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It is increasingly clear that an extraordinarily diverse range of clinically important conditions
—including infections, vaccinations, autoimmune diseases, transplants, transfusion
reactions, aging, and cancers—leave telltale signatures in the millions of V(D)J-
rearranged antibody and T cell receptor [TR per the Human Genome Organization
(HUGO) nomenclature but more commonly known as TCR] genes collectively
expressed by a person’s B cells (antibodies) and T cells. We refer to these as the
immunome. Because of its diversity and complexity, the immunome provides singular
opportunities for advancing personalized medicine by serving as the substrate for a highly
multiplexed, near-universal blood test. Here we discuss some of these opportunities, the
current state of immunome-based diagnostics, and highlight some of the challenges
involved. We conclude with a call to clinicians, researchers, and others to join efforts with
the Adaptive Immune Receptor Repertoire Community (AIRR-C) to realize the diagnostic
potential of the immunome.

Keywords: adaptive immune receptor repertoire (AIRR), diagnostic test, T-cell receptor repertoire, antibody
repertoire, analyses, immunome, immunomics, clinical laboratory testing
INTRODUCTION

The convergence of high-throughput sequencing technologies with advances in computation and
data science has given sequencing a growing role in clinical diagnosis. Examples of high-throughput
sequencing applications that have begun to enter the clinic in recent years include cancer-gene
sequencing to identify clinically actionable mutations and whole-genome andmetagenomic sequencing
to resolve medical mysteries (1–4). The main appeal of sequencing as a diagnostic modality is its
potential to detect all of the possible variants of a given gene or genes in a single test. In situations where
there are many variants that may be diagnostically or prognostically useful, as is the case for cancer and
in genetic disorders such as cystic fibrosis, sequencing has been shown to be more sensitive than tests
that target a limited set of variants, for example using PCR (5, 6). NGS-based testing has also advanced
the field of immunogenomics, providing a more streamlined means of identifying and cataloguing
novel human leukocyte antigen (HLA) genes and associating allelic variants and haplotypes with
diseases and immune perturbations (see below). Because of their intimate association with many
org March 2021 | Volume 12 | Article 6267931
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different diseases, B- and T-cell immunomes will feature
prominently in the future of clinical lab testing (7) (Figure 1).

The term “immunome” refers to the repertoire of a person’s
antibodies and TRs, most often measured from the blood, which
contains roughly 50,000–440,000 B cells and 600,000–3,500,000 T
cells per ml in a healthy adult (8–10). Antibodies and TRs are
encoded by genes of extraordinary diversity: each person’s
immunome contains millions of distinct rearranged antibody and
TR genes (henceforth simply “genes”) (11–14). This diversity is
what makes it possible for an individual’s immune system to
recognize and respond to different antigens in vaccination,
infection, autoimmunity, cancer, and other conditions. The
binding of an antibody expressed on the B-cell surface to one of
its specific antigens—for example, influenza hemagglutinin or the
spike protein of SARS-CoV-2—can promote B cell activation,
division, and differentiation, resulting in the production of
antibodies. For alpha-beta TRs on the surface of T cells, the
Frontiers in Immunology | www.frontiersin.org 2
antigen is typically a peptide that is presented to the TR in the
context of the major histocompatibility complex (gamma-delta T
cells do not necessarily require MHC).
THE IMMUNOME AS DIAGNOSTIC

For diagnostic purposes, the expansion of antigen-specific B or T
cell clones acts as a signal amplifier, indicating a response to a
specific antigen or antigens in the form of an increased frequency
of cells expressing antigen-specific antibody and/or TR genes in
the immunome. Such increases can now be measured
quantitatively through high-throughput sequencing in an
application known as adaptive immune receptor repertoire
sequencing, or AIRR-seq. In principle, repeated cycles of
antigen encounter, clonal expansion, and repertoire
diversification result in a personalized record of a patient’s
A

B

C

D

FIGURE 1 | Immunome-based diagnostic testing. (A) Testing begins with a standard clinical blood draw. The recombined immunoglobulin (B cell receptor) and TR
(T cell receptor) rearranged genes are sequenced, leading to a list of the hundreds of thousands of different sequences present in the sample: i.e., the patient’s
immunome. (B) To develop a test for a specific condition, immunomes are sequenced from a set of cases positive for the condition and an appropriately matched
set of controls. Robust statistical and mathematical techniques are used to identify patterns in the form of specific sequences, motifs (e.g., the IGH CDR3 shown in
red), and clusters, as well as changes in overall sequence diversity, that are characteristic of the cases but not the controls. Based on these and other sequence
features, and with the help of computational techniques, a classifier is developed that reliably separates the two groups. Using this classifier, a patient of unknown
status (large gray circle) can be diagnosed by sequencing that patient’s immunome and looking for presence or absence of the pattern. (C) By applying classifiers for
many different conditions to the sequence from a single blood draw, many different conditions can be diagnosed simultaneously, yielding a highly multiplexed
diagnostic assay. (D) As more individuals are tested for a specific condition, the classifier for that condition will be refined—in AI terms, it “learns”—allowing
individuals who were previously unclassifiable to be diagnosed and potentially allowing stratification of patients who might benefit from different treatments or who
might have a different prognosis or risk of disease development.
March 2021 | Volume 12 | Article 626793

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Arnaout et al. Immunome-Based Clinical Diagnostics
immune status across vaccination, infection, autoimmunity,
transplant rejection, transfusion reactions, and cancer. AIRR-
seq makes it possible to read this record. The past few years have
seen an explosion of proofs of principle in the research literature.
For example, in patients who have had influenza or received an
influenza vaccine, AIRR-seq has demonstrated an increase in
influenza-specific antibody and TR genes in the blood and in
tissues (15–20). Similar results have been demonstrated in viral
infections as diverse as dengue and SARS-CoV-2 (21–28).
Noteworthy in this regard is the current effort to discern a T
cell fingerprint for SARS-CoV-2 exposure, immune status and
possibly even immunopathology in the ImmuneCODE project, a
collaboration between Adaptive Biotechnologies and Microsoft,
which leverages a rapidly growing and publicly accessible dataset
of over 1,400 TR immunomes from individuals who were
exposed to SARS-CoV-2 (28, 29). Patterns have been reported
in a host of autoimmune diseases such as lupus (30–33), and
antibodies and TRs against neoantigens have been reported
across solid tumors and in specific cancers such as melanoma
(34). These examples and many others increasingly support the
view that disease-specific patterns in immunomes are widespread
and are likely to be clinically useful.

Immune repertoire profiling is already in clinical use for the
diagnosis and monitoring of hematologic malignancies, most
frequently of the B cell lineage. The hypervariable third
complementarity determining region of the antibody heavy chain
or TR beta-chain genes can be used as a clonal fingerprint.
Identifying expansions of the same CDR3 sequence and tracking
these expansions over time can be used to monitor the frequency of
a specific B cell or T cell clone and thereby test for minimal residual
disease in these conditions (35). Furthermore, the presence of
somatic hypermutations in the antibody variable gene sequence
can be used as a prognostic marker in chronic lymphocytic
leukemia (36). In addition, patterns within the immunome have
been shown to correlate with likelihood of disease or treatment
response in several clinical contexts. For example, limited diversity
of the repertoire has been associated with frailty during aging (37,
38) and provides evidence of immunodeficient states that are caused
by disease or therapies such as bone marrow transplantation.
Skewing of immunomes towards overrepresentation of particular
variable region genes, CDR3 sequences, or other more complex
motifs may serve as fingerprints for disease or disease susceptibility,
and studies of immunologic exposure and motifs may be useful for
monitoring of immune responses to pathogens as well as
therapeutic vaccines (32, 33, 39–41). Immunome profiling thus
provides an opportunity to mine immune systems at the individual
and population levels to identify signatures that, combined, would
represent a “universal” diagnostic laboratory test. Such a clinical test
would represent a natural next step for investigations into the role of
adaptive immunity in clinical laboratories.
ADVANTAGES OF AIRR-SEQ

AIRR-seq provides a global view of the immune system in a single
snapshot that can be interpreted with different computational
Frontiers in Immunology | www.frontiersin.org 3
methods. Recent progress has already brought the cost and
turnaround time of AIRR-seq tests within range of other clinical
NGS tests, especially those that must be performed at reference
laboratories, also known as “send-out tests” (as opposed to tests that
can be performed on site at the hospital). Most critically, sequencing
has the fundamental advantage of being an unbiasedmethod, which
can in principle reveal atypical immune responses, or responses to
new or emerging pathogens such as SARS-CoV-2 without the cost
and delay required to develop new pathogen-specific reagents (42–
44). Regardless of the condition, the sequencing procedure is the
same; what differs is the computational query for each test result:
one for influenza, another for lupus, and so on. Each query parses
the data for immunoglobulin or TR sequences, motifs, or clusters
specific for the given condition. In this manner, AIRR-seq testing
can reveal unusual or unexpected patterns in a series of patients
with a shared condition. Immunomes and specific sequences can be
made easily available through existing resources that have been
developed in part in anticipation of diagnostic purposes; these
resources include the AIRR Data Commons, which can be
accessed via the iReceptor Plus portal (45) and using the AIRR-C
API (46). Reference sequences for specific variable genes, alleles and
haplotypes can be found at IMGT (47), the Open Germline
Reference Database (OGRDB) (48), and the VDJdb database (49)
and antigen-specific antibodies and TRs can be queried in the
Immune Epitope Database (IEDB) using a suite of tools (50).

Immunome-based diagnostics also align well with the vision of
so-called learning health systems, in which the experience of each
patient and physician contribute to an improved understanding of
disease prevention and management for the benefit of all (51–57).
With enhanced data collection in the electronic medical record,
secure data sharing, and advances in machine learning, this vision
is gradually moving closer to becoming a reality. Just as the growth
of repositories such as the UK Biobank increases the power for
finding patterns across many conditions, each newly sequenced
immunome adds statistical power for finding immunome patterns
across the broader population. Data from AIRR-seq based tests
could be used for continuing improvement of their diagnostic
power. Indeed, efforts by the growing Adaptive Immune Receptor
Repertoire Community (AIRR-C; www.antibodysociety.org/the-
airr-community/) (58) and by EuroClonality (www.euroclonality.
org/) have already led to the development of several high-quality
curated public, searchable databases of sequences and their
specificities, as well as standards for repertoire data (58–60).
CHALLENGES AND OPPORTUNITIES

There are of course several challenges to address for immunome-
based blood testing to become a practical and useful clinical reality,
just as there were (and are) for incorporating cancer sequencing,
whole-genome sequencing, and metagenomics into patient care.
First, the timing of sample collection is important to consider,
particularly in investigations of infections or vaccine responses.
Recall responses can arise within days of an exposure, but initial
responses may take a week or longer to become detectable;
durations of responses vary from months or less to lifelong.
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These considerations mean that immunome-based testing may
eventually play multiple different roles for screening, diagnosis,
and rule-out testing, depending on the condition and durability of
the immune response. Second, protocols for sample preparation will
have to be standardized and validated. These will need to cover cases
in which sequencing will be performed from whole blood or
peripheral blood mononuclear cells (PBMCs) vs. select subsets
(e.g. memory B cells, effector T cells); whether single IGH, IGK/L,
TRA, TRB, TRG, TRD chains or paired chains will be sequenced
(the latter is currently lower throughput and more expensive and
requires intact cells); which regions of each chain are sequenced;
whether the sequencing is from genomic DNA (agnostic to the cell
subset or activation state), mRNA (potentially including isotype
information but also may over-represent activated cells), or both;
and so on. Third, computational pipelines will likewise need to be
clearly described and validated, from sequence assembly (where
necessary), to sequence annotation, to correction for sampling and
sequencing errors, to the statistical and/ormachine learningmethods
used. All of the stages of this process will need to be rigorously
validated to achieve regulatory approval. Fourth, sequencing and
computational resources will have to be in place to guarantee
clinically viable price points and turnaround times. Fifth, samples
will have to be clinically annotated, and this and indeed every process
will have to be carefully vetted for adherence to patient privacy
directives and related legislation. Sixth, systems for storing and
sharing the new clinical data must be set up, to avoid silos and
insteadmaximize the statistical power ofwidespread testing (as in the
vision for learning health systems). And seventh, the signatures,
signals, and patterns onwhich the tests are basedmust be robust and
interpretable, which will likely require the development of “reference
ranges” that are relatable to age, gender, genetic background (e.g.
ethnicity, gene-segment variants,MHCdependency), and geography
(for environmental or infectious exposures).

Fortunately, none of these issues is unique to the immunome; all
are or have been regularly encountered in clinical pathology/
laboratory medicine, and especially in the development of
existing high-throughput sequence-based tests. Moreover, these
issueshave longbeenat the center ofdiscussionsby theAIRR-Cand
others to develop guidelines to facilitate eventual clinical adoption
(58, 59, 61). For the first time, AIRR-seq offers the possibility of a
universal laboratory test that potentially addressesmanyday-to-day
issues in clinical practice: diagnosis and disease prognosis,
resistance or response to drugs, immunodeficiency, anti-tumor
Frontiers in Immunology | www.frontiersin.org 4
and immunotherapy responses, and monitoring for progression
vs. recovery. In addition, it introduces bioinformatics as the key
testing component, suitable for the current era of personalized
immuno-medicine, data science, and data-driven patient care. For
AIRR-seq based clinical testing to reach its full potential, broad
implementation will be required. Similar excitement and
partnership have already led to the development of sequencing-
based tests in cancer and inherited disease, and is also occurring for
the microbiome. We hope that clinicians, laboratorians,
researchers, and funding organizations will join efforts to further
realize the diagnostic potential of the immunome to help patients
with a wide variety of important health conditions.
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