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RNA N4-acetylcytidine (ac4C) is a highly conserved RNA
modification that plays a crucial role in controlling mRNA sta-
bility, processing, and translation. Consequently, accurate
identification of ac4C sites across the genome is critical for un-
derstanding gene expression regulation mechanisms. In this
study, we have developed ac4C-AFL, a bioinformatics tool
that precisely identifies ac4C sites from primary RNA se-
quences. In ac4C-AFL, we identified the optimal sequence
length for model building and implemented an adaptive
feature representation strategy that is capable of extracting
the most representative features from RNA. To identify the
most relevant features, we proposed a novel ensemble feature
importance scoring strategy to rank features effectively. We
then used this information to conduct the sequential forward
search, which individually determine the optimal feature set
from the 16 sequence-derived feature descriptors. Utilizing
these optimal feature descriptors, we constructed 176 baseline
models using 11 popular classifiers. The most efficient baseline
models were identified using the two-step feature selection
approach, whose predicted scores were integrated and trained
with the appropriate classifier to develop the final prediction
model. Our rigorous cross-validations and independent tests
demonstrate that ac4C-AFL surpasses contemporary tools in
predicting ac4C sites. Moreover, we have developed a publicly
accessible web server at https://balalab-skku.org/ac4C-AFL/.

INTRODUCTION
Post-transcriptionalmodifications are a crucial step in rRNAprocessing
that promote mRNA stability and decoding fidelity of protein synthe-
sis.1 N4-acetylcytidine (ac4C) is a post-transcriptional RNA modifica-
tion catalyzed by the enzyme N-acetyltransferase 10, which involves
the addition of an acetyl group to the fourth nitrogen atom of the cyti-
dine base. These modified ribonucleotides are highly conserved across
all domains of life2 and are enriched within the coding sequences in
the transcriptome.1 ac4C was first identified at the wobble position 34
of the bacterial elongator tRNAMet,3 andwas later identified in eukary-
otic tRNAs and 18S rRNA.4 These modifications at the wobble sites of
RNA enhance translation efficiency by facilitating correct codon recog-
nitionduringprotein synthesis.3Despite the importance of ac4C infine-
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tuning the recognition and binding of codons, its biogenesis and
biochemical role in the translation process are far from discovery.

The identification of ac4C modification sites is of critical importance
to both biological studies and computational research. Experimental
methods like two-dimensional thin-layer chromatography, dot blot,
high-performance liquid chromatography combined with mass spec-
trometry,5,6 and ac4C-specific RNA immunoprecipitation (acRIP)1

help to pinpoint the locations of these modification sites. However,
the majority of these methods have a limitation in that they cannot
offer single-base resolution; they can determine the possible region
of ac4C. A recent study1 identified extensive ac4C distribution
throughout the human transcriptome, with most sites situated within
coding sequences. Moreover, mRNAs modified by ac4C have an
extended half-life and exhibit enhanced translation efficiency. Given
the limitations and the time-consuming nature of experimental
methods, there is a need for computational methods capable of iden-
tifying ac4C sites both accurately and reliably.

In recent years, four computational tools have been developed for pre-
dicting ac4C sites in mRNA: PACES,7 XG-ac4C,8 DeepAc4C,9 and
iRNA-ac4C.10 PACES is an ac4C site predictor that utilizes random for-
est (RF) classifiers trained on position-specific dinucleotide sequence
profile and K-nucleotide frequencies as features. XG-ac4C is another
predictor that uses eXtreme Gradient Boosting Trees (XGBT) coupled
with electron-ion interaction pseudopotentials (EIIPs) of nucleotides
as features. DeepAc4C is a web server based on deep learning (DL),
which integrates a convolutional neural network (CNN) trained on
physicochemical patterns and distributed representation of nucleic
acids (NAs). Recently, Su et al.10 developed a novel computational
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Figure 1. The workflow of constructing ac4C-AFL tool for identifying ac4C sites in human mRNA

It includes dataset construction, feature extraction and optimization, adaptive feature representation learning, and web server development.
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model called iRNA-ac4C, which utilizes sequence information, such as
nucleotide composition, nucleotide chemical (Ch) property, and accu-
mulated nucleotide frequency to train amodel using Gradient Boosting
Decision Trees (GBT). Of these four methods, iRNA-ac4C is the most
promisingbecause it uses a larger trainingdataset,which resulted in bet-
ter performance than the other three methods. However, iRNA-ac4C’s
predictive accuracy (ACC) still has room for improvement. There is po-
tential to further enhance iRNA-ac4C’s predictive capabilities by incor-
porating novel computational approaches.

In this study, we have implemented an adaptive feature representa-
tion strategy to develop a novel predictor, named ac4C-AFL, which
accurately identifies ac4C sites from primary RNA sequences (Fig-
ure 1). First, we optimized the sequence length to capture the most
relevant information around the modification sites and then em-
ployed 16 different feature encoding algorithms encapsulating
composition details, position-specific information, physicochemical
properties, pre-trained models, and natural language processing
(NLP). Second, we have introduced a novel ensemble feature impor-
tance scoring (EFIS) strategy to rank features effectively and carried
out sequential forward search to identify the optimal feature set indi-
vidually from each of the 16 different features. The feature descriptors
include enhanced NA composition (ENAC), position-specific of two
nucleotides (PS2), composition of k-spaced NA pair (CKSNAP), elec-
2 Molecular Therapy: Nucleic Acids Vol. 35 June 2024
tron-ion interaction pseudo potentials (EIIPs) of trinucleotide
(PseEIIP), the Z curve parameters for frequencies of phase-specific
trinucleotides (Zcurve), Kmer, reverse complement Kmer (RCKmer),
dinucleotide physicochemical properties type 1 (DPCP_1), DPCP
type 2 (DPCP_2), nucleotide Ch property (NCP), binary profile
feature (BPF), a combination of multivariate mutual information
and accumulated nucleotide frequency (MMNF), and a combination
of adaptive skip dinucleotide composition and local position-specific
dinucleotide frequency (ASLPN), word-to-vector (W2V), sequence-
to-vector (S2V), and DNA language model-based feature
(DNABERT). Third, the optimal features were trained with 11
different machine learning (ML) and DL classifiers and generated
176 baseline models. Notably, the 11 distinct ML and DL classifiers
include RF, extremely randomized tree (ERT), artificial neural
network (ANN), logistic regression (LR), GBT, XGBT, light GBT
(LGBT), AdaBoost (AB), support vector machine (SVM), CNN,
and catboost (CB). Finally, the most efficient baseline models were
identified using the two-step feature selection approach, whose pre-
dicted scores were integrated and trained with the SVM classifier to
develop the final prediction model. Our rigorous cross-validations
(CVs) and independent tests demonstrate that ac4C-AFL surpasses
contemporary tools in predicting ac4C sites. Moreover, we have es-
tablished a freely available web server for ac4C-AFL at https://
balalab-skku.org/ac4C-AFL/. We anticipate that ac4C-AFL will serve
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Figure 2. Performance comparison between different sequence lengths

based on 16 different feature descriptors and 11 different classifiers

The average performance in terms of Matthews correlation coefficient (MCC), ac-

curacy (ACC), sensitivity (Sn), specificity (Sp), and area under the receiver operating

characteristic (ROC) curve (AUC) values with respect to different sequence lengths.
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as a valuable tool in expediting the discovery of ac4C sites and aiding
in the elucidation of their roles in post-transcriptional regulation.

RESULTS
Identifying the optimal sequence length for accurate ac4C

prediction

Generally, researchers have used fixed sequence lengths of 41 bp or
201 bp to train models for predicting post-transcriptional modification
sites.11,12 However, it is important to explore different sequence lengths
or fragments to find the optimal length that captures the most relevant
information around both positive and negative samples. This is because
different sequence lengths may contain different amounts of informa-
tion about the modification site, and the optimal length may vary de-
pending on the specific modification site being studied. In this regard,
we generated 17 different fragments, starting with 41 bp and increasing
by 10 bp (5 bp at either side), up to 201 bp. For each fragment, we gener-
ated 16different feature descriptors and explored 11different classifiers,
whose performances were averaged that provide a straightforward
global evaluationmetric. This approach enabled us to compare the per-
formance of different fragments in a fair manner. Specifically, 176
models were generated for each fragment, and their performances
were averaged. In total, we generated 2,992 models. Figure 2 demon-
strates a consistent increase in performance as the sequence length en-
larges. It hits peak performance with a sequence length of 201 bp, sug-
gesting that larger segments upstream and downstream of the central
cytosine residues carry valuable discriminative information. This has
been correctly captured by feature encoding algorithms. Our analysis
of the results has led us to conclude that 201 bp is the optimal sequence
length for this study. We use this length for all subsequent analyses,
which are described in detail in the following sections.

Performance analysis of different feature descriptors on ML

classifiers

We utilized 16 distinct feature descriptors, encapsulating composi-
tion, position-specific information, and physicochemical properties.
These descriptors were then evaluated for their ability to differentiate
ac4Cs from non-ac4Cs using a set of 11 different classifiers. The per-
formance of these classifiers, represented in global metrics like ACC,
Matthews correlation coefficient (MCC), and area under the receiver
operating characteristic curve (AUC), can be seen in Figure 3, while
the comprehensive metrics of all 176 baseline models are presented
in Table S1. Results show that nine descriptors, specifically
ENAC, Zcurve, ASLPN, Kmer, PseEIIP, CKSNAP, W2V, S2V, and
DPCP_1, which are primarily compositional descriptors, NLP-based
embeddings, and a small proportion of position-specific information,
possess a higher discriminative capacity compared with the remain-
ing descriptors (indicated by darker shades according to the color
bar in Figure 3). Interestingly, we found that each feature descriptor
achieved varying levels of performance when trained with different
classifiers. For example, the S2V descriptor, when trained with the
SVM classifier, yielded the highest performance, with an MCC of
0.619 and an ACC of 0.808. However, when used with the ANN clas-
sifier, the performance was significantly lower, with an MCC of 0.546
and an ACC of 0.772. This underlines the importance of exploring
different classifiers for the same dataset to maximize performance.

To assess the overall performance of each classifier, we calculated the
mean performance across all 16 descriptors. As indicated in Fig-
ure 3D, the AB classifier outperformed others, with an MCC of
0.538, ACC of 0.769, sensitivity (Sn) of 0.788, specificity (Sp) of
0.749, and an AUC of 0.842. Six other classifiers showed similar per-
formance, with MCCs ranging from 0.520 to 0.534, slightly trailing
the top-performing classifiers. While ANN was ranked last, it still
demonstrated reasonable performance. Overall, all descriptors uti-
lized in this study demonstrated robust discriminative abilities, with
ACCs exceeding 72%. However, these descriptors varied widely in
their dimensions, ranging from 64D to 4378D. Not all of these dimen-
sions are of equal importance and may contain redundant or irrele-
vant information.13 The exclusion of such information could poten-
tially result in improved performance.

Optimizing each feature descriptor utilizing the two-step feature

selection method

Two-step feature selection is a process of ranking features and then
using sequential forward search to select the best subset of fea-
tures.14,15 In this study, a novel EFIS strategy was used to rank the fea-
tures. Specifically, optimal parameters for six tree-based classifiers
(RF, ERT, GBT, XGBT, LGBT, and CB) were obtained for each
descriptor and used to generate respective classifier feature impor-
tance scores (FISs). Each classifier assigned FIS to a given descriptor,
which was then normalized on a 0 to 1 scale, and the average FIS from
all six classifiers was calculated for each feature. This ensemble score
was utilized to rank the features and create multiple sets ranging from
10D to their maximum dimension with an increment of 2D, resulting
in extensive feature sets. However, inputting all of these feature sets
into different classifiers would require a significant amount of compu-
tation. Consequently, only AB, which demonstrated the best overall
performance (as mentioned above), was selected, and its performance
was evaluated using 10-fold CV.
Molecular Therapy: Nucleic Acids Vol. 35 June 2024 3
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Figure 3. Performance comparison between different classifiers based on the original feature sets

(A) MCC values, (B) ACC values, (C) AUC values, and (D) average performance comparison between 11 different classifiers based on 16 feature descriptors.
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Figure 4A displays that as features are continuously added, perfor-
mance progressively improves until it reaches its peak and then
stabilizes at that plateau. Specifically, ASLPN, BPF, CKSNAP,
DPCP_1, DPCP_2, ENAC, Kmer, MMNF, NCP, PS2, PseEIIP,
RCKmer, W2V, S2V, DNABERT, and Zcure achieved their
optimal performance, with MCC values of 0.579, 0.525, 0.582,
0.559, 0.542, 0.594, 0.607, 0.535, 0.520, 0.526, 0.588, 0.527, 0.597,
0.596, 0.464, and 0.548, respectively (Figure 4B), utilizing optimal
feature dimensions of 64D, 276D, 82D, 30D, 790D, 284D, 264D,
46D, 354D, 398D, 18D, 60D, 95D, 543D, 546D, and 46D, respec-
tively (Figure 4C). The optimal feature achieves a similar perfor-
mance to the control using Zcurve and DPCP_1, indicating that
all the features are equally important for the final performance.
However, for the remaining encodings, the optimal features
improve the MCC by 1%–4.78%. To be precise, we have obtained
the optimal feature set dimensions for ENAC, Zcurve, ASLPN,
Kmer, PseEIIPP, CKSNAP, PS2, DPCP_2, NCP, MMNF, BPF,
RCKmer, W2V, S2V, DNABERT, and DPCP_1, and they are
37.17%, 31.94%, 15.42%, 19.35%, 28.13%, 46.59%, 12.50%,
18.04%, 59.05%, 20%, 34.5%, 11.76%, 18.55%, 53.03%, 71.09%,
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and 8.52%, respectively. Overall, our approach has succeeded in
significantly diminishing the feature dimension and has conse-
quently enhanced the prediction performance in comparison
with the controls.

Construction of baseline models using the optimal features

In the process of constructing the baseline models, we utilized the
previously mentioned optimal feature sets from each of the 16 de-
scriptors. These sets were used as inputs into 11 distinct classifiers
that were then individually trained using a 10-fold CV technique.
As illustrated in Figure 5, the performance trends of these optimized
models are similar to those based on the original feature dimen-
sions. To demonstrate the degree of performance improvement rela-
tive to the original feature dimensions, we computed the average
performance of 11 classifiers for each descriptor. This was done
based on the optimal feature sets, and the results were compared
with those derived from the original feature sets. As demonstrated
in Figure 5, it is evident that the optimal features of PseEIIP,
CKSNAP, Kmer, ENAC, Zcurve, ASLPN, RCKmer, MMNF, BPF,
DPCP_2, NCP, W2V, S2V, DNABERT, and PS2 contribute to



Figure 4. The performance of the EFIS-based sequential forward search algorithm, implemented with the AB classifier, was evaluated for 16 unique feature

descriptors

(A) The performance wasmeasured in terms of theMCC, and the optimal feature set that achieved the peak performance wasmarkedwith a red asterisk. (B) TheMCC values

between the original (control) feature set and the optimal feature set. (C) Comparison of feature dimension for each feature descriptor between the original and the optimal

feature set.
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notable improvements in terms of ACC, with gains of 0.65%, 0.53%,
1.11%, 0.48%, 0.46%, 1.87%, 0.96%, 1.67%, 1.28%, 1.26%, 0.92%,
0.39%, 0.34%, 0.49%, and 2.83%, respectively. However, the perfor-
mance of DPCP_1 with the optimal feature set remained compara-
ble with that with the original dimension. Crucially, the adoption of
the optimal feature dimensions led to an overall enhancement of
prediction performance. These 176 optimized baseline models
were then leveraged for the further development of ac4C-AFL.
This not only indicates the efficacy of feature optimization, but
also underscores its contribution to the improved performance of
ac4C-AFL.

Overall, the optimal features significantly improved the prediction
performance. However, individual classifier with respect to optimal
feature descriptor is improved compared with the original feature
dimension. For instance, the optimal PS2 trained with RF, ERT,
SVM, and LR achieved the MCC values of 0.556, 0.563, 0.567,
and 0.553, which is significantly improved from the corresponding
performance using the original feature dimension, 0.487, 0.494,
0.515, and 0.475. Overall, the average performance of each
classifier is over the MCC of 0.510, indication that our systematic
feature optimization approach significantly improves the prediction
performance.

Construction of ac4C-AFL

The probabilistic scores of all 176 baseline models were combined to
generate 176D features, thereby significantly strengthening the
eventual predictive model. Subsequently, these features were ranked
using an EFIS, and a sequential forward search was performed using
11 classifiers. The results showed that as features were added, the
performance of all classifiers gradually increased and then stabilized
(Figure 6). SVM achieved its maximum ACC with 110D features,
while CNN reached its highest ACC with 170D features. The re-
maining classifiers attained their maximum ACC within the range
Molecular Therapy: Nucleic Acids Vol. 35 June 2024 5
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Figure 5. Performance comparison in terms of MCC, ACC, and AUC values between different classifiers based on the optimal feature sets

(A) MCC values, (B) ACC values, (C) AUC values, and (D) Comparison in terms of average ACC values between the control and the optimal feature sets.
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of 50D to 100D features, except for GBT with 140D feature and LR
with 120D feature.

Among the 11 classifiers, the SVM-based model utilizing the 110D
probabilistic features achieved excellent performance, with MCC,
ACC, Sn, Sp, and AUC values of 0.668, 0.833, 0.857, 0.810, and 0.903,
respectively, as depicted in Figure 6. These results indicated that the pre-
dicted values from all baseline models were equally crucial in achieving
the best performance, not only for the SVM classifier, but also for
other classifiers. Consequently, we named the SVM-based prediction
model as ac4C-AFL. Interestingly, the proposed approach significantly
improved prediction performance compared with the existing predic-
tor, iRNA-ac4C, when evaluated on the same training dataset (Table 1).
Specifically, ac4C-AFL demonstrated a 6.70% increase inMCC, a 3.30%
improvement inACC, and a2.80%enhancement inAUC,underscoring
how the adaptive feature representation approach substantially contrib-
uted to the overall performance improvement.
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Performance comparison of ac4C-AFL with the existing

predictors on the independent dataset

We evaluated four different methods for predicting ac4C: iRNA-
ac4C, PACES, XG-ac4C, and DeepAc4C (Table 2). While iRNA-
ac4C was trained on the same dataset as ac4C-AFL, the other three
methods used different datasets. Among these methods, two
methods—ac4C-AFL and iRNA-ac4C—showed excellent perfor-
mance. Particularly, ac4C-AFL achieved the best results, with an
MCC of 0.647, an ACC of 0.823, and an AUC value of 0.895. It is note-
worthy that both MCC and ACC of ac4C-AFL were 5%–50% and
2.50%–29.30% higher than the other methods compared in this study.
In contrast, the remaining three methods performed well in identi-
fying non-ac4C instances, but showed limited effectiveness in detect-
ing ac4Cs. These three tools used a dataset that included specific motif
sequences, leading to the exclusion of certain positive samples. Conse-
quently, this selective approach might have caused an underrepresen-
tation of positive instances in the dataset. Moreover, PACES and



Figure 6. EFIS-based sequential forward search performance in terms of MCC graph showcasing 11 algorithms

(A) Performance comparison in terms of MCC values with respect to different feature sets for 11 different classifiers. The best performing model is highlighted in red asterisk,

and (B) Comparative performance of the best models across 11 different classifiers.
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XG-ac4C were trained on imbalanced datasets, with a skewed ratio of
1:10 between positive and negative samples. As a consequence, the
models were more tended to learn from the abundant negative sam-
ples and potentially overlooking important features of positive in-
stances. This imbalance likely contributed to reduced Sn and high
Sp in the models’ performance, rendering these less suitable for
genome-wide ac4C detection.

Overall, ac4C-AFL consistently outperformed iRNA-ac4C on
both the training dataset and the independent dataset, suggesting
that ac4C-AFL exhibits greater stability and generalizability. This
promising performance makes ac4C-AFL a strong contender for
genome-wide ac4C detection, showing potential for identifying novel
ac4Cs accurately.
Feature contribution analysis

To assess the effectiveness of our features, we used t-distributed sto-
chastic neighbor embedding (t-SNE) to visualize the distribution of
positive and negative samples in the 110D probabilistic feature vector.
We also compared these results with the t-SNE plots of the top five in-
dividual feature descriptors, namely CKSNAP, DPCP_1, Kmer,
PseEIIP, and ENAC. The t-SNEplots of the individual feature descrip-
tors showed distinct distributions of positive and negative samples
(Figures S1A–S1E). However, the t-SNE plot of the 110D vector
showed a significant separation between positive and negative sam-
ples, with only a few instances overlapping (Figure S1F). These find-
ings suggest that the 110D vector generated by our adaptive feature
representation learning is better at differentiating between ac4C and
non-ac4C samples than the other feature spaces. This means that
Table 1. Performance comparison of ac4C-AFL with the existing predictor

on the training dataset

Tools MCC ACC Sn Sp AUC

ac4C-AFL 0.668 0.833 0.857 0.810 0.903

iRNA-ac4C 0.601 0.800 0.770 0.830 0.875
our approach can significantly improve the performance of discrimi-
nating between these two classes. As a result, this approach can be
applied to identify other post-transcriptional modification sites.

Web server development

We have developed and launched a user-friendly and easy-to-use web
server at https://balalab-skku.org/ac4C-AFL/to ensure wide accessi-
bility and widespread adoption of ac4C-AFL. More specifically, we
employed the Scikit-learn package to train the models, utilizing the
Python programming language. Additionally, we utilized the Django
framework to deploy the models, enabling seamless communication
between the PostgreSQL database (back-end) and the web user inter-
face (HTML, JavaScript, CSS – front-end). As a result, we created a
simple yet efficient web server interface that allows users to obtain
predicted results, interact with them, download the results in CSV
format, and retrieve past job searches through the PostgreSQL data-
base by providing the ‘Job ID’ and utilizing the ‘Find Job’ feature.
Moreover, users can access the ‘Help’ page at https://balalab-skku.
org/ac4C-AFL/help/to learn how to utilize the web server effectively.
We hope that the availability of ac4C-AFL through this web server
will contribute to advancements in RNA modification research,
fostering collaboration and innovation within the scientific commu-
nity. By facilitating the exploration of ac4C sites in human mRNA,
we aspire to make meaningful contributions to the broader under-
standing of gene expression and its regulatory mechanisms.

DISCUSSION
RNA ac4Cmodification in mRNA, a significant factor in gene expres-
sion regulation, plays an essential role in post-transcriptional alter-
ations. It provides crucial insights into transcriptional regulation
mechanisms and biological processes. Consequently, accurately iden-
tifying ac4C sites in the genome using computational techniques is of
paramount importance. Not only are these methods cost effective, but
they also save time. Up to now, only four predictors have been de-
signed for detecting ac4C sites in human mRNA, and there is room
for enhancing prediction ACC. In this study, we propose a novel pre-
dictor, ac4C-AFL, which optimizes the length of sequences that
Molecular Therapy: Nucleic Acids Vol. 35 June 2024 7
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Table 2. Performance comparison of ac4C-AFL with the existing predictors

on independent dataset

Tools MCC ACC Sn Sp AUC

ac4C-AFL 0.647 0.823 0.844 0.803 0.895

iRNA-ac4C 0.597 0.798 0.767 0.829 0.880

PACES 0.176 0.530 0.060 1.000 NA

XG-ac4c 0.207 0.592 0.359 0.824 NA

DeepAc4C 0.147 0.536 0.010 0.971 0.803
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contain important information near the modification sites. Following
this, we employed a comprehensive feature optimization and adaptive
feature representation learning approach. In brief, we leveraged 16
feature descriptors and identified their optimal features using a
unique EFIS and AB algorithm. These optimal features were then in-
putted into 11 different classifiers, resulting in 176 baseline models.
Subsequently, a two-step feature selection approach was employed
to select the most crucial model for the final model construction.
Notably, this is the first time that such a large-scale feature encoding
and classifier has been used in ac4C prediction. The comparative per-
formance of ac4C-AFL on the training and independent datasets
demonstrates a significant enhancement in prediction performance
compared with the most competent existing predictor, iRNA-ac4C.
The benchmark dataset and the ac4C-AFL web server are accessible
at https://balalab-skku.org/ac4C-AFL/.

Nevertheless, our studyhas limitations.Our studyutilizedboth conven-
tional and NLP-based feature extraction methods. However, devel-
oping novel sequence-based features through comparative analysis is
crucial for further improvement. Additionally, exploring alternative
computational frameworks11,16–20 beyond the proposed one is neces-
sary to evaluate their potential in enhancing prediction performance.
Moreover, due to benchmark data limitations, ac4C-AFL is not efficient
in identifying ac4Cs in other RNA types like rRNA or tRNA. Future
work will involve gathering comprehensive data on a broader range
of RNA types and exploring the potential of different computational
frameworks that incorporate novel or additional feature extraction
methods.21,22 In conclusion, ac4C-AFL serves as a powerful tool for
identifying ac4C sites in mRNA and is expected to play a pivotal role
in deciphering the functional mechanisms of ac4C sites.

MATERIALS AND METHODS
Dataset construction

Recently, Su et al.10 have employed acRIP-seq data1 to create a reliable
benchmarking dataset, which served as a basis for developing iRNA-
ac4C predictor. The authors carefully curated the dataset by selecting
cytidines in the close proximity to ac4C peaks as potential modification
sites. Using these modification sites as central points, 100 nucleotides
were garnered from either sides and labeled them as positive samples.
To create negative samples, the authors randomly selected sequences
fromnon-peak regions, each comprising 201nucleotideswith a cytidine
at the center, mirroring positive samples. To ensure predictive ACC,
redundant sequences with more than 80% similarity were removed us-
8 Molecular Therapy: Nucleic Acids Vol. 35 June 2024
ing the CD-HIT.23 To achieve a balanced dataset, an equal number of
sequences were randomly selected from the negative samples,matching
the count of positive samples. This compiled data was then randomly
divided into training and independent testing datasets at a ratio of
80:20. After these processes, the final training dataset composed of
2,206 positive and 2,206 negative samples. The independent dataset
consisted of 552 positive and 552 negative samples. It is important to
note that the same dataset has been employed in this study, as it is the
most recent one available. Notably, models developed based on the
same data will allow for a fair comparison with existing predictors.

Framework of ac4C-AFL

In ac4C-AFL, we build a total of 176 predictive models by utilizing 16
optimal feature descriptors and 11 different classifiers. The first step
in this process involves subjecting the input RNA sequences to an
adaptive feature representation learning scheme. In this phase, each
mRNA sequence is transformed into an n-dimensional feature vector.
Subsequently, each of these feature descriptors optimized using two-
step feature selection approach and identified its corresponding
optimal feature set. The next step involves using 16 optimal feature
sets as inputs for 11 different classifiers. Training process using
10-fold CV results in the creation of a robust, well-trained predictive
model for each classifier, with each model being capable of providing
a predictive score for a given mRNA sequence. This score, which
ranges from 0 to 1, provides a quantitative measure of the likelihood
of a sequence being an ac4C or non-ac4C.

Adaptive feature representation learning scheme

This involves two main steps: (1) feature encoding and optimization,
and (2) feature representation learning and optimization, which are
described in detail below.

Step 1: Feature encoding and optimization

To incorporate sufficient information in our model, we used 18
feature encoding algorithms. Note that some of the feature encodings
were linearly combined resulting in 16 feature descriptors. However,
the original feature set contained redundant or noisy information.24

Not every feature calculated to characterize RNA sequence will be
relevant for effective discrimination of ac4Cs. To minimize feature
redundancy and computational complexity, we utilized two-step
feature selection approach to select the most informative features.
Generally, tree-based FIS or statistical scoring functions like F-score
or minimum redundancy maximum relevance are used to rank the
features.25–27 Here, we have introduced EFIS strategy based on the
FISs of six different tree-based classifiers. It is important to note
that we used the optimal parameters obtained for each classifier to
compute the FIS. Notably, EFIS is computed as follows.

Given an initial input feature vector F ˛ ff1; f2; :::; fd; :::; fDg, where
d = 1;2; :::;D, D is the number of dimensions of the input feature.
Assume a scoring function ScðdÞ˛ ½0; 1� is applied to rank the impor-
tance of each dimension d, where c = 1; 2; :::;C; C is the number of
scoring functions. As a result, an EFIS function can be defined as
follows:

https://balalab-skku.org/ac4C-AFL/
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EFIS =
1
C

XC
c = 1

ScðFdÞ: (Equation 1)

Employing EFIS, we ranked the features from the highest to lowest
and generated various feature subsets, starting with 10D and
increasing by increments of 2D up to the actual original dimension.
Each of these subsets was inputted into AB classifier and trained to
its respective model. The feature subset that achieved the highest per-
formance (based on MCC) was considered the optimal feature set.
The details of the feature descriptors are briefly introduced below,
with their summarization presented in Table S2.

ENAC. ENAC is an improved version that builds upon NA compo-
sition (NAC) by employing a continuously sliding fixed-length win-
dow throughout the input RNA sequence, spanning from the
N-terminus to the C-terminus. This is utilized to calculate the fre-
quency of each specific NA type within the designated window. Given
a sliding window (SW), the frequency (f ) can be computed as:

f ðNAiÞ =

P ðNAiÞ
SW

; (Equation 2)

whereNAi ˛ fA;C;G;Ug andSðNAiÞ is the total number of NA type
NAi. Notably, the cumulative frequencies of NAs within a sliding win-
dow SW must add up to 1. For instance, assuming the sliding window
(SW = 5) encompasses [A, G, C, U, A] as an RNA subsequence, the
resulting array should display [0.4, 0.2, 0.2, 0.2], representing the fre-
quency distribution of NA types A, C, G, and U within the SW,
respectively.
PS2. PS2 refers to the pairs of adjacent nucleotides in a pairwise
manner, namely AA, AC, AG, AU, CA,.UU, resulting to a total of
16 pairs.28 The 16 pairs are encoded into 16 binary bits, either 0 or
1. For instance, AC is represented by (0100000000000000), and GU
is represented by (0000000000010000). As a result, an RNA sequence
ACGU is encoded as (010000000000000000000010000000000000
000000010000).

CKSNAP. CKSNAP integrates the principles of NAC and PS2 con-
cepts in the context of NA pair. Notably, it systematically computes
the frequencies of 16 NA pairs by any k-spaced NA, where k can
vary from 0 to 5. The 16 pairs are the same as those in PS2, namely
AA, AC, AG, AU, CA, ., UU; however, the pairs are separated by
a k-spaced NA. For instance, if k = 0, the 16 pairs in the CKSNAP
are constructed in the same manner as those in the PS2. Differing
from PS2, these 16 pairs are then calculated using NAC rather than
binary bits for encoding. In practice, the feature vector of each
k-spaced case for a given RNA sequence of length L can be defined
as follows:

CKSNAP =
h
f
�
NAxy

�ðiÞ
; f
�
NAxy

�ði+1Þ
; :::; f

�
NAxy

�ðPÞi
;

(Equation 3)
where f ðNAxyÞ is the frequency of the paired NA xy and it can be
calculated as:

f
�
NAxy

�
=

P�
NAxy

�
L � k+1

; (Equation 4)

NAxy ˛ fAA;AC;AG;AU ;CA;:::;UUg, i = 1; 2; 3; :::;P with P = 16 is
the number of pairs, and SðNAxyÞ is the total number of the paired
NA xy in the sequence

PseEIIP. The EIIP values were used to encode DNA or protein se-
quences by calculating the energy of delocalized electrons in nucleo-
tide or amino acid sequences. In the context of an RNA sequence, the
EIIP values of nucleotides are encoded as follows: EIIPs of A is 0.1260,
C is 0.1340, G is 0.0806, and U (which is analogous to T) is 0.1335,
respectively29, as reported in.30

Based on the EIIP encoding, the PseEIIP encoding vector is calculated
by combining the concepts of the EIIP and the ENAC encodings as:

PseEIIP =
h�
EIIPxyz � f

�
NAxyz

��ðiÞ
; :::;

�
EIIPxyz � f

�
NAxyz

��ðTÞi
;

(Equation 5)

where EIIPxyz = EIIPx + EIIPy + EIIPz , f ðNAxyzÞ is the normalized
frequency of the trinucleotide, NAxyz ˛ fAAA;AAC;AAG;AAU ; :::;

UUUg, and i = 1; 2; 3; :::;T with T as the number of trinucleotides.
It is worth noting that f ðNAxyzÞ is calculated by applying NAC for
the trinucleotide.
Zcurve. Zcurve contains the information about frequencies of
phase-specific tri-nucleotides. A detailed description has been pro-
vided in previous study,31 and it can be computed as follows:8>><
>>:

izRS = ðpzðRSAÞ+ pzðRSGÞÞ � ðpzðRSCÞ+ pzðRSUÞÞ
izRS = ðpzðRSAÞ+ pzðRSCÞÞ � ðpzðRSUÞ+ pzðRSGÞÞ
izRS = ðpzðRSAÞ+ pzðRSUÞÞ � ðpzðRSCÞ+ pzðRSGÞÞ

;

(Equation 6)

where R or S˛ fA;U ;G;Cg; z = 1;2;3.
Kmer. Kmer encoding algorithm is based onNAC in the context of k
neighboring NAs. In practice, the Kmer is computed with
k˛ f1; 2; 3; 4; 5g that represents mononucleotide, dinucleotide,
trinucleotide, tetranucleotide, and pentanucleotide, respectively, re-
sulting in an output of 1364D feature vector (41 + 42 + 43 + 44 + 45).
Given an RNA sequence length of L, the frequencies of k = 2 can
be computed as:

f ðNAkmÞ =

P ðNAkmÞ
L

; (Equation 7)

where NAkm ˛ fAA;AC;AG;AU ;CA; :::;UUg and SðNAkmÞ is the
number of types of k neighboring NAs in the given sequence.
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RCKmer. RCKmer is a specific type of Kmer constructed by
removing the reverse complement kmers for each type of k neigh-
boring NAs in the given sequence.32,33 For instance, with k = 2,
the following kmers should be removed, namely ‘CU,’ ‘GG,’ ‘GU,
‘UC,’ ‘UG,’ and ‘UU,’ resulting in a10 discriminatively remaining
kmers in the RCKmer.

DPCP_1. There are 22 physicochemical properties for dinucleotides
for RNA sequence.28,34 Most of them can be extracted for any dinu-
cleotides, such as shift, slide, stacking energy, rise, enthalpy (Ch),
enthalpy (physical [Ph]), entropy (Ch), entropy (Ph), hydrophilicity
(Ch), hydrophilicity (Ph), tilt, roll, free energy (Ch), free energy
(Ph), and twist. Whereas the others can only be extracted for specific
dinucleotides, namely keto (GU), adenine content, guanine content,
GC content, cytosine content, purine (AG) content, and thymine con-
tent. It is worth noting that the default value is zero for any dinucle-
otides, except the specific ones mentioned.

The DPCP_1 can be defined as:

DPCP 1 =
h�

PCPðiÞ
xy � f ðxyÞ

�ðjÞ
; :::;

�
PCPði+1Þ

xy � f ðxyÞ
�ðj+1Þ

; :::;

�
PCPðNPCPÞ

xy � f ðxyÞ
�ðNDÞi

; (Equation 8)

where x; y˛ fA;C;G;Ug, i = 1; 2; 3; :::;NPCP with NPCP is the total
number of physicochemical properties, j = 1; 2; 3; :::;ND with ND is
the number of dinucleotides, f ðxyÞ is the normalized frequency of
the dinucleotide, and PCPðiÞ denotes the i-th physicochemical prop-
erty. As a result, the output of DPCP_1 should be 352D vector
(16�22Þ corresponding with the number of dinucleotides and the
number of physicochemical properties, respectively.
DPCP_2. The DPCP_2 is an enhanced version of the DPCP_1.
Given an RNA sequence length of L, the DPCP_2 can be defined as:

DPCP 2 =
h
PCPðiÞ

�
NAðmÞ

x NAðnÞ
y

�
; :::; PCPði+1Þ

�
NAðm+1Þ

x NAðn+1Þ
y

�
;

:::; PCPðNPCPÞ
�
NAðL� 1Þ

x NAðLÞ
y

�i
; (Equation 9)

where NAx;NAy ˛ fAA;AC;AG;AU ;CA;:::;UUg,m = 1;2;:::;ðL �
1Þ, n = ðm + 1Þ; ðm + 2Þ; :::;L, and PCPðiÞðNAðmÞ

x NAðnÞ
y Þ is the i-th

physicochemical property of the dinucleotide, NAðmÞ
x NAðnÞ

y .
NCP. For each of the four natural nucleotide types (A, C, G, and U),
there are three types of Ch properties: ring structure (purine: A, G,
and pyrimidine: C, U), functional group (amino: A, C, and keto: G,
U), and hydrogen bond (strong: C, G, and weak: A, U). Each property
has two classes, representing different nucleotide types with distinct
Ch characteristics.
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Based on Ch properties 2, each NA will be encoded into three-coor-
dinates (X;Y;Z) as:

XNAi =

8<
:

0 if NAi ˛ fU;Cg

1 if NAi ˛ fG;Ag
;

YNAi =

8<
:

0 if NAi ˛ fU;Gg

1 if NAi ˛ fC;Ag
;

ZNAi =

8<
:

0 if NAi ˛ fG;Cg

1 if NAi ˛ fU;Ag
:

(Equation 10)

As a result, A, C, G, and U can be encoded by 1, 1, 1, 0, 1, 0, 1, 0, 0, and
0, 0, 1, respectively.

BPF. The BPF is also known as one-hot encoding. It is widely used
for encoding DNA, RNA, peptide, and protein sequences. In the
context of an RNA sequence, each NA is encoded by a 4D binary vec-
tor, namely A (1000), C (0100), G (0010), and U (0001), respectively.
As a result, given an RNA sequence length of L, the output vector
should be flattened with the dimension of 4� L.

ASLPN. The ASLPN is utilized by combining both adaptive skipped
dinucleotide composition (ASDC) and local position-specific dinu-
cleotide frequency (LPSDF). The detail of each of them can be briefly
presented as below.

TheASDCencoding is an enhanced version of the dinucleotide compo-
sition by integrating the k-skip-n-grammodel. Specially, it uses k-skip-
ped nucleotides while computing the n-gram model so that both dis-
tance and composition information are integrated. Due to the
dimension of the output, feature vector can be exponentially increased
by n � gram, only the case of n = 2 (dinucleotide) is analyzed for this
kind of feature encoding algorithm. Given an RNA sequence length of
L, the output feature vector of the ASDC can be denoted as:

ASDC =
�
f1
�
NAxy

�
; f2
�
NAxy

�
; :::; fi

�
NAxy

�
; :::; f16

�
NAxy

��
;

(Equation 11)

where i = 1; 2; :::; 16, NAxy ˛ fAA; AU ; AC; AG; :::; UU}, and the
occurrence frequency of all possible dinucleotide based on k-skipped
nucleotides can be computed by:

f i
�
NAxy

�
=

PL� 1

k = 1
NAðkÞ

xy

P16
i = 1

PL� 1

k = 1
NAðkÞ

xy

: (Equation 12)

The LPSDF is another dinucleotide composition that calculates the
frequency of the dinucleotide constructed by the nucleotide at the
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specific position and the previous position within an RNA sequence.
The occurrence frequencies of such a dinucleotide at position i-th can
be computed by:

f i =

P�
NAði� 1Þ

x NAðiÞ
y

�
SW

; (Equation 13)

where SW = L -- i, SW is the length of the subsequence fNAð1Þ
x ;

NAð2Þ
x ; :::; NAðiÞ

x g, L is the length of the given RNA sequence, and
NAx;NAy ˛ fA;C;G;Ug.
MMNF. The MMNF is constructed by incorporating multivariate
mutual information (MMI) with accumulated nucleotide frequency
(ANF). The process of extracting the MMI and ANF is described as
below.

To obtain the MMI encoding,35 the frequencies of k-mer with k˛
f 2; 3g are utilized. Consequently, the corresponding mutual infor-
mation can be computed as below.
For k = 2,

MI2
�
NAxy

�
= f
�
NAxy

�
ln

 
f
�
NAxy

�
f ðNAxÞf

�
NAy

�
!
: (Equation 14)

And for k = 3,

MI3
�
NAxyz

�
= f
�
NAxy

�
ln

 
f
�
NAxy

�
f ðNAxÞf

�
NAy

�
!
+
f ðNAxzÞ
f ðNAzÞ ln

�
f ðNAxzÞ
f ðNAzÞ

	

� f
�
NAxyz

�
f
�
NAyz

� ln
 
f
�
NAxyz

�
f
�
NAyz

�
!
:

(Equation 15)

Here, NAx;NAy;NAz ˛ fA;C;G;Ug and f ðNAxÞ; f ðNAyÞ; f ðNAzÞ
are their frequencies in the RNA sequence; f ðNAxyÞ; f ðNAxzÞ are
the frequencies of the ‘2-mer’ NAxy (e.g., AA, CC, GG, UU, etc.);
and f ðNAxyzÞ is the frequency of the ‘3-mer’ NAxyz (e.g., AAA,
CCC, GGG, UUU, etc.).

The ANF is the combination of the accumulated NAC with the NCP.
The accumulated frequency can be defined as below:

r =
1

NNAx

XL
i

f ðNAxÞ; (Equation 16)

where L is the length of the RNA sequence, NNAx is the occurrence
number of nucleotides NAx (NAx ˛ fA; C; G; Ug) in the prefix
sequence ½1; 2; :::; i�, and the f ðNAxÞ will be encoded by binary bits
˛ f0; 1g. For instance, given an RNA sequence ‘ACGUUGCA,’ the
output NCP encoding should be {(1, 1, 1), (0, 1, 0), (1, 0, 0), (0, 0,
1), (0, 0, 1), (1, 0, 0), (1, 1, 1), (0, 1, 0)}. Meanwhile, the accumulated
frequency r values of ‘A’ are 1 and 0.25 at positions 1 and 8, respec-
tively; the accumulated frequency r values of ‘C’ are 0.50 and 0.29 at
positions 2 and 7, respectively; the accumulated frequency r values of
‘G’ are 0.33 and 0.33 at positions 3 and 6, respectively; and the accu-
mulated frequency r values of ‘U’ are 0.25 and 0.40 at positions 4 and
5, respectively. Consequently, the final output ANF encoding after
incorporating these values should be {(1, 1, 1, 1), (0, 1, 0, 0.50),
(1, 0, 0, 0.33), (0, 0, 1, 0.25), (0, 0, 1, 0.40), (1, 0, 0, 0.33), (0, 1, 0,
0.29), (1, 1, 1, 0.25)}. In this way, ANF enhances the NCP encoding
by incorporating the long-range sequential order information.
DNABERT. DNABERT21 is a pre-trained bidirectional encoder rep-
resentation of DNA sequences that captures sequence information
based on contextual relationships between k-mers in the input DNA
sequence. TheDNABERTmodel leverages a Transformer architecture
to effectively analyze the intricate connections between nucleotides in
both forward and reverse directions. DNABERT utilizes a kmer-based
tokenizer which generates distinct tokens called ‘k-mers’ from the
genomic DNA, which are then processed through 12 Transformer
blocks. The transformer blocks analyze the relationship between
k-mers and generate in-depth representations of the DNA sequence,
which captures the contextual information within the genetic data.
Notably, DNABERT has shown applicability to RNA, as RNA differs
fromDNA only by a single base and preserves almost identical genetic
information. This allows processing of RNA sequences simply by re-
placing nucleotide ‘U’ with nucleotide ‘T.’ When provided with an
RNA sequence, DNABERT generates a feature vector of 768D.

W2V. W2V36 is a neural network-based model that efficiently cap-
tures semantic and syntactic word relationships by considering the
context in which words appear in a large corpus of text. The
Word2Vec model encompasses both the Continuous Bag-of-Words
(CBOW) and Skip-gram architectures. CBOW predicts a target
word based on its context words, whereas Skip-gram predicts context
words for a given target word. Both models are employed indepen-
dently within theWord2Vec framework, and they are trained on large
collections of textual data. This enables conversion of words into vec-
tor representations that convey lexicon-wide semantic links. In this
context, using W2V, a feature vector of 512D was extracted from
the RNA sequence.

S2V. S2V37 model transforms sequences to vector representations,
leveraging the Embeddings from Language Models (ELMos) frame-
work. ELMo integrates a character-aware CNN layer with two bidi-
rectional long short-term memory (Bi-LSTM) layers. The addition
of the CNN layer facilitates the extraction of information from indi-
vidual characters, thus molding the representations of tokens. The
generated tokens are further improved by incorporating two consec-
utive Bi-LSTM layers for generation of embeddings. All layers in the
ELMo architecture are seamlessly integrated by a top layer, ultimately
resulting in comprehensive representations. When applied to RNA
sequence, it generates a feature vector of 1024D.
Molecular Therapy: Nucleic Acids Vol. 35 June 2024 11

http://www.moleculartherapy.org


Molecular Therapy: Nucleic Acids
Step 2: Feature representation learning and optimization

Subsequently, we used 10 different classifiers to train and evaluate all
these optimal feature descriptors. Each trained model assigns a pre-
dicted probability score of ac4Cs for each training or testing sample.
We subsequently concatenated all 176 predictions generated by all
models into a new feature vector. Thus, for a given RNA sequence,
it is ultimately represented by a 176D vector. To enhance the feature
representation ability, we further optimized the feature representa-
tions using the two-step feature selection method as mentioned in
step 1. Briefly, EFIS is calculated again to rank the features and
generate feature subsets ranging from 20D to 170D, with an interval
of 10D. All these feature subsets are inputted into 11 different classi-
fiers. The performances of all these models were compared and the
best model was selected.
CV and performance evaluation

We utilized a total of 11 distinct ML and DL classifiers for this study.
To optimize all the hyperparameters associated with theseML andDL
algorithms, we implemented a 10-fold CV technique. A comprehen-
sive explanation of the 10-fold CV process, as well as the search ranges
for the ML and DL hyperparameters, can be found in our previous
studies.38–40

Several performance metrics41,42 are commonly employed to assess
the effectiveness of each model, including ACC, Sn, Sp, MCC, and
AUC. The mathematical equations of ACC, Sn, Sp, and MCC, are
given below:

ACC =
TP+TN

TP+TN+FP+FN
; (Equation 17)

MCC =
TP � TN � FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP+FPÞ � ðTP+FNÞ � ðTN+FPÞ � ðTN+FNÞp ;

(Equation 18)

Sn =
TP

TP+FN
; (Equation 19)

Sp =
TN

TN+FP
: (Equation 20)

The number of true positives, true negatives, false positives, and false
negatives, respectively, is represented by TP, TN, FP, and FN.
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