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Abstract

Tissue contacting surfaces of medical devices initiate a host inflammatory response, characterized 

by adsorption of blood proteins and inflammatory cells triggering the release of cytokines, reactive 

oxygen species (ROS) and reactive nitrogen species (RNS), in an attempt to clear or isolate the 

foreign object from the body. This normal host response contributes to device-associated 

pathophysiology and addressing device biocompatibility remains an unmet need. Although 

widespread attempts have been made to render the device surfaces unreactive, the establishment of 

a completely bioinert coating has been untenable and demonstrates the need to develop strategies 

based upon the molecular mechanisms that define the interaction between host cells and synthetic 

surfaces. In this review, we discuss a family of transmembrane receptors, known as 

immunoreceptor tyrosine-based inhibitory motif (ITIM)-containing receptors, which show 

promise as potential targets to address aberrant biocompatibility. These receptors repress the 

immune response and ensure that the intensity of an immune response is appropriate for the 

stimuli. Particular emphasis will be placed on the known ITIM-containing receptor, Signal 

Regulatory Protein Alpha (SIRPhα), and its cognate ligand CD47. In addition, this review will 

discuss the potential of other ITIM-containing proteins as targets for addressing the aberrant 

biocompatibility of polymeric biomaterials.
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1. Introduction

The host response to implanted, or extracorporeal, biomaterials is characterized by a 

nonspecific immune response to the biomaterial [1,2]. The pathophysiology associated with 

this biological process following medical device deployment represents a substantial 

healthcare burden [1]. Clinical issues have been reported as a result of acute and chronic 

inflammatory events directed at the synthetic surfaces that interact with host tissue. For 

example, the perfusion of large volumes of blood over polyvinyl chloride (PVC) blood 

conduits, used in such procedures as cardiopulmonary bypass or renal dialysis, elicits a 

systemic inflammatory response characterized by increased proinflammatory cytokines and 

neutrophil activation [3]. Detection of these chemokines and cytokines in the blood, during 

the procedure, correlates with poor clinical outcomes [4]. The response elicited by short-

term exposure to foreign materials such as cardiopulmonary bypass and dialysis circuits 

represents an acute inflammatory reaction. The chronic inflammatory response has also been 

identified as having a deleterious role in long-term implanted devices. For example, the 

cracking of pacemaker lead insulation, which ultimately results in device failure, is mediated 

by the release of reactive oxygen species (ROS) from monocyte derived macrophages 

(MDMs) that respond to the polymeric insulation used in pacemaker leads [5,6]. In addition, 

addressing the issues surrounding aberrant host response to endovascular stents has been the 

subject of a great deal of resources expended by academic and industrial laboratories. Thus, 

attenuating biomaterial-induced inflammation by designing biomaterials that inhibit 

inflammation will address an unmet need in medicine, bioengineering, and biomaterial 

science. Central to this endeavor will be the achievement of a better understanding of the 

well-orchestrated molecular and cellular events that define the host reaction to synthetic 

surfaces.

A thorough characterization of the inflammatory response to biomaterials has been well 

documented by others [1,7], and is beyond the scope of this particular review. However, the 

cellular and molecular mechanisms of the inflammatory response will be briefly discussed 

herein to provide context for the necessity to establish a biomimetic surface that is based on 

a rational understanding of the cellular and molecular events that define biocompatibility. In 

general, the overall inflammatory response to biomaterials can be divided into an acute and a 

chronic phase that are defined by cell types, duration, and overall purpose. The initiation of 

the acute inflammatory response starts as a result of the tissue damage that is elicited when 

the medical device is implanted or, in the case of renal dialysis or cardiopulmonary bypass, 

when blood is perfused over the synthetic surfaces. This happens immediately after implant 

or blood material contact and is characterized by the adsorption of blood proteins such as 

albumin, antibodies, and fibrinogen onto the synthetic surface [8]. The exact profile of 

adsorbed proteins varies with the physical and chemical properties of the material used [9]. 

It is widely assumed that the presentation of the various plasma proteins on the material.’s 
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surface, and not the material itself, creates a high affinity matrix for the subsequent 

attachment and activation of a range of inflammatory cells [10,11].

Similar to the process of wound healing, platelets are among the first cell type to respond to 

material implantation [12,13]. They respond by attaching to the provisional matrix on the 

material surface and then undergoing a series of morphological and physiological changes 

that lead to platelet aggregation and activation [12,13]. The activated platelets release an 

array of cytokines and chemokines that attract inflammatory cells such as macrophages and 

polymorphonuclear leukocytes (neutrophils, PMN), which in turn release more chemokines 

and cytokines that attract additional leukocytes to the site [12,13]. In short, the early 

inflammatory stages are defined by a regulated expression profile of molecular ligands that 

are released into the extracellular milieu with the overarching function of containing and 

removing the foreign stimuli.

With respect to permanently implanted medical devices, the long term inflammation remains 

an important hurdle to achieving device efficacy. As the inflammatory response transitions 

from an acute to a chronic response, the cellular profile surrounding the implant changes 

[1,14]. During this time, the MDMs replace the PMN as the dominant cell type. The 

function of the MDM is generally to clear a foreign particle through phagocytosis. However, 

most medical devices are too large to be removed by phagocytosis. To that end, MDMs 

begin to remove the implanted material from the surrounding tissue through a two-step 

process of degrading the material and remodeling the surrounding extracellular matrix 

(ECM) from the surrounding host tissue [1,14]. The degradation of the implanted material is 

carried out by the release of hydrolytic enzymes and reactive oxygen and nitrogen species 

(ROS/RNS). Inflammatory cells produce a wide range of ROS/RNS through the activities of 

enzymes including NADPH oxidase, superoxide dismutase, and myeloperoxidase, as well as 

subsequent reactions with substrates such as the production of hydroxyl radicals from 

hydrogen peroxide and iron [15] or peroxynitrite from superoxide and nitric oxide [16]. It 

has been demonstrated that the reactions of ROS/RNS with a biomaterial can result in both 

reduction in composite polymer molecular weight and material degradation such as surface 

cracking of polyurethane-based pacemaker lead insulation [5,6] and structural damage to 

bioprosthetic heart valves [17]. This process is summarized schematically in Figure 1.

Depending upon the MDM phenotype, MDMs can facilitate tissue remodeling or fibrous 

tissue formation surrounding the biomaterial [18]. The phenotype of MDMs is generally 

characterized as M1 or M2. M1 are classically activated in response to stimuli such as 

pathogens and produce pro-inflammatory cytokines such as IL-1β whereas M2 are 

alternatively activated and have been shown to mediate a tissue remodeling response that 

can result in fibrous tissue formation [19]. MDMs with an M2 phenotype have been shown 

to release chemotactic factors that recruit cells such as myoblasts that are capable of forming 

an ECM network [19]. Over time, this ECM protein network will contract and remodel 

[1,14]. The process of remodeling the ECM involves the release of a family of enzymes 

known as matrix metalloproteinases (MMPs). MMPs are ubiquitously expressed 

endopeptidases, which collectively have the capacity of hydrolyze all components of the 

ECM [20,21]. MMPs are synthesized as inactive pro-enzymes which require activation by 

various proteinases and ROS/RNS to facilitate their transition to active enzymes [20,21]. 
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Along with regulation of their enzymatic activity, MMPs are also regulated at the 

transcriptional and post-translation level [22]. Many inflammatory cytokines, such as tumor 

necrosis factor-alpha (TNF-α) and growth factors, such as epidermal growth factor (EGF) 

and transforming growth factor-beta (TGF-β) have been shown to upregulate MMP 

transcription [23]. Certain MMPs have also been shown to be regulated by the modulation of 

mRNA stability as is the case for MMP-3 [24]. Once activated, MMPs are then themselves 

regulated by general protease inhibitors and the family of tissue inhibitors of 

metalloproteinases (TIMPs) [25].

Although MMPs have been shown to degrade ECM components, they have also have been 

shown to be involved in the regulation of the inflammatory response. For example, several 

MMPs can cleave and activate TNF-α [26,27], interleukin-1 beta (IL-1β) [28], and TGF-β 

[29–31] increasing the inflammatory response. However, MMPs also possess anti-

inflammatory capabilities. One of the more well-characterized examples of this is MMP-2-

mediated cleavage of CC-chemokine ligand 7 (monocyte chemoattractant protein-3, 

MCP-3), generating a truncated version of MCP-3, which acts as a receptor antagonist 

inhibiting the inflammatory response [32]. It is clear that MMPs, which were previously 

thought only to be responsible for degradation of the ECM, have extensive involvement in 

modulating the immune response [21].

Device-associated inflammation remains a formidable obstacle in the development of 

various medical devices due to the pathophysiologies associated with long-term implants 

and blood-surface contacts. As detailed below, various therapeutic approaches to address the 

issues surrounding the device-associated inflammation have attempted to target the 

individual steps in the process. The strategies used can be generally placed into two 

categories. The first, bioinert strategies target events early in the inflammatory process, 

particularly minimizing the adsorption of proteins onto the material surface. Second, 

bioactive strategies aim to address specific events within the process. This review will focus 

primarily on the latter strategy.

2. Bioinert and Bioactive Surfaces

Bioinert surfaces are designed so that the chemical and topological features of the tissue 

contacting surfaces do not initiate an inflammatory reaction, and remain seemingly .

“invisible.” to the immunosurveillance mechanisms that drive the host reaction to 

biomaterials. Specifically, these materials are largely designed to prevent the initial steps of 

the inflammatory process by preventing cell-material interactions [33]. Generally, the 

coatings used to make a bioinert surface tend to be hydrophilic as such surfaces do not 

enhance protein adsorption or cellular attachment [34], a problem which plagues 

hydrophobic coatings [35]. Various hydrophilic coatings have been shown to improve the 

biomaterial-tissue interaction, leading to long-term functionality of medical devices 

[34,36,37]. There is also evidence that altering surface topography, porosity, and structure 

can influence cell attachment to the biomaterial and the inflammatory response. For 

example, fibroblasts, epithelial cells, and endothelial cells have been shown to be influenced 

by alterations in surface topography [38–40]. Specifically related to the prevention of the 

inflammatory response, the use of porous implants in animal models have shown increased 
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vascularization and decreased inflammation [41–44]. Similarly, microtemplating has been 

used to direct and organize cardiomyocyte bundles on sphere-templated porous materials 

used for cardiac tissue engineering [45]. These materials have also been documented to 

increase implant vascularization and prevent fibrosis associated with the foreign body 

reaction [45]. However, bioinert strategies have several limitations. First, it is unclear which 

types of surfaces confer a greater level of biocompatibility [33], and second no surface is 

free from the phenomena of protein adsorption (biofouling) [37], however ultra-low 

biofouling surfaces have been developed [46]. A variety of strategies have been employed to 

limit biofouling on biomaterials, however considerable success in preventing inflammation 

can be achieved using the ultra-low biofouling zwitterionic hydrogels prepared from 

carboxybetaine monomer and a carboxybetaine cross-linker [46]. These zwitterionic 

hydrogels exhibit ultra-low biofouling, lower COS-7 cell adhesions in vitro compared to 

poly(2-hydroxyethyl methacrylate) [47–49] and minimal foreign body capsulation around 

subcutaneous murine implants for up to three months [46]. Although early in their 

development, these bioinert compounds seem to have potential therapeutic applications.

Although there has been some success with bioinert strategies promoting biocompatibility, 

biomaterials as a field, has realized that masking a synthetic surface should not be the goal, 

but rather to promote healing and implant integration [50]. As bioinert surfaces aim to be 

invisible to immunosurveillance, a bioactive surface seeks to alter the biological response of 

inflammatory cells in a manner that preserves the efficacy of the medical device. Frequently, 

the therapeutic targets of bioactive coatings are components of the clotting cascade. The use 

of heparin on blood conduits has been suggested because of its anti-inflammatory and anti-

proliferative capabilities [51,52]. For example, heparin-coated extracorporeal circuits, such 

as cardiopulmonary bypass circuits [53] have been shown to reduce the activation of 

coagulation, complement, and blood cells, thereby increasing their biocompatibility [54–59]. 

Encouraging results have also been obtained from co-immobilizing heparin and fibronectin 

on titanium implants, showing increased endothelialization and favorable blood 

biocompatibility [60,61]. Heparin-releasing hydrogels have also been shown to be 

successful in inhibiting the vascular smooth muscle cell (VSMC) proliferation around 

vascular stents, potentially increasing their long-term viability [62]. Although heparin has 

positive effects on acute inflammatory reactions associated with blood material interactions, 

these results have not translated into prevention of an inflammatory reaction when heparin-

coated implants were evaluated in rats and heparin-coated coronary stents were evaluated in 

pigs [63–65].

The release or generation of nitric oxide from biomaterials has been widely explored with 

the overarching goal of preventing platelet activation and clotting on the material surface as 

well as preventing VSMC proliferation in the surrounding tissue [66]. Along with heparin 

and nitric oxide-based biocompatibility strategies, drug-eluting materials have also been 

developed and utilized in various applications. For example, antioxidant and paclitaxel-

eluting vascular stents have been developed with the intention of promoting re-

endothelialization of the stent (antioxidants) and inhibition of VSMC proliferation 

(paclitaxel) [67,68]. However, as with the majority of bioactive coatings on implanted 

materials, they are limited in certain aspects. For example, there is a finite amount of drug 
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(or molecule) that can be delivered. This is a major limitation of most bioactive strategies, 

and many researchers are devising strategies to avoid this limitation. Another disadvantage 

of this type of strategy is the rate of release of the drug (or molecule). For example, the 

release rate of NO needs to be tightly regulated at a physiologic level to facilitate an anti-

inflammatory effect, while accounting for the diffusion of NO to surrounding tissue [66]. 

Another limitation of all bioactive strategies is that the coating may become denatured or 

removed, due to biophysical interactions between the host tissue and the material. When the 

coating is altered in this manner, host proteins will replace the altered surface and may elicit 

an inflammatory response.

3. Immunoreceptor Tyrosine-Based Inhibitory Motif (ITIM)

Down regulation of the inflammatory response is maintained in part by a family of immune 

inhibitory receptors with a conserved amino acid motif (IVLSXYXXLV; where X can be any 

amino acid) known as the immunoreceptor tyrosine-based inhibitory motif (ITIM) [69]. 

Ligand-induced signaling of ITIM receptors is mediated by tyrosine phosphorylation [69–

71] and the downstream targets are often Src homology 2 (SH2) domain containing 

phosphatases, such as SHP-1 and SH2-containing inositol polyphosphate 5-phosphatase 

(SHIP) [69–71]. Once phosphorylated SHP-1 and SHIP activate distinct signaling pathways 

and elicit different changes in the inhibited cell [69]. Several reviews provide in depth 

discussion regarding their signaling mechanisms [72,73].

The ITIM family of proteins represents a large and diverse assembly of protein receptors of 

which some members lack an identified ligand. ITIM family members are essential negative 

regulators of the immune system ensuring a proportion response to inflammatory stimuli 

[69,70]. A delicate balance between activation and inhibition of the immune system is 

necessary to ensure the proper response. Failure of the inhibitory signal of ITIM receptors 

tips this balance towards an aberrant immune response and has been associated with various 

allergic and auto-immune diseases [74]. Below are several ITIM protein family members 

that may have the potential to regulate the inflammatory response. As detailed, some of 

these proteins are well characterized and may be easily translated to potential therapeutic 

technologies. In other cases, the underlying molecular physiology is not well understood and 

further investigations would yield both fundamental answers to the protein.’s function as 

well as increase the potential for developing platform technologies for addressing aberrant 

inflammatory events.

3.1. Signal Regulatory Protein Alpha (SIRPα)

SIRPα, an ITIM-containing transmembrane protein expressed in cells of myeloid origin, 

down-regulates the immune response through phospho-tyrosine signaling mechanisms [75]. 

CD47, the cognate ligand of SIRPα, is also a ubiquitously expressed transmembrane protein. 

SIRPα binding to the extracellular immunoglobulin (Ig) domain of CD47 is conserved and 

species specific, with sequence homology between mice and humans in this region differing 

by 38% [76]. Previous reports strongly suggest that CD47 functions as a .“marker of self.” 

by inhibiting immune cell interactions via SIRPα signaling [77–79]. CD47 is a member of 

the Ig superfamily with a single extracellular N-terminal IgV-like domain, 5 membrane 

spanning domains, and an intracellular alternatively spliced C-terminal domain [80]. CD47 
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is expressed on most cell types, including platelets [72,81,82] and a variety of other 

hematopoietic cells [83]. The removal of red blood cells from the circulation depends, in 

part, upon the level of CD47 expressed on their surface. As red blood cells age they express 

lower levels of CD47 and subsequently they are targeted for phagocytic degradation [84]. In 

biological systems, hematopoietic stem cells and leukemia cells evade phagocytosis partly 

by upregulating CD47 expression [85–87]. An emerging anti-cancer therapy which shows 

promising results is the use of antibodies which block CD47, allowing for the immune 

system to recognize cancerous cells which previously exhibit large amounts of CD47 [88]. 

In addition, myxoma viruses express a CD47 homologue presumably to evade phagocytosis 

[89]. In non-biological systems, CD47-SIRPα interactions have been shown to inhibit 

phagocytosis of opsonized microbeads [79]. Of all of the ITIM family of proteins, CD47 is 

likely the most well characterized for anti-inflammatory use on polymeric biomaterials.

CD47 has been shown to interact in cis with integrins and in trans with thrombospondins 

[83]; but of particular importance to this review is the trans interaction among CD47 and 

SIRPα (Figure 2). The interaction between SIRPα and CD47 is involved in inhibition of cell 

growth, migration, and differentiation [72,73]. Specifically, SIRPα initiates a 

dephosphorylation cascade that ultimately targets myosin 2a and leads to the 

depolymerization of cytoskeletal actin [79]. The SIRPα-CD47 interaction is at its most basic 

sense anti-phagocytic, which can be in part, attributed to the deactivation of myosin 2a and 

the depolymerization of actin leading to decreased cell adhesion and decreased phagocytic 

activity (Figure 3) [79].

As a way of decreasing the inflammatory response to implantable devices and polymeric 

blood conduits, our lab and others have focused primarily on functionalizing surfaces with 

recombinant CD47. When recombinant CD47 is appended to polymeric surfaces, a stark 

reduction in inflammatory cell (human MDM THP-1 and human promyelocytic HL-60) 

attachment is observed compared to unmodified polymers using in vitro cell adhesion assays 

[81,90–92]. These inhibitory results translated well into the ex vivo blood perfusion model of 

the Chandler Loop and in vivo in rat sub-dermal implant models [81,90]. As alluded to 

previously, this inhibitory interaction between CD47-functionalized surfaces and 

inflammatory cells is mediated through the interaction of CD47 and SIRPα, demonstrated 

through the use of anti-SIRPα antibodies and in vitro cell adhesion assays [90]. Although 

the interaction between CD47 and SIRPα is often over-simplified to be anti-phagocytic or .

“don.’t eat me.”, recent evidence from our lab indicates that this interaction involves much 

more than just .“don.’t eat me.”.

We have recently shown that the interaction of SIRPα with CD47-functionalized polymers 

elicits broadly defined intracellular signaling events [91]. CD47-mediated signaling 

regulates chemokine and cytokine transcription factors, increases MMP transcription, and 

reduces pro-inflammatory chemokines that are associated with poor clinical prognosis [91]. 

In addition, implicated in the signaling downstream of the SIRPα-CD47 interaction is the 

Janus Kinase/Signal Transducers and Activators of Transcription (JAK/STAT) pathway 

[91]. The exact role of the JAK/STAT pathway in biocompatibility regulated by SIRPα-

CD47 remains unclear at this point; nevertheless it is evident that the pathway is involved. 
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The signaling changes that are a result of blood exposure to CD47-functionalized surfaces 

are summarized in Figure 4.

A recent study [93] has shown that the peptide sequence of the Ig domain can confer 

roughly the same level of inhibition of phagocytosis of opsonized nanobeads as observed 

with recombinant CD47. As demonstrated previously by others [94–97], peptides have the 

following advantages over recombinant proteins: (1) Their ease of production contributes to 

lower manufacturing costs; (2) Peptides are more readily modified, thereby facilitating their 

chemical coupling to surfaces; (3) Peptides tend to be more biocompatible. Research into the 

use of CD47 peptide sequences could potentially provide a cost-effective bioactive surface 

for immunoengineering macroscale polymeric surfaces as a means to address host 

inflammatory response to implanted medical devices. Although the anti-phagocytic nature of 

CD47 Ig peptide seemingly depends on the interaction between SIRPα and CD47 [93], more 

recent literature suggests that the CD47 Ig peptide may not interact with SIRPα [98]. 

Regardless of the necessity of the interaction between SIRPα and the CD47 Ig peptide, the 

CD47 Ig peptide inhibits the phagocytosis of nanobeads by THP-1 cells [93], suggesting that 

this peptide should be investigated further.

Efforts by our laboratory and others have established the CD47-SIRPα signaling 

mechanisms as one of the more well-characterized ITIM proteins for use on biomaterials. 

However, as detailed below, other ITIM-expressing proteins may also be suitable for 

conferring biocompatibility upon synthetic surfaces used in medical devices.

3.2. Platelet Endothelial Cell Adhesion Molecule-1 (PECAM-1)

Platelet Endothelial Cell Adhesion Molecule-1 (PECAM-1), or CD31, is a member of the Ig 

superfamily containing two ITIM domains [99,100]. PECAM-1 is predominantly expressed 

on the lateral junctions of endothelial cells where it is involved in cell-cell junctions and is 

expressed at lower levels on platelets and leukocytes [101]. A variety of ligands for 

PECAM-1 have been established and include: homophilic interactions for cell adhesion 

among adjacent cells [102,103] and heterophilic interactions with integrins [104]. PECAM-1 

also interacts with CD38 to regulate lymphocyte adhesion to endothelial cells [105,106].

The PECAM-1 cytoplasmic domain can transmit an immune inhibitory signal which is 

dependent upon its intact ITIM domain and the recruitment of SHP-2 and to a lesser extent 

SHP-1 [107,108]. PECAM-1 has also been implicated as a negative regulator of T cell 

receptor (TCR)-mediated signaling events [101,109], has established roles in leukocyte 

chemotaxis and transendothelial migration, and macrophage phagocytosis [101]. Although 

the mechanism remains unclear, healthy cell interaction with PECAM-1 leads to inhibition 

of phagocytosis, whereas this signal is interrupted in unhealthy cells resulting in their 

phagocytosis [110,111]. This suggests that modulation of PECAM-1 inhibitory signaling 

could be useful in preventing material-induced inflammatory events.

As discussed herein, the SIRPα-CD47 interaction and downstream signaling results in 

significant upregulation of MMPs. In support of the role of MMPs in the inhibition of the 

immune response, evidence suggests that PECAM-1 is regulated by MMP-dependent 

shedding which also involves caspase activity [112]. This shedding process results in the 
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release of the soluble extracellular domain of PECAM-1 and a truncated transmembrane and 

cytoplasmic domain which preferentially recruits SHP-2 to enhance its signaling capabilities 

[112]. This presents the possibility of cross-talk between the two pathways, in which CD47 

binds SIRPα, leading to an increase in MMPs. This increase in MMPs may themselves be 

involved in inhibition of the immune response, but they can also cleave the extracellular 

domain of PECAM-1. The remaining transmembrane and cytoplasmic fragment of 

PECAM-1 preferentially binds SHP-2 to strengthen its downstream signaling. To our 

knowledge no one has attempted to utilize PECAM-1 as an anti-inflammatory agent on 

biomaterials, but given its role in inhibiting T cell receptor activity, the potential exists to 

harness the anti-inflammatory nature of PECAM-1 for therapeutic benefit.

Although not investigated as an anti-inflammatory agent on biomaterials, important parallels 

in the literature can be identified. First, studies using CD31 knockout mice demonstrate the 

requirement of PECAM-1 in modulating T-cell responses, because mice lacking CD31 

exhibited enhanced tumor and allograft rejection compared to wild-type mice [113]. The 

authors (Liang M. et al.) allude to the fact that this inhibition of T cell responses is 

presumably through the phosphorylation of the PECAM-1 ITIM domain, although the exact 

molecular mechanisms remain unclear [113]. Liang M. et al., in addition, postulated that 

selective expression of PECAM-1 might protect PECAM-1-expressing cells against 

cytotoxicity by effector T cells, rather directing them to PECAM-1 negative targets [113]. A 

similar proposal could be made for PECAM-1-functionalized biomaterials, which could be 

protected against cytotoxicity by effector T cells. Second, PECAM-1 has been used along 

with other cell adhesion molecules as a means to target drug nanocarriers to specific regions 

of the body by mimicking leukocyte rolling and extravasation [114–117]. In one particular 

example [114], PECAM-1 targeted nanocarriers and PECAM-1/Intracellular Adhesion 

Molecule-1 (ICAM-1) targeted nanocarriers were used to target endothelial cells in vitro and 

in vivo, facilitate endocytosis, and deliver a model therapeutic cargo in control and in 

inflammation-induced disease-like conditions. Although not directly related to the role of 

PECAM-1 as an ITIM-domain containing inhibitory receptor, these data demonstrate that 

PECAM-1-mediated cellular events can be manipulated for medicinal benefit.

3.3. CD200R

Another inhibitory immune receptor is CD200R which associates with its only established 

ligand, CD200, to transmit an immune inhibitory signal [118]. CD200 is widely distributed, 

having documented expression on thymocytes, T cells, B cells, dendritic cells, endothelium, 

hair cells, in neurons of the central nervous system, and cells in the retina and optic nerve 

[119,120]. The current model in the literature is that CD200 lacks intracellular signaling due 

to its short cytoplasmic tail and its only established purpose is to bind and activate CD200R 

[121]. The expression of CD200R is restricted to macrophages, granulocytes, dendritic cells, 

T cells, B cells, and natural killer cells [122–124]. The CD200–CD200R interaction has 

been well-characterized to inhibit the activation of myeloid cells as a way of exerting its 

immune inhibitory effects [125–128]. Although often grouped with immune inhibitory 

receptors bearing cytoplasmic ITIM domains, CD200R lacks a classical ITIM domain but 

rather has three tyrosine residues that may be important for its inhibitory functions [74]. In 

humans, the most membrane distal tyrosine residue is located within a phosphotyrosine-
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binding (PTB) domain recognition motif (NPXY) which has been shown to facilitate the 

majority of the intracellular signaling [129,130]. Interestingly, human, mouse, rat, and cow 

CD200R lack a classical ITIM, while chicken CD200R contains a classical ITIM sequence 

(NVIYNSV) [123,125,131], suggesting that mammalian CD200R may have evolved from 

an ITIM-bearing receptor [132].

CD200 binding to CD200R triggers rapid tyrosine phosphorylation events mediated through 

the distal most PTB domain of CD200R, leading to the phosphorylation of downstream of 

tyrosine kinase (Dok) 1 and Dok2 [128,130,132]. Subsequently, Dok2 is involved in 

recruiting Ras GTPase-activating protein (RasGAP) and SHIP to facilitate downstream 

signaling. RasGAP can directly inhibit extracellular signal-related kinase (ERK) activity, 

while SHIP is presumably involved in inhibiting p38 mitogen-active protein kinase (MAPK) 

and Jun amino-terminal kinase (JNK), because their activity is independent of RasGAP. 

Although the definitive signaling pathways are still under investigation CD200R ligand 

binding clearly decreases the activity of the above MAPKs [130]. Initially, Dok1 was 

thought to play a complementary role to Dok2 to inhibiting the immune response, until 

recently it was suggested that Dok1 and Dok2 have opposing roles in regulating the immune 

response. Dok1 which is activated by a separate phosphotyrosine residue on CD200R, 

complexes with CT10 sarcoma oncogene cellular homologue-like (CrkL) to inhibit Dok2 

phosphorylation. This facilitates a negative feedback loop preventing the activation of 

RasGAP, thereby preventing Dok2-mediating immune cell inhibition [133].

In many aspects the CD200-CD200R system is most similar to the CD47-SIRPα system. 

Similar to CD47, CD200 is overexpressed in many cancers as a mechanism to avoid 

immunosurveillance detection by CD200R-containing leukocytes [134–138]. In addition, 

CD200 homologs have been detected in many parasites, bacteria, and viruses as a way to 

prevent immune recognition of infected cells [139–144]. Age and/or disease-related 

decreases in CD200 has been shown to be involved in chronic inflammation, particularly in 

the brain where it may play a role in the development of multiple neurodegenerative 

diseases [121]. This observation coupled to the notion that CD200 is considered an .“off.” 

signal for many immune cells presents the possibility that CD200 could be used as a 

therapeutic intervention whenever inhibition of immune cell activity would be instrumental 

in facilitating a positive physiologic outcome. Although research is limited on using CD200 

as a therapeutic, some laboratories have focused on using CD200 blocking antibodies to 

prolong the survival of renal and cardiac allografts [145], decrease inflammation associated 

with arthritis [146], various autoimmune diseases [147], and a subset of cancers involving 

upregulated CD200 [148]. A soluble form of the CD200 protein has been shown to reduce 

microglia markers of neuroinflammation when injected into the hippocampus of aged or 

lipopolysaccharide-treated rats suggesting that CD200 can be used as an anti-inflammatory 

agent [121,149]. A study that was just published investigated the potential of using CD200 

as an anti-inflammatory agent on biomaterials [150]. The authors generated biotinylated 

CD200 and immobilized it onto streptavidin-coated polystyrene surfaces as a model 

biomaterial. Their in vitro analysis demonstrated decreased macrophage inflammatory 

activation and decreased macrophage secretion of TNFα and interleukin-6 (IL-6) compared 

to control and streptavidin-coated polystyrene surfaces. To demonstrate that the decreased 
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macrophage activation was specifically due to their interaction with CD200, blocking 

antibodies against CD200 were used, which resulted in increased inflammatory responses 

compared to control surfaces. Given the encouraging nature of their in vitro data, the authors 

also examined the effects of CD200 on polystyrene microbeads injected subcutaneously into 

mice. Tissue surrounding the injected microbeads was analyzed 24 h post implant for 

makers of inflammation. The CD200-coated microbeads exhibited significantly less 

infiltrated cells and ROS compared to control and streptavidin-coated beads, supporting 

their in vitro analyses [150]. To our knowledge this is the first article of its kind to 

conclusively document the anti-inflammatory capacity of CD200 on biomaterials and 

support the notion that modulating the immune response to biomaterials will likely provide 

the best route to biocompatibility.

4. ITIM Receptors and the Adaptive Immune Response: Implications for 

Biomaterials

Although the response to biomaterial surfaces is largely dictated by innate immune 

mechanisms and the physical-chemical surface properties of the individual material, there is 

a growing interest into the adaptive immune response to clinically relevant biomaterials. 

Briefly, the adaptive immune response is largely defined by the response of T and B 

lymphocytes to specific antigens. Many biomaterials, such as self-assembling peptide 

nanofibers, decellularized tissue, and multilaminar vesicles [151] are able to elicit an 

antibody response. As interest in the use of certain biomaterials for vaccine development is 

growing, the ability of a biomaterial to elicit an immune response may be desired. However, 

for many applications the establishment of a bioactive biomimetic surface is desirable.

As shown in Table 1, T and B cells express several ITIM family members. B cell activation 

and proliferation are controlled in part by several ITIM-containing molecules including 

FcγRIIB, CD22, CD72, and PECAM-1. As such, these proteins could be potential 

therapeutic targets in preventing allograft rejection. For example, Fibrinogen-like protein 2 

(FGL2) binding to FcγRIIB results in immune suppression [152]. Thus, a FGL2 

functionalized surface may confer immunotolerance to those implanted materials where 

immunogenicity is a concern.

Cytotoxic T lymphocyte associated antigen-4 (CTLA-4) is one of the few ITIM-containing 

receptors, related to adaptive immunity, that has been studied within the context of 

biomaterials research [153]. A study looking at dendritic cell (DC) maturation as a function 

of the surface of self-assembled monolayers (SAMs) presenting various end group 

chemistries (–OH, –COOH, –CH3, or NH2), showed that –CH3 modified SAMS attained the 

least level of DC maturity, which coincides with an increased immune response. The study 

also observed an increased level of CTLA-4 on T cells following –CH3 SAM exposure. 

These observations may begin to define CTLA-4 as a potential mediator for inhibiting the T-

cell responses to biomaterials.

Programmed death-1 (PD-1), is expressed in activated T cell, B cells, mast cells and 

monocytes. When bound to its ligands, PD-L1 and PD-L2, PD-1 delivers an inhibitory 

signal that has been shown to inhibit the immune response. Targeting PD-1 has been the 
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focus of several laboratories that investigate graft vs. host disease (GVHD). As such, 

research into PD-1 as a therapeutic target to mask implanted synthetic surfaces may be a 

viable strategy. Research into the identification and characterization of ITIM-containing 

proteins that regulate the adaptive immune response to biomaterials is still in its early stages. 

However, it remains an important unmet need in pharmacology and organ transplantation as 

knowledge regarding ITIMs in this capacity can be used to improve vaccine delivery 

systems as well as direct therapeutic strategies to mitigate the GVHD in allograft and 

xenograft transplanted tissue. Fortunately, laboratories [151,154,155] have increasingly 

began to investigate the effect of biomaterials upon T-cell and B-cell function and 

advancements in the field seem likely.

5. Limitation of ITIM-Based Therapeutics

The major limitation of functionalizing biomaterials with ITIM receptor ligands is that they 

are still fairly uncharacterized and a relatively understudied area of the immune system. 

Thus far, the interaction between SIRPα and CD47 is the only characterized ITIM 

interaction that has been applied as a functionalized coating on implantable polymers and 

our understanding of this system is still in its infancy. However, the same limitations for 

other bioactive strategies apply to the use of ITIM domains as well. First, no surface 

modification strategy characterized thus far has been shown to completely prevent protein 

adsorption, a common problem associated with blood contacting surfaces and an initiating 

step of the material induced inflammation. Therefore, protein adsorption will still likely be 

an issue with ITIM-based strategies. Second, over time the coating can become denatured or 

removed due to the interaction between host tissue and the material. Once the coating is 

removed, the material will elicit an inflammatory response. Third, the attachment method 

used to functionalize the material surface can hinder the bioefficiency of the implanted 

material. Ultimately, the bioactive immune inhibitory strategy must preserve the efficacy of 

the device itself while attenuating the inflammatory response. These limitations will need to 

be addressed universally for any bioactive coating to be effective.

A limiting factor to targeting ITIM-bearing receptors using their cognate ligands is that they 

are limited to the inhibiting the cells which express that particular ITIM. This does not seem 

to constrain the use of the CD47-SIRPα interaction, because SIRPα is expressed on most 

cells of myeloid origin. However, if widespread immune cell expression is not seen with a 

particular ITIM, bifunctionalization with multiple ITIM-bearing receptor ligands or other 

bioactive strategies may be a viable strategy. A limitation of using any recombinant protein 

as an anti-inflammatory strategy is the cost associated with their production and the amount 

needed to functionalize surfaces. For example, modification of large scale surfaces such as 

cardiopulmonary bypass and hemodialysis tubing requires a significant amount of 

recombinant protein. Therefore, it might be more advantageous to explore the use of 

peptides in place of recombinant proteins. As previously mentioned, compared to 

recombinant proteins, peptides are generally easier to manufacture thereby lowering costs, 

peptides are more readily modifiable to facilitate surface coupling, and tend to be more 

biocompatible [94–97]. Thus, synthetic peptides, corresponding to ligands of ITIM 

expressing proteins, may be a cost-effective alternative to recombinant proteins in 

preventing material-induced inflammation on macroscale surfaces.

Slee et al. Page 12

Polymers (Basel). Author manuscript; available in PMC 2015 February 19.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



6. Conclusions

Aberrant biocompatibility of implanted biomaterials and devices are a significant burden to 

the healthcare system and account for a large proportion of post-surgical clinical 

complications [1]. Targeting the body.’s natural mechanisms of inhibiting the immune 

response is a logical way to combat inflammation caused by implantable materials. This can 

be accomplished specifically through utilizing the ITIM family and related immune 

inhibitory receptors, which are involved in attenuating the inflammatory response. Given 

that these inhibitory receptors are expressed on immune cells makes them attractive targets 

for drug design or functionalization on implantable devices. Herein, we discussed the 

potential use of a select few immune inhibitory receptors some bearing classical ITIMs and 

others with alternative signaling mechanisms in attenuating the inflammatory response. We 

detailed the potential uses for recombinant CD47, the ligand for the ITIM receptor SIRPα, 

that we believe to be the best suited for promoting long-term biocompatibility of implanted 

medical devices. The further we expand our understanding of the role that ITIM proteins 

have in fine tuning the immune response, the better suited we will be to utilize ITIM 

proteins to increase medical device biocompatibility.
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Figure 1. 
The Host Inflammatory Response to Biomaterials. The introduction of the synthetic 

surfaces, used in biomedical devices, initiates a host inflammatory response that involves the 

coordinated recruitment of pro-inflammatory cells and molecules. The initial stage of this 

process is the adsorption of blood proteins onto the material surface. This provides a high 

affinity matrix for the subsequent attachment of inflammatory cells. The population of the 

inflammatory cell type changes over time.
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Figure 2. 
CD47 binding partners. CD47 is a transmembrane protein with an N-terminal extracellular 

IgV-like domain, 5 transmembrane domains, and a short C-terminal cytoplasmic tail. Well-

characterized interactions with CD47 include: cis interactions with integrins, trans 

interactions with thrombospondin, and trans interactions with SIRPα.
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Figure 3. 
Signaling downstream of the SIRPα-CD47 Interaction. The interaction between CD47 and 

SIRPα activates the SIRPα ITIM domain via transphorylation events. This leads to the 

activation of SHP, the deactivation of myosin 2a, and initiates the depolymerization of actin 

within the immune cell. The depolymerization of actin is involved in inhibition of immune 

cell attachment and the phagocytosis of the CD47-bearing cell or biomaterial.
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Figure 4. 
Genes regulated by the CD47-SIRPα interaction. Blood exposure to CD47-functionalized 

surfaces triggers signaling cascades that result in the down regulation of genes involved in 

platelet activation, leukocyte activation, and select cytokines/chemokines, and the up-

regulation of MMP genes.
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Table 1

Representative immunoreceptor tyrosine-based inhibitory motif (ITIM) receptors expressed on T and B cells.

Receptor T or B Cell Distribution Ligand

FcγRIIB B IgG

CTLA-4 T CD80, CD86

PD-1 T PD-1 ligand 1 and 2

CD72 B Unknown

CD22 B Sialic Acid

CD66a T,B CD66, CD62E
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