic reticulum, it is not surprising that the TCDD-induced

physiological stress occurred mainly in these cellular components,

which was also supported by the up-regulated 19 genes of CYP

family in our study (Table S2). Moreover, other histological studies

also found TCDD led to hypertrophy of hepatocytes, glycogen

depletion and lipidosis of liver in zebrafish and other fish [26], which

were related to the endoplasmic reticulum (ER) stress via some

cellular receptor or/and protein [27,28]. In subsequent analysis, our

results also showed that the proteasome related pathways (Protea-

some pathway and HSA03050 Proteasome, see Table 3) were

significantly up-regulated in zebrafish after TCDD treatment.

Consistent with this, several GO categories involved in Proteasome

deregulation, such as Protein folding and Cellular protein catabolic

process in the Biological Process category, as well as Unfolded

protein binding in the Molecular Function category, further

indicating that the proteasome related bio-functions were deregulated.

Change of transcription factor networks by TCDD
exposure

By IPA analysis, six significant transcription factors were found

to be related to TCDD-induced hepatotoxicity (Table 4), including

Xbp1, Nfe2l2, Nr5a2, Ptf1a, Tp53 and Mycn. In particular, the

two up-regulated Xbp1 and Nfe2l2 networks were highly enriched

with P-values of 1.47E-16 and 4.73E-11 respectively, In the Xbp1

network, 38 target genes were found from the differentially

expressed gene list and almost all of them (36) were up-regulated

(Figure 3A), indicating that Xbp1 plays a central role in regulating

a battery of genes responsible for protein trafficking and secretion

[29]. In the Nfe2l2 network, 36 up- and 14 down-regulated genes

were induced in the differentially expressed gene list (Figure 3B).

This is in consistence with a previous study [30] that most of the

regulated genes (such as mgst1, usp14, herpud1, dnajc3, actg1, hmox1,

dnajb11, etc.) by Nfe2l2 are related to oxidative stress and mediate

transcriptional events that facilitate protective responses in animal

models exposed to xenobiotic.

Table 3. Significantly regulated pathways in zebrafish after TCDD treatment, by GSEA analysis with cutoff FDR,0.25.

Pathways NES NOM p-value FDR q-value

G1 to S cell cycle reactome 1.94 ,0.001 0.024

HSA04110 cell cycle 1.9 ,0.001 0.025

Cell cycle KEGG 1.86 0.003 0.031

Proteasome pathway 1.81 0.007 0.053

HSA03050 Proteasome 1.74 0.007 0.115

HSA03010 Ribosome 22.31 ,0.001 ,0.001

Ribosomal proteins 22.21 ,0.001 0.001

HSA04020 Calcium signaling pathway 21.85 0.005 0.126

Prostaglandin synthesis regulation 21.81 0.005 0.167

ST FAS signaling pathway 21.81 0.007 0.139

ST T cell signal transduction 21.79 ,0.001 0.135

HSA04650 Natural killer cell mediated cytotoxicity 21.76 0.007 0.160

HSA04660 T cell receptor signaling
pathway

21.75 0.008 0.152

Note: NES, normalized enrichment scores; NOM p-value, nominal p-value for enrichment; FDR, false discovery rate.
doi:10.1371/journal.pone.0077292.t003
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Figure 3. Two most significant transcription factor networks in the zebrafish liver in response to TCDD exposure. (A) Xbp1 network.
(B) Nfe2l2 network, Target genes in the differentially expressed gene list (Table S1) are shown with red color indicating up-regulation and green color
down-regulation. The intensity of the color corresponds to the relatively levels of up- and down-regulation.
doi:10.1371/journal.pone.0077292.g003
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Deregulated pathways in zebrafish livers treated by
TCDD

To investigate the change of molecular pathways induced by

TCDD treatment, GSEA was performed using the set of

differentially expressed genes (651 up and 407 down) and 163

up- and 123 down-regulated pathways were identified (Table S3).

Among all pathways, five up- and eight down-regulated pathways

had significant FDR values less than 0.25 and are shown in

Table 4. The first three pathways are associated with cell cycle

progression, which have also been reported in mammalian models

under TCDD stress [31,32]. However in the present study, cell

cycle and related pathways were significantly enhanced while some

mammalian studies showed a decrease of these activities,

suggesting different regulatory mechanism in various models as

well as by different treatment regimes.

The mechanisms responsible for TCDD toxicity are always

associated with its ability to disrupt endocrine functions. In our

data, ubiquitin-proteasome pathway was significantly up-regulated

in fish liver after TCDD treatment. Consistent with another study

in the mammalian system [33], the up-regulated proteasome and

related pathways in our study further indicated that the TCDD-

induced ubiquitin-proteasomal degradation of AhR influenced the

nucleus transcription by controlling the level of ligand-activated

AhR. As ubiquitin-proteasome pathway is significantly induced in

zebrafish and all mammalian models analyzed in our study, it is an

apparently conserved mechanism of TCDD-induced toxicity

between fish and mammals. Prostaglandin synthesis regulation

pathway was suppressed in TCDD-treated zebrafish, consistent

with a previous report that prostanoid synthesis pathway could be

regulated by COX2-TBXS-TP (cyclooxygenase2-thromboxane A

synthase1-thromboxane receptor) in zebrafish after TCDD

treatment [34].

In the present study, several pathways related to signal

transduction were significantly inhibited in zebrafish after TCDD

treatment, including Ca2+ regulation pathways, Fas signaling

pathway, T-cell signal transduction and T-cell receptor signaling

pathway, ribosomal protein and its related pathways. TCDD has

been reported to significantly increase intracellular free Ca2+ in

many cell culture systems [35] and to trigger Ca2+-mediated

endonuclease activity leading to apoptosis [36]. Our study,

consistent with several previous reports [37–40], indicated that

Ca2+ regulation pathways could be commonly involved in TCDD

action. Furthermore, Fas signaling pathway, T-cell signal trans-

duction and T-cell receptor signaling pathway were also

suppressed in our study. Fas, a member of the tumor necrosis

factor receptor (TNFR) family, contains a death domain which is

essential for the delivery of the death signal [41]. Thus, Fas

signaling regulation could be a mechanism of impaired T-cell

related pathway induced by TCDD, which are consistent with

another previous report [41]. Moreover, ribosomal proteins, in

conjunction with rRNA, are involved in the cellular process of

translation [42]. Interestingly, the ribosomal protein and its related

pathway were down-regulated in zebrafish liver after TCDD

exposure, but were induced in other mammalian models [43].

Furthermore, three immune-related pathways were significantly

repressed in the zebrafish liver after TCDD exposure (Table 4),

including natural killer cell mediated cytotoxicity, T-cell signal

transduction and T-cell receptor signaling pathway. Moreover,

several B-cell related pathways were also found to be inhibited

with FDR.0.25 (Table S3). Collectively, our data indicate that

hepatic immune-related functions were impaired in fish exposed to

TCDD.

Toxicogenomic comparison between zebrafish and
mammalian models

In order to gain insight into the common molecular toxicity of

TCDD between fish and mammals as well as the validity of the

zebrafish model to predict chemical toxicity for risk assessment for

human health, our transcriptomic data were compared with

available transcriptomic data from both in vivo and in vitro

mammalian studies with TCDD. Among 26 related series in the

GEO database using human cell lines, rat and mouse tissues and

cells based on microarray studies, we found six series (GSE10082,

GSE10083, GSE10769, GSE10770, GSE14555 and GSE34251)

with effective comparability (Table 5) while other series were not

included in the comparative analysis due to incompatibility in data

uploading, platform, experimental strategy, etc. The list of 650 up-

regulated genes from the current zebrafish study was used to

represent the zebrafish transcriptome in GSEA. As shown in

Figure 4A, based on normalized enrichment scores (NES) and false

discovery rate (FDR), the zebrafish hepatic genes expression

showed more resemblance to the in vivo models (average NES is

1.54) than in vitro models (average NES is 0.93). The comparison

with all of the four in vivo data, FDR was smaller than 0.25, while

none of the in vitro data showed such significance. These

observations indicate that the zebrafish data is more similar to

the in vivo mammalian data than in vitro data, further enforcing

the validity of the zebrafish model as a potentially high-throughput

and economic in vivo experimental models for studies relevant to

human health.

To further analyze the correlation of zebrafish and other

mammalian models after TCDD treatment, comparison of

pathways were made by GSEA pre-ranked function. One up-

regulated (Proteasome pathway) and three down-regulated path-

ways (HSA04650 Natural killer cell mediated cytotoxicity,

HSA04660 T cell receptor signaling pathway, HSA04020

Table 4. Most significant transcription factors in zebrafish liver after TCDD treatment.

GI_ID Gene Symbol Gene Name
Regulation
Z-Score

P-value of
Overlap

18859572 xbp1 X-box binding protein 1 4.07 1.47E-16

33504556 nfe2l2 nuclear factor (erythroid-derived 2)-like 2 2.45 4.73E-11

24158438 nr5a2 nuclear receptor subfamily 5, group A, member 2 22.59 1.05E-03

124249093 ptf1a pancreas specific transcription factor, 1a 22.79 7.64E-06

18859502 tp53 tumor protein p53 23.035 2.73E-02

47271377 mycn v-myc myelocytomatosis viral related oncogene,
neuroblastoma derived (avian)

23.55 4.47E-04

doi:10.1371/journal.pone.0077292.t004
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Figure 4. Comparative analyses of zebrafish and mammalian transcriptomic data from TCDD treatments. (A) Correlation of hepatic
transcriptome changes in the zebrafish with the mammalian in vivo and in vitro models by GSEA analysis. –Log2FDR = 2, that means FDR = 0.25. (B)
Comparison of the pathways in zebrafish and the mammalian models by GSEA analysis. The heat map includes the significant pathways in zebrafish
and mammalian models treated by TCDD, the criteria of zebrafish pathways is FDR,0.25.
doi:10.1371/journal.pone.0077292.g004
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Calcium signaling pathway) in zebrafish showed the same

regulation direction as those in all other mammalian models,

indicating that the four pathways were well conserved in

vertebrates. Meanwhile, HSA03010 Ribosome pathway displayed

completely opposite regulated trends between zebrafish and all

mammalian models we compared (Figure 4B), indicating the

species-specific patterns between fish and mammals after TCDD

treatment, which need further analysis in future. Moreover, after

comparing the conserved pathways (the same regulation direction

pathways) among zebrafish model, in vivo and in vitro mammalian

models, we noted that the degree of regulation is more consistent

between the zebrafish and in vivo mammalian models than

between the zebrafish and in vitro mammalian models, as

indicated by the color codes in Figure 4B.

In summary, by RNA-sequencing based transcriptomic analy-

ses, we have carried out detailed analyses of TCDD-induced

molecular changes in zebrafish. Other than the well characterized

AhR pathway and cyp1a1 biomarker gene induced by TCDD, we

also found some new biomarker genes that have been validated

from independent experiments. Interestingly, some of the new

biomarker genes encode secreted proteins such as Fgf13b, Sdf2

and RNasel2, which may by analyzed from serum samples by a

non-invasive approach. Further and comparative transcriptomic

analyses of our zebrafish data and available mammalian data from

TCDD treatment experiments indicate several well conserved

TCDD-responsive pathways, including up-regulated proteomic

pathway and several down regulated pathways such as calcium

signaling pathway, natural killer cell mediated cytotoxicity, T-cell

receptor signaling pathway etc. Furthermore, GSEA analyses

indicate that the TCDD-induced zebrafish transcriptomic data is

more similar to in vivo mammalian data than in vitro data, thus

indicating the validity of the zebrafish model as a valuable in vivo

model to infer molecular toxicity relevant to human health.
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