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Local mate competition (LMC) occurs when male relatives compete for

mating opportunities, and this may favour the evolution of female-biased

sex allocation. LMC theory is among the most well developed and empiri-

cally supported topics in behavioural ecology, clarifies links between kin

selection, group selection and game theory, and provides among the best

quantitative evidence for Darwinian adaptation in the natural world. Two

striking invariants arise from this body of work: the number of sons pro-

duced by each female is independent of both female fecundity and also

the rate of female dispersal. Both of these invariants have stimulated a

great deal of theoretical and empirical research. Here, we show that both

of these invariants break down when variation in female fecundity and

limited female dispersal are considered in conjunction. Specifically, limited

dispersal of females following mating leads to local resource competition

(LRC) between female relatives for breeding opportunities, and the daugh-

ters of high-fecundity mothers experience such LRC more strongly than

do those of low-fecundity mothers. Accordingly, high-fecundity mothers

are favoured to invest relatively more in sons, while low-fecundity mothers

are favoured to invest relatively more in daughters, and the overall sex ratio

of the population sex ratio becomes more female biased as a result.
1. Introduction
Local mate competition (LMC) occurs when male relatives compete for mating

opportunities, and this may favour the evolution of female-biased sex allocation

[1]. Hamilton’s [2] classic study of LMC helped to clarify the relationship

between kin selection and group selection and provided an early application of

game-theoretic thinking to evolutionary biology. Hamilton’s model considered

a scenario in which one or more mothers each contribute a fixed number of off-

spring to a patch, followed by random mating among the offspring in the patch

and complete dispersal of mated females to new patches. This basic scenario has

subsequently been extended in multiple directions, and the theory of LMC has

come to be one of the most successful topics in behavioural ecology, boasting a

healthy interplay of theory and empiricism and an impressive fit between math-

ematical prediction and real-world observation, and providing among the best

quantitative support for Darwinian adaptation in the natural world (reviewed

by West [1]).

Two striking invariance results have emerged from the study of LMC, both of

which concern constancy in the number of sons produced by mothers, despite the

relaxation of key assumptions in Hamilton’s [2] model. The first invariant arises in

the context of relaxing the assumption that all mothers have the same fecundity.

When fecundity varies, the sons of high-fecundity mothers experience relatively

more-intense LMC and, accordingly, the proportion of a mother’s reproductive

resources that she invests into sons is expected to be inversely proportional to

her fecundity. Consequently, the absolute number of sons that she produces is
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Table 1. Summary of key model notation.

symbol meaning

c class-reproductive value

d probability of dispersal

w probability of co-philopatry

k cost of dispersal

n relative number of juveniles

r relatedness coefficients

s reproductive inequality

u frequency of juveniles

z sex ratio
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expected to be independent of her fecundity [3–5]. This result

has been termed the ‘Constant Male Hypothesis’ (CMH) [6]

and has stimulated a great deal of theoretical and empirical

work [3–21].

The second invariant arises in the context of relaxing the

assumption of complete female dispersal following mating.

When female dispersal is incomplete, the associated increase

in relatedness within mating groups enhances LMC among

males (promoting female bias) but this effect is offset by an

increase in local resource competition (LRC; [1]) among related

females (inhibiting female bias), such that the number of sons

that a mother produces is expected to be independent of the

rate of female dispersal [22,23]. This surprising result has

stimulated huge interest in the interplay of relatedness and

kin competition in driving the evolution of social evolution

in so-called ‘viscous populations’ [24–44].

Here, we consider the scenario in which there is both vari-

ation in female fecundity and also limited dispersal of

females following mating. We develop a kin-selection

model of sex allocation in the context of a population that

is both class-structured—in terms of individuals being separ-

ated into males versus females, and breeding females being

separated into high- and low-fecundity mothers—and also

genetically structured—as a consequence of limited dispersal

of females between patches from generation to generation.

We derive analytical results to explore how the unbeatable

sex-allocation strategy varies as a function of inequality in

female fecundity and the rate of female dispersal, both in

terms of an individual female’s production of sons and also

in terms of the population average investment into males,

when sex allocation is either facultatively adjusted accord-

ing to female condition or else obligately fixed at a value

that balances the selective pressures faced by high- and

low-fecundity mothers.
2. Results and discussion
(a) Mathematical model
We assume an infinite island model [45], in which each

patch contains one high-fecundity mother (denoted by the

subscript H) and one low-fecundity mother (denoted by

the subscript L). High-fecundity mothers produce a very

large number FH of offspring and low-fecundity mothers

produce a large number FL ¼ (1 2 s)FH of offspring, where

0 � s � 1. Each mother is free to adjust the proportion of

her offspring that are male versus female, with a focal high-

fecundity mother producing FH zH sons and FH(1 2 zH)

daughters and a focal low-fecundity mother producing FL

zL sons and FL(1 2 zL) daughters, where 0 � zH, zL � 1.

After reproduction, mothers die, and offspring mate at

random within their patch, with each female mating once.

Following mating, males die, and each female attempts to

disperse to a new patch at random with probability d
or else remains in her natal patch with probability 1 2 d.

Dispersing females die on the way to their new patch with

probability k and arrive safely at their new patch with prob-

ability 1 2 k. Following dispersal, in each patch, one female

is chosen at random to be the high-fecundity mother and

one female is chosen at random to be the low-fecundity

mother, with all other females dying, and this recovers the

beginning of the life cycle. Table 1 provides a summary of

key model notation.
(b) Evolution of sex allocation
Employing a neighbour-modulated fitness approach to kin

selection [46–52], we find that the condition for natural selec-

tion to favour an increase in the sex allocation (i.e. investment

into sons) of high-fecundity mothers is

cm
1

nm
rS � cf

1

nf
rD � cm

1

nf
þ 1

nm

� �
(uHmrS þ uLmrM)

þ 1

nf
w(cf(uHfrD þ uLfrF)þ cm(uHmrS þ uLmrM)) . 0, (2:1)

where: cm is the class-reproductive value of males; cf is the

class-reproductive value of females; nf ¼ 1 2 zH þ (1 2

zL)(1 2 s) is the relative number of juvenile females, and

nm ¼ zH þ zL(1 2 s) the relative number of juvenile males,

produced in a local patch; uHf ¼ (1 2 zH)/nf is the frequency

of juvenile females who have high-fecundity mothers; uLf ¼

((1 2 zL)(1 2 s))/nf is the frequency of juvenile females who

have low-fecundity mothers; uHm ¼ zH/nm is the frequency

of juvenile males who have high-fecundity mothers; uLm ¼

(zL(1 2 s))/nm is the frequency of juvenile males who have

low-fecundity mothers; w ¼ (1 2 d )2/(1 2 kd)2 is the prob-

ability that two random juvenile females in a patch following

dispersal are both born in this patch (i.e. the probability of

co-philopatry); rD is the relatedness between a mother and

her daughters; rS is the relatedness between a mother and her

sons; rF is the relatedness between a mother and a juvenile

female who is a daughter of the other mother; rM is the related-

ness between a mother and a juvenile male who is a son of the

other mother. All of these relatedness coefficients are calculated

from the mother’s perspective (see electronic supplementary

material for details).

A similar condition may be derived for low-fecundity

mothers:

cm
1

nm
rS � cf

1

nf
rD � cm

1

nf
þ 1

nm

� �
(uHmrM þ uLmrS)

þ 1

nf
w(cf(uHfrF þ uLfrD)þ cm(uHmrM þ uLmrS)) . 0: (2:2)

(c) Rarer-sex effect
The first two terms on the left-hand side (LHS) of each of these

conditions (2.1) and (2.2) jointly describe the rarer-sex effect

[53]. In both conditions, the first term cm(1/nm)rS describes

the mother’s marginal inclusive-fitness gain through increased

allocation to her sons, holding fixed the mating success of each

individual son, and this promotes an increased investment into
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sons. The second term 2cf(1/nf )rD describes her marginal

inclusive-fitness loss through decreased allocation to her

daughters, holding fixed the mating success of each individual

daughter, and this inhibits an increased investment into sons.

Under haploid and diploid inheritance, a mother is

equally related to her sons and her daughters (rS ¼ rD), and

the class-reproductive value of males and females are equal

(cm ¼ cf ), so which of these two terms is larger depends on

the relative number of males and females (nm versus nf ). In

particular: when males are the rarer sex (nm , nf ), the mar-

ginal inclusive-fitness gain through sons outweighs the

marginal inclusive-fitness loss through daughters, such that

increased allocation to sons is favoured; and, likewise, an

increased allocation to daughters is favoured when females

are the rarer sex (nm . nf ). Under haplodiploid inheritance,

a mother is twice as related to her sons as she is to her daugh-

ters in the context of outbreeding (rS ¼ 2rD), because while all

of her son’s genes derive from her, half of her daughter’s genes

derive from an unrelated male. But, as the class-reproductive

value of females is twice that of males (cf ¼ 2cm), the rarer-

sex effect once again favours increased in investment into

offspring of whichever sex is rarer [2,54]. However, in the con-

text of inbreeding, a mother is relatively more related to her

daughters than to her sons (rS , 2rD), because her daughter’s

paternal-origin genes come from a male with whom she

shares genes in common and, consequently, a slight female

bias is expected as a consequence of inbreeding per se [3,55].
(d) Local mate competition
The third term in each condition is the LMC effect, which

arises as a consequence of greater investment into sons leading

to more competition among related males for fewer mating

opportunities with females, to the extent that mating occurs

among relatives [2]. Firstly, a greater investment into sons

leads to an increase in the number of mate competitors [56].

The corresponding increase in competition depends on the

number of males that are being produced by both mothers:

if very few males are being produced, then an additional

male has a large impact upon the mating success of other

males; but if many males are already being produced, then

an additional male has only a small impact. Accordingly, the

amount of additional LMC falls when the number of male off-

spring rises, as captured by the factor 1/nm in the LMC term.

Secondly, a greater investment into sons leads to a decrease in

the number of females for them to mate with [56]: if very few

females are being produced, then one fewer female has a large

impact upon the mating success of other males; but if many

females are being produced, then one fewer female has only

a small impact. Accordingly, the amount of additional LMC

falls when the number of female offspring rises, as captured

by the factor 1/nf in the LMC term. Thirdly, the amount of

LMC also depends on the value of males for mothers. This

value depends on the reproductive value of males (cm), and

on the relatedness between the mother and the males, which

is uHmrS þ uLmrM from the perspective of a high-fecundity

mother, and uHmrM þ uLmrS from the perspective of a low-

fecundity mother. In viscous populations, mating is more

likely to occur among closely related individuals, so both relat-

edness coefficients (i.e. rS and rM) increase with population

viscosity. This means that the intensity of LMC rises when

population viscosity rises, as shown in electronic supplemen-

tary material, figure H1a,c). A high-fecundity mother is more
related to her sons than she is to her patchmate’s sons (i.e.

rS . rM), and this is exactly the same for a low-fecundity

mother (i.e. rS . rM). By contrast, a high-fecundity mother

has a higher proportion of sons among the males than does

a low-fecundity mother (i.e. uHm . uLm). Accordingly, high-

fecundity mothers suffer more LMC than do low-fecundity

mothers, as shown in electronic supplementary material,

figure H1a,c. This difference leads to the CMH result in the

context of full female dispersal: each mother’s proportional

investment into sons is inversely proportional to her fecund-

ity, so that her absolute investment into sons is constant,

i.e. independent of her fecundity [3,5].

(e) Local resource competition
The fourth term in each condition is the LRC effect, which

arises as a consequence of greater investment into sons, lead-

ing to less competition among related females for breeding

opportunities, to the extent that competition for breeding

opportunities occurs among relatives [57]. Firstly, the benefit

of the LRC effect depends on the number of females mothers

produce (i.e. nf ): if there are few females, one fewer female

has a large impact on the reproductive success of other

females; but if there are many females, one fewer female

has only a small impact. Accordingly, the inclusive-fitness

benefit of the LRC effect falls when the number of females

rises, as captured by the factor 1/nf in the LRC term.

Secondly, two juveniles are related only if they are both

locals, which occurs with probability w. Thirdly, a mother

values juvenile females according to the reproductive value

of the latter (cf ), and according to her relatedness to them,

which is uHfrD þ uLfrF from the perspective of a high-

fecundity mother, and uHfrF þ uLfrD from the perspective of

a low-fecundity mother. Each mother is more related to her

own daughters than she is to her patchmate’s daughters

(i.e. rD . rF), but because a high-fecundity mother has a

higher proportion of daughters among the juvenile females

in her patch (i.e. uHf . uLf ), she is more related to the

juvenile females than is the low-fecundity mother (i.e.

uHfrD þ uLfrF . uHfrF þ uLfrD). Fourthly, a mother values

juvenile males according to the reproductive value of the

latter (cm), and according to her relatedness to them, which

is uHfrS þ uLfrM from the perspective of a high-fecundity

mother, and uHfrM þ uLfrS from the perspective of a low-

fecundity mother. Again, the high-fecundity mother is more

related to the juvenile males than is the low-fecundity mother

(i.e. uHfrS þ uLfrM . uHfrM þ uLfrS). Accordingly, the high-

fecundity mother gains more from the LRC effect than a

low-fecundity mother, as shown in electronic supplementary

material, figure H1b,d. As a consequence of this difference,

high-fecundity mothers are relatively favoured to invest more

into sons and low-fecundity mothers are relatively favoured

to invest more into daughters.

( f ) Explicit demography
We have expressed conditions (2.1) and (2.2) in terms of

emergent quantities—such as relatedness and reproductive

value—that do not take explicitly assumed values but rather

may be derived from the model’s assumptions and expressed

in terms of its demographic parameters (see electronic sup-

plementary material, appendix, for details). Substituting

these explicit expressions into conditions (2.1) and (2.2), we

may derive convergence-stable (CS) [58,59] sex-allocation
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Figure 1. Facultative sex allocation for the basic model. (a,c) High-fecundity mothers (blue line, H) are favoured to produce relatively less female-biased sex ratios,
whereas low-fecundity mothers (red line, L) are favoured to produce relatively more female-biased sex ratios, in viscous populations (d , 1), and the population
average sex ratio strategy (dashed line) becomes more female-biased as the population becomes more viscous (lower d ), under haploidy and diploidy (a), and under
haplodiploidy (c). (b,d ) High-fecundity mothers (blue line, H) are favoured to invest relatively more into sons than are low-fecundity mothers (red line, L) in viscous
populations (d , 1), and the population average allocation to sons (dashed line) decreases as the population becomes more viscous (lower d ), under haploidy and
diploidy, and under haplodiploidy. However, while under haploidy and diploidy high-fecundity mothers are favoured to invest more into sons, under haplodiploidy
high-fecundity mothers are favoured to invest less into sons, as the population becomes more viscous. We arbitrarily set the number of offspring of a high-fecundity
mother to 100. Parameter values: k ¼ 0 and s ¼ 0.75.

rspb.royalsocietypublishing.org
Proc.R.Soc.B

282:20150570

4

strategies for high- and low-fecundity mothers (figure 1a,c; see

also electronic supplementary material, figure H2).

In the context of full dispersal of females following mating

(d ¼ 1), we recover the CMH result: the number of sons pro-

duced by high- and low-fecundity females is exactly the

same, and is independent of the difference in their fecundity

(figure 1b,d; [3,5]). This can be understood by noting that the

rarer-sex-effect terms (i.e. the first two terms) in inequalities

(2.1) and (2.2) are exactly the same for high- and low-fecundity

mothers, and that the LRC-effect terms (i.e. the final term) in

inequalities (2.1) and (2.2) are both zero (because there is no

LRC in the context of full dispersal of females). Accordingly,

at evolutionary equilibrium (i.e. the point at which both

inequalities become equations), the LMC terms (i.e. the third

term) in inequalities (2.1) and (2.2) must be equal for both

high- and low-fecundity mothers. Thus, uHmrS þ uLmrM ¼

uHmrM þ uLmrS, which implies uHm ¼ uLm, i.e. high- and low-

fecundity mothers must be producing the same number of

sons at evolutionary equilibrium. That is, in the full-dispersal

scenario, the only asymmetry in the selection pressures

acting upon sex allocation for high- and low-fecundity mothers

is that the high-fecundity mothers produce sons who experi-

ence more LMC and, accordingly, they are selectively

favoured to reduce their relative investment into sons until

this asymmetry vanishes, at which point they are producing

the same number of sons as the low-fecundity females.

However, in the context of incomplete dispersal of

females following mating (d , 1), we find that the CMH
result breaks down: high-fecundity mothers are favoured to

produce more sons than are low-fecundity mothers (figure

1b,d ). This difference owes to the LRC terms (i.e. the fourth

term) in inequalities (2.1) and (2.2) taking non-zero values,

that depend not only on the number of sons but also on the

number of daughters that each mother produces. If both

mothers produce the same number of sons (i.e. uHm ¼ uLm),

then the high-fecundity mother must be producing more

daughters than the low-fecundity mother (i.e. uHf . uLf; in

particular, uHf ¼ uLf þ s/nf ). Accordingly, high-fecundity

mothers experience relatively more LRC than low-fecundity

mothers, such that the former are favoured to invest relatively

more into sons than are the latter (i.e. uHm . uLm). That is, in

addition to the asymmetric selection pressures that operate in

the full-dispersal scenario (such that high-fecundity mothers

are favoured to invest proportionally less into sons and,

accordingly, produce the same absolute number of sons as

do low-fecundity mothers; i.e. the CMH result), the limited-

dispersal scenario introduces an additional asymmetry

(which is that the daughters of high-fecundity mothers

experience LRC more strongly than do those of low-fecundity

mothers), and this leads to high-fecundity mothers producing

more sons than do low-fecundity mothers (i.e. breakdown of

the CMH result).

Moreover, in the absence of fecundity variation between

mothers (s ¼ 0), we recover the dispersal-invariance result:

the number of sons produced by mothers is independent of

the rate of female dispersal [22,23]. Limited dispersal of
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females (d , 1) leads to an increase in LMC (figure 1a,c),

which acts to promote female bias, and also an increase in

LRC (electronic supplementary material, figure H1b,d ),

which acts to inhibit female bias, and these two effects

cancel each other out [23]. The cancellation is exact under

haploidy and diploidy [23], but there is a very slight decrease

in investment into sons as the population becomes more

viscous under haplodiploidy [60], owing to the resulting

inbreeding inflating the relative value of daughters [3,55].

However, in the context of fecundity inequality (s . 0),

we find that the dispersal-invariance result breaks down: a

decrease in dispersal rate (lower d ) leads to an increase in

both LMC and LRC (electronic supplementary material,

figure H1) and, although in the context of all mothers

having the same fecundity (s ¼ 0) these two effects cancel

each other out, in the context of fecundity inequality (s . 0)

the LRC effect is relatively stronger than the LMC effect for

high-fecundity mothers, and the LRC effect is relatively

weaker than the LMC effect for low-fecundity mothers (elec-

tronic supplementary material, figure H1), as explained

above. In addition, although these forces are opposite in

direction, they are not symmetric, and therefore the average

investment into sons does not remain constant as the popu-

lation becomes more viscous. Accordingly, under haploidy

and diploidy, high-fecundity mothers are favoured to invest

relatively more into sons in viscous populations (figure 1b);

although, under haplodiploidy, the increased value of

daughters under inbreeding means they actually invest rela-

tively less into sons (figure 1d ). Under haploidy, diploidy

and haplodiploidy, low-fecundity mothers are favoured to

invest relatively less into sons in viscous populations (figure

1b,d ). Moreover, the average investment into sons across all

mothers in the population decreases as the population becomes

increasingly viscous (lower d; figure 1b,d ).
(g) Model extensions
Following the standard CMH scenario [3–5], we have assumed

that each female may facultatively adjust her sex allocation

according to her own fecundity status. However, for complete-

ness, we now also consider the consequences of obligate sex

allocation that is not adjusted according to a female’s fecundity

status. Here, the selective forces acting on the obligate sex-

allocation strategy are an average of those acting on high-

and low-fecundity mothers separately. Weighting the LHS’s

of inequalities (2.1) and (2.2) by the relative reproductive

values of high- and low-fecundity mothers (i.e. 1 and 1 2 s,

respectively), and adding them together, yields a single con-

dition for an increase in the obligate sex-allocation strategy

(see electronic supplementary material, appendix, for details).

Perhaps surprisingly, although we found above that

the population average of the optimal facultative investment

into sons decreases as the population becomes increasingly

viscous (lower d; figure 1)—i.e. failure of the dispersal-

invariance result—we now find that the optimal obligate

investment into sons is independent of the dispersal rate

(d; electronic supplementary material, figure H3)—i.e. recovery

of the dispersal-invariance result. In particular, the invariance

is exact under haploidy and diploidy (electronic supple-

mentary material, figure H3a,b), and the CS proportional

investment into sons is given by z* ¼ (1 2 s)/(2 2 s)2 (see elec-

tronic supplementary material, appendix, for details). Setting

s ¼ 0 recovers Hamilton’s [2] z* ¼ 1/4 result for two equally
fecund mothers under full dispersal (d ¼ 1), which Bulmer

[22] and Frank [23] showed also extends to limited dispersal

(d , 1), and which has been generalized here to extend to var-

iance in maternal fecundity (s . 0). It also recovers Charnov’s

[61] result z* ¼ (n 2 1 2 (s2/m2))/2n for full dispersal (d ¼ 1)

where there are n ¼ 2 mothers in each patch and the coefficient

of variation in fecundity is s2/m2 ¼ s2/(2 2 s)2, and extends

this to viscous population settings (d , 1). There is a very

slight tendency for reduced investment into sons being

favoured as populations become more viscous (lower d )

under haplodiploidy, owing to the inflation in the value of

daughters under inbreeding (electronic supplementary

material, figure H3c,d), and this recovers the result obtained

by Taylor [60] in the absence of fecundity variation. This sur-

prising mismatch owes to the optimal sex allocation being a

nonlinear function of a mother’s fecundity in viscous popu-

lations, such that the average sex allocation employed by

mothers who respond facultatively to their own fecundity is

distinct from the optimal sex allocation for a mother who is

ignorant of (or cannot respond to information concerning)

her own fecundity (note that an identical mismatch also

occurs in the context of dispersal evolution [62]).

We have also assumed that there is one high-fecundity

mother and one low-fecundity mother in every patch, such

that a female’s knowledge of her own fecundity immediately

provides knowledge of her patchmate’s fecundity. Accord-

ingly, the facultative adjustment scenario falls within a

category of models that have been termed ‘complete knowl-

edge’ models [9]. An alternative model could consider

that each female’s fecundity is determined independently of

her patchmates’, such that some patches would contain

two high-fecundity mothers, some would contain two

low-fecundity mothers, and others would contain one high-

fecundity mother and one low-fecundity mother. This scenario

may then fall within a category of models that have been

termed ‘self-knowledge’ models [9]. This could occur, for

example, if mothers cannot assess the fecundity of other

mothers directly, or if mothers decide their sex allocation

before they encounter their patchmates [9]. If we assume that

a fraction r of newborn females become high-fecundity

mothers and a fraction 1 2 r become low-fecundity mothers,

independently of where and with whom they settle to breed,

and that a focal female is aware of her own fecundity but

not the fecundity of her patchmate, then we find that high-

fecundity mothers are favoured to produce more sons than

are low-fecundity mothers and that high-fecundity mothers

are favoured to invest relatively more into sons as the popu-

lation becomes more viscous (figure 2). That the CMH

invariant breaks down in this scenario was already known

for the special case of full dispersal (d ¼ 1; [9]), and here we

have also shown that the dispersal invariant breaks down in

the context of variable fecundity as well.

3. Discussion
The enormously successful theory of sex allocation has yielded

two striking invariants concerning the number of sons that a

mother should produce. First, mothers are expected to produce

the same number of sons, irrespective of their fecundity [3,5].

Second, mothers are expected to produce the same number

of sons, irrespective of their dispersal rate [22,23,60]. Here,

we have shown that these two invariance results break down

when variation in maternal fecundity and limited female
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dispersal are considered in conjunction with each other. In par-

ticular, limited female dispersal leads to related females

competing with each other for breeding opportunities, which

acts to inhibit the evolution of female-biased sex allocation,

and this effect becomes stronger as a mother’s fecundity

increases, such that high-fecundity mothers are favoured to

invest relatively more into sons and low-fecundity mothers

are favoured to invest relatively more into daughters, with

the overall consequence that population sex ratio becomes

increasingly biased towards females.

Our main focus has been on the simplest scenario of one

high-quality mother and one low-quality mother breeding in

every patch, with every female being able to facultatively

adjust her sex allocation in response to her own fecundity.

But we have also investigated the consequences of relaxing var-

ious model assumptions. First, we have investigated scenarios

where mothers lack information about both their own fecund-

ity and the fecundity of their patchmates. We have found that

under this scenario we recover the result that the sex-allocation

strategy does not change with population viscosity. Second, we

considered scenarios where mothers know their own fecund-

ity, but lack information about the fecundity of their patch-

mates. We find that although this has a quantitative impact

on the analysis, our main qualitative results are unaffected by

this alteration of model assumptions. Accordingly, these

results may apply to a broad range of species that differ in

the details of their life cycles.

Awealth of empirical work has tested the CMH [5,10,12–21].

There is often a qualitative fit between the predictions of the
theory and empirical data, and in some cases there is also a

good quantitative fit (reviewed by West [1]). The results of

the present analysis may help to explain those instances

where the fit between theory and data is relatively poor. In

this vein, we encourage empiricists to measure and report the

degree of viscosity or pattern of dispersal in their study species.

By contrast, theoretical and empirical work exploring the

impact of population viscosity on sex allocation is relatively

lacking, and we therefore also encourage more research focus

on this front. Our present results caution against the idea

that sex ratios are unaffected by the degree of population

viscosity [22,23,60] and lend formal support to recent specu-

lation that limited dispersal may explain the ‘scandalous’

sex ratios of Melittobia parasitoid wasps [63] as well as the

evolution of paternal genome elimination—and concomitant

sex-ratio bias—in many small arthropods [64].

More generally, the failure of a life-history invariant may

both impede and facilitate the interplay of theoretical and

empirical evolutionary research. The typical means of testing

evolutionary theory is by use of the comparative approach

[65], in which—in contrast to experimental manipulations—

there may be simultaneous variation in many ecological

and demographic variables. Accordingly, on the one hand,

the failure of life-history invariants means that extraneous

variables are more likely to be confounding, making patterns

of key interest more difficult to discern; and, on the other

hand, owing to the difficulties in formulating an appropriate

null model, life-history invariants can be difficult to demonstrate

empirically with statistical rigour [66], and so their failure—and
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the consequent predicted dependency of the phenotype upon a

further ecological or demographic variable—provides further

means of putting evolutionary theory to a proper empirical test.

Furthermore, the results of the present analysis highlight

the importance of variation in individual quality in mediating

not only the evolution of sex allocation, but also the evolution

of other social behaviours that have fitness consequences for

individuals in addition to the actor. Traditionally, applications

of the comparative approach to testing social evolution theory

have focused upon how differences between populations—

in terms of their genetics, ecology and demography—are

associated with differences in the level and types of social

behaviour exhibited by those populations. However, the pre-

sent analysis emphasizes the important role of differences in

individual quality in mediating differences in social behaviour

at the within-population level (e.g. mothers achieving different

fecundities adopt different sex-allocation behaviours) and at

the between-population level (e.g. populations in which there

is more variation in maternal fecundity exhibit different
average sex-allocation behaviours). Moreover, we have

demonstrated the importance of phenotypic plasticity in driv-

ing such differences, with qualitatively different predictions

emerging—concerning differences within and between popu-

lations—according to whether individuals are obliged to

adopt fixed behaviours or else are able to adjust their

behaviours to their particular circumstances.
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