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Abstract: Over the past 1–2 decades we have witnessed a resurgence of efforts to therapeutically
exploit the attributes of lytic viruses to infect and kill tumor cells while sparing normal cells. We now
appreciate that the utility of viruses for treating cancer extends far beyond lytic cell death. Viruses
are also capable of eliciting humoral and cellular innate and adaptive immune responses that may be
directed not only at virus-infected cells but also at uninfected cancer cells. Here we review our current
understanding of this bystander effect, and divide the mechanisms into lytic, cytokine, innate cellular,
and adaptive phases. Knowing the key pathways and molecular players during virus infection
in the context of the cancer microenvironment will be critical to devise strategies to maximize the
therapeutic effects of oncolytic viroimmunotherapy.

Keywords: oncolytic virotherapy; immunotherapy; cancer

Most of us who entered the field of oncolytic virotherapy over the past two decades were originally
attracted by the simple idea of a lytic virus infecting and killing a tumor cell. Indeed, the possibility of
harnessing the capability of lytic viruses—which have evolved over millennia to efficiently invade,
subsume and destroy cells—for cancer therapy has intrigued the lay public as well, being featured in
popular novels, television shows and movies [1–5]. The presumptive association of virus permissivity
with antitumor efficacy has pervaded the field from the very beginning with laboratory experiments
propagating viruses in animal tumors nearly 95 years ago [6,7] through most of the past century
of research in this area [8–13]. In fact, the notion that therapeutic efficacy is directly related to the
capacity for lytic infection has driven most investigators and many pharmaceutical companies to
seek strategies for increasing virus replication efficiency [14–16]. While still important, we now know
the mechanisms by which virus infections induce cancer regressions extend far beyond the simple
infection of individual tumor cells.

The fact that viruses induce antigen-specific, adaptive anti-cancer immune responses has been
known for several years. Early reports in the late 1990s made it clear, if not under-appreciated at the
time, that viral infections of tumors in animal models could reveal and/or elicit cancer antigen-specific
adaptive immune responses, functioning as in situ cancer vaccines [17,18]. Helping to stimulate such
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immunity was the basis for inserting the immunomodulatory gene for the secretion of GM-CSF into the
virus now known as Talimogene Laherparepvec (T-VEC), the first oncolytic virus to be licensed by the
FDA as a cancer therapeutic. Indeed, in the seminal trial that lead to its approval, 77.5% of virus-injected
melanoma skin or nodal lesions decreased in size, as did 52.3% of noninjected nonvisceral lesions
and 29.9% of noninjected visceral lesions, making a strong argument for an immunologic effect [19].
Recent studies suggest that even the updated concept of lytic viruses causing both direct cell killing
and the induction of anti-tumor T cells under-represents the full anti-tumoral therapeutic impact of
oncolytic virotherapy.

Our understanding of oncolytic virotherapy has progressed in parallel with our understanding
of tumor biology. Rather than a simple clump of unstrained cancerous cells, we now appreciate
that solid tumors are interconnected ecosystems comprised not just of cancer cells but also of
numerous non-malignant cells, each likely playing diverse roles in enabling tumor growth and
persistence. Although variable by tumor type and location, if not also each individual patient
and area within a given tumor, the tumor microenvironment is often composed of stromal cells
such as vascular endothelial cells, pericytes, tumor-associated fibroblasts, hematopoietic cells, innate
immune cells such as macrophages, neutrophils, and myelocytes, and adaptive immune cells such
as lymphocytes, each with numerous subsets and so-called polarities. Cancer cells leverage these
non-cancer cells to help them grow and to evade immune detection. For example, cells may secrete
TGF-β, IL-10 and prostaglandin E2, which down-regulate T lymphocyte immune recognition and
cytokine production [20–23]. Regulatory T cells (TRegs) and tumor-associated macrophages (TAMs)
within the tumor microenvironment contribute to elevated IL-10 production, which functionally
impairs infiltrating T effector cells. Tumors also may express molecules that directly inhibit cytotoxic
T cells, such as CTLA-4 and PD-L1 [24,25]. With this relatively new knowledge of the intricate
capabilities of solid tumors to evade the immune system, we have come to also learn that viral infections
of tumors likely affect many (if not all) of these cells that contribute to this immunosuppressive milieu,
either directly by their infection or indirectly by the induction of immunostimulatory cytokines and
chemokines [26–29]. While viral replication and the direct cytolytic phase of oncolytic virotherapy
may serve as a “tumor debulking mechanism”, it may also play a role in exposing tumor neoantigens
to antigen presenting cells and lead to immune-mediated anti-tumor responses.

There is now ample evidence that various anti-viral immune responses contribute to oncolytic
virus anti-tumor efficacy. Virus-induced Type I interferon (IFN) signaling ultimately leads to the
secretion of mutiple immunostimulatory cytokines and chemokines. In some cases, production of
cytokines such as TNF-α, TRAIL, and even type I interferons themselves may have direct cytotoxic
effects on neighboring, uninfected cancer cells, depending on their susceptibility [30]. Knowledge of
this tumoricidal cytokine-mediated phase during virus infection has led to strategies to increase the
cytotoxic effects of virotherapy by potentiating the susceptibility of cancer cells to apoptosis-inducers
such as SMC mimetics [30,31]. Beug et al. observed the effect with several viruses including vesicular
stomatitis virus, Maraba, vaccinia, HSV1, and reovirus, though it was less dramatic in those with
elaborate mechanisms to suppress innate immune signaling. In addition, activation of pattern
recognition receptors by pathogens such as viruses (e.g., TLR, RIG-I, MDA5, STING, IFI16) leads
to adjuvant-like effects that are instrumental in stimulating immune recognition and adaptive immune
memory. Induction of these receptors not only induces innate immune responses but are also important
in antigen presentation and generation of robust adaptive immune responses [32–34]. Consequently,
there has been increased interest in methods such as the use of toll-like receptor agonists that harness
this response in both the vaccine and immunotherapy fields [32,35].

As intended during a normal virus infection, chemokine and cytokine production result in
further recruitment and activation of innate immune cells (neutrophils, NK cells, and macrophages)
and adaptive (CD4+, CD8+) T lymphocytes [21,36]. Although these events contribute to viral
clearance [37–40], they are thought to transiently reverse the immunosuppressive environment
and stimulate anti-tumor responses [41–45]. Furthermore, compared with their relevant control
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viruses, oncolytic viruses designed to express pro-inflammatory genes show enhanced anti-tumoral
effects. For example, oHSV engineered to express IL-12, IL-18, or IL-4 has improved anti-tumor
efficacy [46–50]. Similarly, oncolytic adenovirus co-expressing IL-12 and IL-18 enriches tumor-specific
immunity via the differentiation of T cells [51] and treatment with an IL-12 and CCL2 co-expressing
virus increases recruitment of activated macrophages and T cells and improved survival without
decreasing viral replication [42,43,52]. Some of the effects of control and transgene-enhanced
viruses correlating with increased antitumor efficacy include changes in macrophage polarization as
shown with paramyxovirus and adenovirus [53,54], reduced Tregs, and changes in TGF-β and IL-10
levels [55]. Interestingly, preexisting antiviral immunity does not always diminish and occasionally
enhances the antitumor efficacy of virotherapy [21,56,57]. In some cases, survival advantages seen in
immunocompetant tumor models is lost in immune suppressed mice [21,58]. In other models, however,
recruitment of innate immune cells rapidly clears replicating oHSV and is detrimental to oncolytic
virus therapy by limiting viral replication [26]. Finally, transcriptional array analyses from a Phase Ib
clinical trial of an oncolytic virus (HSV1-derived ∆γ1 34.5-deleted G207) suggest that anti-viral immune
responses contributed to anti-cancer activity, as long-term survivors exhibited greater inflammatory
and interferon-stimulated gene expression compared to non-responders [59]. In fact, there is growing
evidence that in some cases, the cascade of immunologic effects may be elicited by detection of virus
proteins or genomes, even in the absence of any virus replication [60–62].

These observations support at least four distinct but overlapping phases of oncolytic virotherapy
efficacy: (1) direct cellular lysis; (2) cytokine-induced apoptosis; (3) innate immune cell cytotoxicity;
and (4) antigen-specific adaptive T cell killing (Figure 1). The extent to which each phase plays
a role in the regression of an individual patient’s tumor likely varies by virus species and strain,
its attenuating mutation(s) (if any), the presence of any engineered transgenes within the viral genome,
characteristics of the tumor cell itself (e.g., interferon responsiveness), characteristics of the tumor’s
microenvironment, and the immunologic status of the patient.
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Figure 1. Depiction of critical events beyond infection that contribute to antitumor efficacy of
virotherapy. In addition to direct lysis of tumor cells, infection induces secretion of cytokines and
chemokines that can kill cancer cells directly and also recruit and activate innate and adaptive immune
cells that attack the tumor. Most of the downstream effects of infection are favorable for tumor therapy
(indicated by the green plus signs), which counteract immunosuppressive molecules (red minus sign)
in the tumor microenvironment.
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While there is a consensus that the immune response contributes to oncolytic virotherapy, there
are several unanswered questions that need to be addressed. Many of the past studies have involved
empiric approaches using animal models suited for a particular oncolytic virus. Animal models and
even mouse strains can differ in their immunologic responses to the same virus [63,64], which in
theory may affect oncolytic viral effects. Presently we do not know if differences in virus mechanisms
observed are a function of the unique model systems and experimental methods used in various studies
or whether these are a function of unique viral-host evolutionary pathways. This raises the question as
to whether immune-mediated responses differ between various oncolytic viruses, or is there a common
response necessary for successful oncolytic virotherapy? Virally-induced immune-mediated responses
have many similarities [65], all of which are thought to contribute to the anti-tumor effect. As we move
forward, there will be a need to develop collaborative and cooperative approaches to resolve some of
the current mechanistic differences reported.

In addition to mechanistic variances between viral vectors, there are also discrepancies among
tumor types. Alternate approaches may be necessary based upon the unique tumor biology
involved in different cancer subtypes. For example, some tumors possess up-regulated IFN signaling
pathways [66–68] suggesting cells are primed to resist oncolytic viruses prior to infection. These
tumors have evolved to escape the IFN-mediated anti-tumor effects of this chronic stimulation, but
accumulate interferon-stimulated genes that may limit initial viral infection and gene expression.
Certainly oncolytic viruses derived from vesicular stomatitis virus, measles, semlikivirus forest and
respiratory synticial virus are affected by the antiviral state found in some cancers [69–74]. Furthermore,
a strategy involving transient immunosuppression may benefit oncolytic virotherapy in these instances
such as has been shown in preclinical models for reovirus [75], though such an approach may eliminate
the principal immune-based anti-tumor efficacy of an oncolytic virus for other tumor types.

Another issue is the relative immunogenicity of virus vs. tumor antigens. Viral antigens usually
contain immunodominant epitopes that elicit strong anti-viral immune responses, which may limit the
development of robust anti-tumor immunity by essentially “overshadowing” less immunodominant
tumor antigens. Virus immunodominance has not been adequately examined in the context of oncolytic
virotherapy, so the extent to which it may represent a barrier to tumor immunotherapy is unknown.
The issue likely varies among different virus types since they encode different host evasion mechanisms,
which are functional during an oncolytic virus infection (unlike non-live virus vaccines). One potential
strategy to mitigate the immunodominance of virus antigens is to use a heterologous prime-boost,
which is designed to train the immune response against specific tumor antigens using different virus
vectors. Such an approach has been utilized successfully with sequential use of adenovirus and
vesicular stomatitis virus [76].

As the field matures and more agents advance to clinical trials, it is essential that we begin to
examine correlative data from clinical trial samples with different oncolytic virotherapeutics to answer
several other important questions. First, what is the role of the innate immune-mediated response
with virotherapy? For example, some investigators have identified that the NK cell restricts oHSV
replication and anti-tumor effect in their model systems [26]. However, others [77] have identified NK
cells as responsible for an adenoviral-mediated anti-tumor response. Are the differences a function of
the model systems or are different unique viruses responsible for specific anti-tumor immune effectors?
Further work is needed to fully understand these differences.

Early interest in the innate response focused on antiviral and anti-tumor effectors. However,
innate myeloid cells associated with the tumor are important mediators of tumor immune evasion.
How virotherapy directly or indirectly modifies immunosuppressive myeloid-derived cells, including
macrophage polarity, in the tumor microenvironment is another area of interest, raising the next
question: By engineering viruses or using adjuvants that modify these tumor-associated cells, can we
regulate their functions and thus the immune response to improve virotherapy activity and provide
durable anti-tumor immunity? In this regard, toll-like receptor agonists such as poly I:C and CpG
oligonucleotides have a proven role in priming vaccine immunotherapy [32,35,78] and thus are of
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interest to test in combination with virotherapy. Also yet to be thoroughly explored in the context
of virotherapy are agents that deplete or alter polarization of tumor-associated macrophages such as
trabectadin [79].

With the dawn of the immunotherapy age, we have continued to advance our knowledge of how
cancers effectively avoid the immune system, and apply what we know to new therapeutic strategies.
This raises the next crucial question: Does immune editing and clonal escape threaten to cripple
virotherapy like it has for single antigen immune-mediated approaches? A recent study showed that
adenovirus infection of a lung cancer model elicited T cell responses to neoantigens and overcame
resistance to T cell checkpoint blockade [80], suggesting immune escape may not be a major issue.
In addition, because oncolytic virotherapy elicits multi-pronged anti-cancer mechanisms, its use may
have the potential to supersede the immune evasion strategies put forth by solid tumors.

Lastly, what role does viral replication or viral antigen production play in eliciting the
immune-mediated anti-tumor response? Does triggering intrinsic antiviral response pathways serve
as a necessary adjuvant for adaptive immunity against the tumor while additionally inducing antiviral
effectors that limit viral replication and cytolytic activity? If so, can this antiviral response be delayed
temporarily without compromising safety (infection of normal tissues) or interrupting the anti-tumoral
immune-mediated effects to improve overall tumor response? For example, one approach might be
to induce immunosuppression early after virotherapy to enable virus replication and make it only
transient, or to utilize immunosuppression only during the first few treatments but omit it during later
virus injections.

As our understanding of tumor biology and the effects of virus infection within the complex
tumor microenvironment continues to evolve, we are likely to reveal even more varied mechanisms
underlying virus-induced cancer regressions. It would be precarious to rush to a single mechanism
that explains effective oncolytic virus therapy while neglecting other established mechanisms.
With growing interest in dissecting the immune-mediated virotherapy anti-tumor response, we run
the risk of discarding viral replication as an important virotherapy function. Effective virotherapy is
likely multifactorial and involves both direct and indirect components. Knowing these mechanisms
should enable the design of rational strategies to leverage and augment each virally-induced phase
with the sequential use of adjuvant small molecule and other biologic therapeutics resulting in
maximal anti-tumor impact. Part of the challenge will be to also identify predictive biomarkers
of each therapeutic phase, so we can further personalize oncolytic virotherapy by determining which
enhancements will be most effective for a given patient.
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