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ABSTRACT

G-quadruplex (GQ) is a four-stranded DNA structure
that can be formed in guanine-rich sequences. GQ
structures have been proposed to regulate diverse
biological processes including transcription, repli-
cation, translation and telomere maintenance. Re-
cent studies have demonstrated the existence of GQ
DNA in live mammalian cells and a significant num-
ber of potential GQ forming sequences in the human
genome. We present a systematic and quantitative
analysis of GQ folding propensity on a large set of
438 GQ forming sequences in double-stranded DNA
by integrating fluorescence measurement, single-
molecule imaging and computational modeling. We
find that short minimum loop length and the thymine
base are two main factors that lead to high GQ folding
propensity. Linear and Gaussian process regression
models further validate that the GQ folding potential
can be predicted with high accuracy based on the
loop length distribution and the nucleotide content
of the loop sequences. Our study provides impor-
tant new parameters that can inform the evaluation
and classification of putative GQ sequences in the
human genome.

INTRODUCTION

The G-quadruplex (GQ) is a noncanonical DNA secondary
structure arising from two or more stacked sets of four gua-
nine (G) nucleotides (G-tetrads) interacting in a plane (Fig-

ure 1A), although three G-tetrads comprise the most com-
mon form in which the four sets of guanine triplets form
a four-stranded structure through Hoogsteen base pairing
coordinated by monovalent cations. GQ DNA can assume
various folding configurations including parallel, antipar-
allel and hybrid conformations dictated by ion conditions
and loop sequence compositions (1–4). A surge of inter-
est in the GQ structure has followed the recent findings,
suggesting its multifaceted role in key processes within the
central dogma of biology (5–12). In particular, it is hy-
pothesized that the formation of GQs modulates gene ex-
pression through a physical interaction between the GQ
structure and transcription-related protein complexes (13).
In support, recent work has confirmed the capability of
GQs to form stably within the genome (14,15). Thus, GQs
may prove to be an important component in the regula-
tion of specific genes and, as such, may serve as an ef-
fective pharmaceutical target for a wide range of diseases
(16–19). Putative GQ forming sequences are unevenly dis-
tributed throughout the human genome, with their pres-
ence increased in select gene regulatory regions, such as pro-
moters of oncogenes and immunoglobulin switch regions
(20,21). This irregular distribution highlights the challenge
in identifying functional sequences that can actually form
GQ structures in vivo.

GQ forming sequences are frequently modeled follow-
ing the pattern GGG NL1GGG NL2GGG NL3GGG, where N
can be adenine (A), cytosine (C) or thymine (T), and L1, L2
and L3 are positive integers indicating the lengths of the in-
tervening sequences that correspond to loops in the folded
GQ structure (Figure 1A) (4). We note that loops can con-
tain G bases, although we do not consider this possibility
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Figure 1. An overview of G-quadruplex structure and the NMM technique. (A) A schematic of a parallel GQ structure is depicted. The guanine–guanine
Hoogsteen base pairing between each guanine triplet is shown for the sequence GGG NL1GGG NL2GGG NL3GGG, where N denotes the nucleotide com-
ponent and L1, L2, L3 are the three loop lengths. (B) GQ folding propensity is investigated through an induced fluorescence based assay. The molecule
NMM shows a specific increase in fluorescence signal upon binding to a parallel GQ sequence. (C) A plate is filled with strong folding sequences in high
intensity, combined folding and nonfolding sequences in a lower intensity, and nonfolding sequences in low intensity.

in our current study. Typical upper limits on loop length
have been suggested to be between 7 and 9 bases within a
single-stranded DNA (ssDNA) context, but a maximal loop
length has not yet been established in a double-stranded
DNA (dsDNA) context (22–25). Even with such restricted
pattern assumptions, determining how nucleotide content
and intervening loop lengths control the GQ formation po-
tential of more than 400,000 candidate genomic sequences
remains a challenging task. This ambiguity in GQ charac-
terization complicates the identification of true GQ forming
sequences implicated in essential biological activities.

The discovery of stable genomic GQ formation coupled
with the significant number of potential GQ sequences lo-
cated within the human genome underscores the need for
new tools that can accurately predict folding propensity.
Owing to the seemingly regular pattern found in GQ form-
ing sequences, many bioinformatics studies have been con-
ducted on putative GQ sequences (26–29). Generally, these
studies simply searched for recurring patterns of putative
GQs or developed models describing folding propensity
based on GQ experiments in ssDNA. As a result, the meth-
ods may be biased toward known patterns and miss novel
GQ folding sequences. Previously, we showed that the GQ
folding propensity is substantially diminished in dsDNA
and that, unlike ssDNA, dsDNA has limited ability to form
only into parallel GQs (30). These considerations highlight
the need for a new model that can predict GQ folding

propensity specifically in a dsDNA context, which is more
representative of genomic DNA than ssDNA.

We performed a survey of systematically designed GQ
forming sequences to identify folding propensity within
a dsDNA context. The survey contained more than four
hundred putative GQ forming sequences with loops com-
posed entirely of A, C or T with total loop length rang-
ing up to 12 bp. Quantitative measurement of parallel GQ
formation was obtained by N-methyl mesoporphyrin IX
(NMM) fluorescence assay that was established in our pre-
vious work (30). The NMM intensity measurements were
complemented by single-molecule fluorescence resonance
energy transfer (smFRET) experiments, which enable direct
quantitation of molecules comprising both the GQ-folded
and unfolded populations (Figure 1B). We utilized these
complementary methods to categorize each sequence as
one of ‘strongly folding,’ ‘nonfolding’ or ‘combined’ classes,
providing a simple metric for comparing the folding propen-
sities of specific putative GQ sequences. Furthermore, by
analyzing the impact of loop lengths and compositions on
the NMM intensity measurement, we identified GQ-driving
loop parameters. These results were combined in regression
models that can predict GQ folding propensity with high
accuracy. Our GQ folding experimental platform and com-
putational models will serve as a useful reference that fa-
cilitates the investigation of potential genomic GQs in the
future.
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MATERIALS AND METHODS

Preparation of DNA

The oligonucleotide for GQ DNA strands and their com-
plements were purchased unmodified from Integrated DNA
Technologies (IDT). Each GQ strand was constructed with
a unique 18 mer overhang present on both the 5′ and 3′
ends of the GQ. Annealing of complementary DNA pairs
was conducted in a 1:1 molar ratio at 10 �M concentra-
tion for the GQ strand and its complement. Standard GQ
DNA buffer containing 20 mM Tris-HCl pH 7.5, 100 mM
KCl was supplemented with 40% (v/v) PEG 200 (Sigma
Aldrich) to induce GQ formation within the dsDNA con-
struct. Annealing was initiated by incubating samples at
95◦C for 5 min and then cooling 2◦C per min to room
temperature (24 ± 1◦C). For single molecule experiments,
the same sequences as above were purchased containing an
amine-modified thymine located 3 or 4 bases from the GQ
forming region. Constructs were labeled by incubating 10
mM Cy3 or Cy5-NHS ester (GE Lifesciences) with 0.1 mM
DNA in 100 mM sodium bicarbonate pH 8.5 buffer for 4–5
hours.

NMM GQ measurements

A final concentration of NMM 1�M (Frontier Scientific)
was mixed with 500 nM dsDNA samples in standard GQ
buffer. Final imaging conditions contained 4% PEG 200
(v/v). Samples were loaded into an optically clear 96-well
plate (Nunc), and fluorescence measurements were con-
ducted on a Gemini EM microplate reader (Molecular De-
vices). Emission measurements were taken at 609 nm while
being excited at 570 nm.

Single-molecule imaging

Single-molecule fluorescence experiments were performed
in channels made from glass coverslips on quartz slides
(Finkenbeiner). To prevent DNA–surface interactions,
slides and coverslips were coated with 97% methyl-PEG
(m-PEG-5000, Laysan Bio, Inc.) and 3% biotin PEG
(biotin-PEG-5000, Laysan Bio, Inc.). Biotinylated single-
molecule DNA constructs were immobilized to the slide
surface through biotin–neutravidin interactions (31). Imag-
ing buffer was flowed through the chamber to wash out un-
bound molecules and remove residual PEG 200. Total in-
ternal reflection microscopy (TIRF) was utilized to collect
single-molecule FRET traces. The evanescent field of illu-
mination was created with a 532-nm Nd:YAG laser. Signals
were collected by a water-immersed objective with a 550 nm
long pass filter to remove the scattered light. Donor dye sig-
nals were collected using a 630 nm dichroic mirror and a
charge coupled device camera.

smFRET traces were recorded with a 100 ms time reso-
lution and analyzed with Interactive Data Language (IDL)
to give single-molecule traces of fluorescence intensity over
time. Outputs from IDL were processed with custom MAT-
LAB scripts, which are available to download from https://
physics.illinois.edu/cplc/software/. Efficiency of FRET was
calculated as the acceptor channel intensity divided by the
sum of donor and acceptor channel intensities. Folding

populations were calculated through the removal of donor
only (Cy3) containing traces and by applying a Gaussian fit
to the peaks of FRET histograms generated from 20 fields
of view.

Experimental data

For a given sequence, three readings of NMM mea-
surements were recorded and the average intensity
value was used throughout the analysis. We repre-
sented the loop components of a GQ sequence using
the length vector (L1,L2,L3) and nucleotide content N.
For instance, (4,1,2) and N = A encodes the sequence
GGGAAAAGGGAGGGAAGGG. We only considered
the cases where all nucleotides in the loops are the same,
in order to fully characterize the rules governing these
simple, yet poorly understood cases. The total length of
intervening sequences is denoted as L = L1 + L2 + L3.
We considered combinations of L1, L2 and L3 such that L
≤ 12, and N is allowed to be A, C or T. For each N, there
are four sequences corresponding to L1 = L2 = L3 and
26 × 3 sequences corresponding to the case where exactly
two of the lengths are equal, accounting for 4 + 26 × 3
= 82 total points in which at least two of the intervening
sequences are repeated. There are a total of 138 possible
combinations of loop lengths, such that L1, L2 and L3
are distinct and L ≤ 12, but we subsampled 64 cases for
our measurements in order to reduce the dimension, as
explained in Supplementary Table S1. Thus, we have a total
number of (82 + 64) × 3 = 438 readings, corresponding
to 146 combinations of loop lengths for three different
nucleotides.

We fitted the histogram of intensity values to a mix-
ture of two or three Gaussian distributions by using the
Expectation-Maximization algorithm (‘mixtools’ package
in R) and plotted individual values using the ‘colorRamps’
and ‘calibrate’ packages in R. Categorical histograms based
on the nucleotide composition or the minimum loop length
composition were plotted, and the distribution of a given
subset of categories was compared to the rest of the cate-
gories via the one-sided unpaired Wilcoxon rank sum test.
Finally, we applied the two-sided Kolmogorov–Smirnov
test to compare the distributions of T, C and A pairwise.

Linear regression

We first applied a linear regression model of the NMM in-
tensity against the predictor variables L1, L2, L3, seqT,
seqC and an intercept term, where seqT and seqC are
indicator variables for T and C nucleotides, respectively.
Note that seq A was omitted due to the linear constraint
seq A = 1 − seqC − seqT. We then examined an alter-
native model by replacing L1, L2, L3 with minL, med L,
maxL, where minL, med L and maxL correspond to the
minimum, median and maximum of the three loop lengths.
We trained both models on all 438 sequences’ NMM inten-
sities to obtain interpretable coefficients and model predic-
tion. This analysis showed that the second model outper-
formed the first approach, and we thus used the predictor
variables minL, med L and maxL thereafter. Subsequently,
we performed 6-fold cross-validation to demonstrate that

https://physics.illinois.edu/cplc/software/
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our model is robust. We randomly partitioned the popu-
lation into 6 groups, each group containing 73 points. Us-
ing one group as test data and the remaining five groups as
training data, we computed the average coefficient of de-
termination for both test and training data. We adopted
the following definition of the coefficient of determination:

R2 = 1 −
∑n

i = 1 (yi −ŷi )
2∑n

i = 1 (yi −ȳ)2 , where ŷi is the predicted value and

ȳ = 1
n

n∑
i = 1

yi is the mean of n samples used for calculating

R2. For example, n = 365 for training data, and n = 73 for
test data. Likewise, the residual for each sample i is defined
as yi − ŷi , i.e., the difference between the observed and pre-
dicted values. The linear regression method has many ad-
vantages such as its simplicity and the interpretability of the
coefficients. However, it has the limitation of assuming lin-
earity of the response in predictor variables.

Gaussian process regression

Gaussian process regression (GPR) is a flexible nonpara-
metric regression method that does not assume linearity of
the response in predictor variables (32). A Gaussian pro-
cess f is defined on a set X by specifying that the val-
ues of f on any finite number of points in X form ran-
dom variables following a joint Gaussian distribution, with
mean 0 and fixed covariance k(x, x′) at x,x′ ∈ X. Thus,
we only need to define the covariance function k(x, x′)
in order to specify a Gaussian process; k(x, x′) is a ker-
nel that measures the similarity between inputs x and
x′. The choice of covariance function plays an impor-
tant role in model prediction, and a popular choice is the

squared exponential function: kSE (x, x′) = σ 2
f e[ −(x−x′ )2

2�2 ] +
σ 2

n δ(x, x′), where the hyperparameters σ 2
f and σ 2

n are the
variance of the process and experimental measurement, re-
spectively, � is the length scale of fluctuation and δ(x, x′)
is the Kronecker delta function. For n training data points
(xi , yi ), i = 1, . . . , n, we construct an n by n covari-

ance matrix K =
[ k(x1, x1) · · · k(x1, xn)

...
. . .

...
k(xn, x1) · · · k(xn, xn)

]
. For a test data

point x∗, we define K∗ = [k(x∗, x1) k(x∗, x2) . . . k(x∗, xn)]
and K∗∗ = k(x∗, x∗). Then, the joint distribution of the ob-
served output y and predicted output y∗ is assumed to be[ y

y∗

]
∼ N

(
0,

[ K KT
∗

K∗ K∗∗

])
, and the predictive distribution

is y∗|y ∼ N (K∗K−1 y, K∗∗ − K∗K−1 KT
∗ ). We subsequently

obtain our prediction as the mean y∗ = K∗ K−1y. The above
methods were all implemented using the GPML MATLAB
package (33).

Choice of covariance functions. A valid covariance func-
tion k(x, x′) requires the function to be symmetric and pos-
itive semidefinite. In addition, many of the widely used ker-
nels are stationary, i.e., it is a function of only the dis-
tance r = |x − x′|. Two examples of stationary covari-
ance functions are a noiseless squared exponential kSE (r ) =
e− r2

2l2 , with length-scale parameter l, and a Matérn class

kMat,ν (r ) = 21−ν

�(ν) (
√

2νr
l )ν Kν(

√
2νr
l ), with positive parameters

ν and l, and a modified Bessel function of the second kind
Kν . For half-integer ν, the Matérn function Kν is a product
of an exponentially decaying function and a polynomial,
with ν = 1

2 giving a nonsmooth process. As ν → ∞, the
Matérn function behaves similarly to the squared exponen-
tial function, which is smooth. We used different length pa-
rameters for each predictor variable, adding flexibility to the
input space.

Denoting our predictors
(minL, medL, maxL, seqA, seqC, seqT) as (x1, x2,
x3, x4, x5, x6), we defined our noiseless covari-
ance function as k ((x1,. . . ,x6), (x′

1,. . . ,x′
6))=x4 ·

x′
4 · σ 2

f,A · k
Mat,ν= 5

2
((x1, x2, x3), (x′

1, x′
2, x′

3))+x5 · x′
5 ·

σ 2
f,C · kSE((x1, x2, x3), (x′

1, x′
2, x′

3))+x6 · x′
6 · σ 2

f,T ·
k

Mat, ν= 3
2

((x1, x2, x3), (x′
1, x′

2, x′
3)), where kMat,ν(·) is

the Matérn kernel with specific ν, kSE(·) is the squared
exponential kernel, and σ 2

f,A, σ 2
f,C, σ 2

f,T each corresponds
to the variance of the process for seqA, seqC and seqT,
respectively. This combination has been derived by testing
the squared exponential and Matérn class with ν = 1

2 , 3
2 , 5

2
separately for seq A, seqC and seqT, and choosing the best
function for each nucleotide.

Estimation of hyperparameters. There are four hyper-
parameters, σ f,N,l1,N, l2,N, l3,N (the length scale for
minL, medL, maxL, respectively) for each nucleotide N,
summing to a total number of 12. A common method
to estimate a set of hyperparameters θ is by maximizing
the marginal log-likelihood log p(y | X, θ )= − 1

2 yT K−1
y y −

1
2 log|Ky| − n

2 log2π , where Ky = K + σ 2
n I and x and y are

predictor and response variables for the training data. We
also adopted this method, but implemented in two steps.
First, for each individual nucleotide, we initialized each
of l1,N,l2,N, l3,N and σ f,N to be 5, and obtained an esti-
mate by using a conjugate gradient method. Note that there
are three separate estimates for σ f,N, obtained for each of
l1,N,l2,N and l3,N, and that we let the final estimate be the
average of the three. We then initialized all 12 hyperpa-
rameters with the values obtained from the previous step
and maximized the marginal log-likelihood over all lengths
and nucleotides. This approach allows for more flexibility
in each length scale than treating each loop length with an
equal weight. Finally, we estimated σ 2

n = 18 as the empiri-
cal covariance of our replicate experimental NMM inten-
sity measurements. Supplementary Table S2 contains the
estimated hyperparameters used for fitting the entire pop-
ulation, and the same estimation method was repeated for
each cross-validation set.

RESULTS

Pilot study establishes cut-off for GQ folding

We designed a series of GQ forming dsDNA con-
structs by following the conventional pattern,
[GGGNL1GGGNL2GGGNL3GGG] as defined above
(Figure 1A). The GQ formation in dsDNA was performed
in 40% PEG condition used previously (30,34). We have ex-
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cluded the loop lengths that would not support GQ folding
based on our previous study that revealed a significantly
diminished GQ folding potential in dsDNA compared to
ssDNA (30). As a pilot study, we designed 246 sequences
that satisfied the following three conditions. First, the total
loop length, L1 + L2 + L3, was restricted to be 12 bases
or less. Second, all loops consisted entirely of only one
nucleotide, A, C or T. Third, at least two loop lengths
were of equal length. NMM was applied to each DNA in
96 well plates, and the induced fluorescence from NMM
was measured to assess the GQ folding potential (Figure
1B and C). The NMM measurement was repeated three
times per DNA and the results were highly reproducible
(average standard deviation = 18; Supplementary Data).
The NMM-based fluorescence assay allows detection of
parallel GQ structure, which is the only form of GQ that
can form in dsDNA. In our previous work, we used single
molecule FRET, Circular Dichroism (CD), NMM and
Crystal Violet-induced ensemble fluorescence measure-
ments to demonstrate that only parallel GQ can form in the
context of dsDNA. The Crystal Violet (CV) fluorescence
selectively measures antiparallel GQ formation. The GQ
folding probed by smFRET matched closely with the
NMM fluorescence, whereas the CV fluorescence showed
no signal in all sequences tested (Supplementary Figure
S1), indicating that only parallel GQ conformation can be
supported in the context of dsDNA (30). We chose NMM
over other GQ ligands, NMP, NMMDE and BRACO19
due to the lowest Kd (dissociation constant) exhibited by
NMM, although all four are highly specific to parallel GQ
structure (Supplementary Figure S2) (25). Therefore, the
NMM signal induced by potential GQ-dsDNA indicates
the degree of its GQ folding. We expect a high NMM signal
for DNA that primarily forms into a GQ, intermediate in-
tensity for a combined population of folded and nonfolded
GQs, and no signal if all DNA molecules become duplexed
(Figure 1C).

Based on the NMM intensity, we roughly categorized the
folding propensity of the 246 sequences into folding (> 254)
and nonfolding (< 254) classes by using a Gaussian mix-
ture model (Figure 2A). The Kolmogorov–Smirnov test did
not detect a statistically significant deviation of the model
from the data (two-sided p-value = 0.315), supporting the
goodness of fit. The NMM intensity cut-off of 254, esti-
mated from the transition point in the ratio of posterior
class probabilities, corresponded to 52 and 48% of the se-
quences as folding and nonfolding, respectively. In order
to check whether all three nucleotide types yield similar
NMM intensity distributions, we grouped the data by the
nucleotide content of loop sequences and plotted the empir-
ical cumulative distribution for each group (Figure 2B). The
distribution for T was clearly shifted to the right, strongly
suggesting that T loops induce a stronger GQ folding poten-
tial than A and C loops. This effect is further analyzed and
discussed below. For control measurement, the same series
of GQ sequences measured in ssDNA displayed overall en-
hanced folding potential probed by NMM (Supplementary
Figure S3).

To test the validity of NMM intensity as an accurate mea-
surement of GQ folding propensity, we performed a sm-
FRET assay on a selected subset of GQ DNA constructs
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Figure 2. Pilot study of NMM fluorescence data points and relationship
with smFRET scores. (A) The population of 246 sequences is separated
into nonfolding (blue) and folding (red) classes via the Gaussian mixture
model. Dotted line shows the marginal (total) distribution of NMM inten-
sities in the fitted mixture model. (B) The empirical cumulative distribution
functions (CDF) are plotted for three nucleotides, A (red), C (green) and
T (blue). (C) GQ folding percentage is verified through smFRET analysis
for the loop lengths (1,4,4) and (2,2,2) in all three bases, where (L1, L2, L3)
denotes the three loop lengths. High FRET populations (>0.7) correspond
to GQ folding, while low FRET populations (<0.3) represent nonfolding
sequences. (D) The graph shows the linear relationship between NMM in-
tensity (x-axis) and GQ folding percentage (y-axis) for a wide range of 13
sequences that are composed of A (red), C (green) and T (blue). Pearson
coefficient of 0.98 indicates a strong correlation between the two measure-
ments.

that represent low to high ranges of NMM intensity. Our
previous study demonstrated that NMM intensity is highly
correlated with GQ folding fraction measured by smFRET
when the loop is composed of T bases. In order to fur-
ther test whether such correlation still holds for other bases,
we performed NMM intensity measurements and smFRET
analysis on the loop sequences including the ones com-
posed of either A or C. Due to the two fluorophores at-
tached at the boundary of a GQ forming sequence, high
FRET is expected only when the GQ is folded, whereas low
FRET indicates duplexed DNA without GQ folding (Fig-
ure 2C). The histograms built from FRET values of over
3000 molecules yielded two FRET peaks corresponding to
folded and nonfolded (duplexed) GQ structures represented
by high FRET (0.8) and low FRET (0.2) peaks, respec-
tively (30). The folded fraction was calculated by obtaining
an area under the Gaussian-fitted curves on the FRET his-
togram. The resulting plot showed that the NMM intensity
was highly correlated with the smFRET-based folding esti-
mation (Pearson Coefficient of 0.98), even for the A and C
containing loops, validating the NMM as a reliable folding
probe for GQ DNA regardless of the loop sequence (Fig-
ure 2D). Consistent with the above finding, the loops com-
posed of A and C displayed substantially less folding for
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both (1,4,4) and (2,2,2) than the T loop, strongly suggesting
sequence-dependent GQ-folding propensity (Figure 2B).

Expansive coverage of candidate sequences identifies loop
length and composition dependence of folding trends

In order to further investigate the dependence of GQ-
folding trends on loop lengths and the nucleotide con-
tent, we visualized our initial data by constructing color-
weighted NMM intensity graphs. For a clear illustration of
the previously observed GQ-folding pattern, we first par-
titioned the data into three groups according to the loop
length composition. The loop lengths (L1, L2, L3) were en-
coded in a two-dimensional space, instead of three dimen-
sions, by defining the variable Z to denote the length that
is repeated at least twice, and V the remaining length. Us-
ing these two variables, the three possible permutations of
loop lengths considered were coded as (Z,Z,V), (Z,V,Z) and
(V,Z,Z) (Figure 3A). Each of these three groups were then
further partitioned into three classes based on the loop se-
quence, T, C and A, thereby visually capturing the experi-
mental NMM intensities of all 246 sequences via nine dif-
ferent subgraphs (Figure 3B). High GQ-induced NMM flu-
orescence levels were displayed in red (warm) colors, while
low intensities were shown in blue (cool) colors. The se-
quences with nucleotide T and loop pattern (V,Z,Z) are
shown in Figure 3A. This representation clearly demon-
strates an inverse relation between the intensity and mini-
mum length (minL), as shown by the similar colors for se-
quences with the same minL and the color gradient with
respect to increasing minL (red and yellow for the 14 se-
quences with minL = 1, mostly green for the 10 sequences
with minL = 2 and dark blue for minL>2). By contrast,
the correlation between intensity and total length (L) re-
mained weak, as shown by the wide fluctuation of colors for
sequences with the same L. For example, the sequences in
each group with 7 ≤ L ≤ 12 displayed colors ranging from
red to blue, providing little insight on the likelihood of a
particular group of sequences to fold.

We compared the subgraphs to further investigate the ef-
fect of nucleotide content and length distributions on the
GQ folding intensity (Figure 3B). Comparing the three rows
pairwise revealed that C and A loop compositions generally
showed a lower folding pattern than T, consistent with our
previous observation (Figure 2B and C). For example, in all
three permutations of the loop lengths (3, 2, 2), T exhibited
yellow or green colors (in the range 400 to 500), whereas C
and A displayed light or dark blue (less than 250); accord-
ing to the NMM intensity cut-off value of 254 derived in
the previous section, only the T-containing sequences were
folding in these cases, thus exemplifying the overall dimin-
ished GQ folding for C and A compared to T. Examining
the effect of loop lengths on folding, we found that the in-
verse relation between the minimum loop length and inten-
sity observed in Figure 3A was present in all groups: se-
quences with minL = 1 generally displayed high intensity,
whereas the intensity values rapidly dropped as minL in-
creased. Furthermore, even though the intensities were gen-
erally not affected by the ordering of loop lengths, we no-
ticed that for T and A, the sequence arrangements of (1,
maxL, 1) were less likely to fold than (1, 1, maxL) or (maxL,

1, 1), as the 10 data points along the left-most vertical line
in the (Z, V, Z) column exhibited cooler colors than those
in the (V, Z, Z) and (Z, Z, V) columns. Likewise, the dimin-
ished intensity of five data points along the bottom-most
horizontal line of the (Z, V, Z) column indicated that (maxL,
1, maxL) was less likely to fold than (1, maxL, maxL) and
(maxL, maxL, 1) for all T, C and A loops.

In order to test and validate our observations from the
initial data, we next expanded the study design to include
sequences with unique loop lengths in all three positions,
while keeping the total loop length at 12 base pairs or less.
Of 138 such possible combinations, we chose 64 combina-
tions for each nucleotide by selecting every other point in
each of 7 unique combinations of minL and medL in the
ordered list (Supplementary Table S1). This choice allowed
us to reduce the number of new cases by roughly half, yield-
ing a total of 246 + 64 × 3 = 438 sequences. When applied to
the NMM fluorescence assay, the new 192 data points with
unique loop lengths yielded an intensity distribution pat-
tern that differed from the first 246 pilot DNA sequences
tested above. Instead of the bimodal distribution seen in
the previous pilot data (Figure 2A), the new set of DNA
displayed a broad single peak centered around 300 (Figure
4A). This difference is likely due to the change in the distri-
bution of loop lengths for the new sets of DNA. The loops
in the pilot DNA were constrained to possess at least two re-
peated lengths, while the loops in the new design had unique
lengths in the three positions. As a result, the two sets had
similar minimum loop length distributions and significantly
different median and maximum loop length distributions
(Two-sided Kolmogorov–Smirnov test p-value = 0.0044,
2.4 × 10−11, 5.66 × 10−15for minL, medL, maxL, respec-
tively; Supplementary Figure S4). Compared to the pilot
data, the new set contained a substantially higher fraction
of sequences with long medL and maxL loop lengths, likely
contributing to the broad peak in the mid-to-low range of
NMM intensity. We subsequently confirm this hypothesis
using regression models. When the data were grouped by
individual bases, we again observed the highest GQ fold-
ing potential for T, followed by C and A (Figure 4B). The
same set of data analyzed by the colorimetric mapping still
followed the same trend as previously observed: short minL
and nucleotide T both led to high folding propensity (Sup-
plementary Figure S5). Hereafter, we used this comprehen-
sive data set to verify our observations using rigorous sta-
tistical methods and to devise predictive regression models
applicable to a general set of sequences.

GQ folding depends on minimum loop length and nucleotide
T

As an initial means to understand the combined data set,
we first categorized the 438 experimentally generated NMM
intensity values into three classes based on a mixture of
three Gaussian distributions fitted via the Expectation-
Maximization algorithm (Figure 5A). This partitioning was
based on the two peaks observed in pilot data (Figure 2A)
and the third peak in the second data set (Figure 4A),
and the two-sided Kolmogorov-Smirnov test p-value of 0.88
confirmed a good model fit. Comparing the ratios of pos-
terior class probabilities suggested the following three GQ
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folding categories: (1) Intensity < 151 for nonfolding, (2)
151 < Intensity < 412 for combined folding and nonfolding,
and (3) Intensity > 412 for strong folding. Each of the non-
folding, combined and strong folding categories contained
31, 39 and 30% of the data, respectively.

Using the above threshold values as a guideline, we in-
vestigated the role of loop nucleotide content on folding.
The three nucleotide-specific histograms of NMM intensity
clearly showed that sequences containing T had a greater
tendency to fold than those containing C or A (one-sided
unpaired Wilcoxon rank sum test p-value = 4.3 × 10−13

for sequences containing T versus those containing C or
A; Figure 5B). Moreover, the overall distribution for T

was significantly different from that for C or A (two-sided
Kolmogorov-Smirnov (KS) test p-value = 2.8 × 10−7 and
2.008 × 10−9 for C and A, respectively; Supplementary Fig-
ure S6), while the distribution for C was not significantly
different from that for A (two-sided KS test p-value = 0.13;
Supplementary Figure S6). We note that the sequence de-
pendence shown here is not due to the thermal stability of
the GQ forming fragments with different length of GC con-
tent. Examining the melting temperature (Tm) for all 438
GQ sequences used in this study shows that the sequences
containing C have, on average, approximately 15◦C higher
Tm than the sequences containing either A or T, demon-
strating that the similar level of GQ forming potential be-
tween A and C-containing sequences and the increased GQ
forming potential seen only in the T-containing sequences
cannot be explained by the duplex stability of GQ DNA
(Supplementary Figure S7).

The three loop lengths L1, L2 and L3 have been previ-
ously proposed to modulate GQ folding, but the rule gov-
erning their effect remains unknown (6,23–25,35–36). In-
spection of the intensity plots in Figure 3 revealed that an in-
formative feature was the minimum of loop lengths (minL).
Indeed, the intensity histograms plotted for different minL
values showed that the sequences with minL = 1 spanned
all three folding categories, although slightly skewed to-
wards the strong folding region, those with minL = 2 were
either nonfolding or combined, and those with minL > 2
were mostly nonfolding (one-sided unpaired Wilcoxon rank
sum test p-value < 2.2 × 10−16 for minL = 1 versus minL
>1; Figure 5C). The NMM intensity thus decreased dra-
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matically as the minimum loop length increased, suggesting
that transforming the loop lengths L1, L2 and L3 to order
statistics minL, medL and maxL may help predict GQ in-
tensity. Our regression models in the subsequent section ex-
plores this transformation, after attempting a simpler linear
fit with L1, L2 and L3.

Regression models predict GQ folding propensity

To learn how GQ folding propensity depends on the char-
acteristic features of intervening loops, we first fitted the
experimental NMM intensities using a linear regression
model with the following five predictor variables: L1, L2,
L3, seqT and seqC. The seqT and seqC are indicator
variables for the T and C nucleotides, respectively, and
seq A = 1 − seqT − seqC is omitted due to its linear de-
pendency on seqT and seqC. Training on all 438 sequences,
we obtained an R2 value of 0.35, implying that our model
could predict only 35% of the total variance in NMM in-
tensities. By transforming the three loop lengths to the
order statistics minL, medL, maxL, our R2 value signif-
icantly improved to 0.80. Thus, our subsequent analyses
are based on this transformation. The predicted mean in-
tensity was ŷ = 679 + 149seqT + 27seqC − 147minL −
74med L − 4maxL. Among the regression coefficients, the
two largest magnitudes corresponded to seqT and minL,
confirming that the two main driving factors of GQ folding
are the T loop composition and the minimal loop length. By
contrast, seqC and maxL had the smallest magnitudes and

had the least significant p-values of 0.008 and 0.125, respec-
tively, suggesting that they both do not contribute substan-
tially to folding. The fact that the coefficient for seqC was
relatively small also indicated that there was very little dif-
ference between A and C nucleotides. By contrast, the effect
of T on folding was more than 5-fold greater than that of C.
These results are consistent with the similarity in intensity
distribution between C and A, and the distinction from T
previously detected by the Kolmogorov–Smirnov Test (Sup-
plementary Figure S6).

To test the generalizability of our model, we performed
6-fold cross-validation. The dataset of 438 points was ran-
domly partitioned into 6 groups, and each group was tested
using parameters trained from the remaining 5 groups. As
a result, we obtained an R2 value of 0.796 ± 0.005 for the
training set and a comparable value of 0.784 ± 0.023 for the
test set, supporting that our model is robust. We plotted the
average absolute values of residuals, defined as the differ-
ence between the observed and the predicted values, in order
to visualize how well the model fits each data point (Supple-
mentary Figure S8). Despite the simple nature of our model,
most of our predictions did not deviate substantially from
the observed true values, as indicated by the overall blue
colors (|residuals| < 150). There were, however, some out-
lier data points for A and C nucleotides showing a poor fit
when at least two lengths were repeated. Moreover, the most
critical issue for all nucleotides was that the points (1, 1, 1),
(2, 2, 2), (3, 3, 3) and (4, 4, 4) had large absolute residuals,
most likely due to nonlinear behaviors of their intensities. In
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order to improve our prediction accuracy, especially at these
outlier points, we developed a Gaussian Process Regression
(GPR) model.

Compared to the linear regression model’s R2 value of
0.80, the GPR model trained with the same predictor vari-
ables on all 438 sequences (Methods) showed a substantial
improvement to R2 = 0.92. Six-fold cross validation using
the same partition groups from the linear regression analy-
sis yielded R2 = 0.918 ± 0.002 for training and R2 = 0.878
± 0.039 for test data, which, on average, improved the lin-
ear model results by 0.12 and 0.09, respectively. To visual-
ize the overall performance of the GPR method and com-
pare it with that of the linear model, the average absolute
values of residuals for GPR were again plotted (Supple-
mentary Figure S9; cf. Figure S8). The plot was generally
cooler than Figure S8, especially at the data points that were
problematic with the linear regression approach, e.g., the
A-containing sequences with loop lengths (1, 1, maxL) and
(2, 2, maxL). Additionally, we observed significant improve-
ments in predicting (1, 1, 1), (2, 2, 2), (3, 3, 3) and (4, 4, 4)
for all nucleotides, thus addressing the major difficulties en-
countered in the linear model. Overall, the only data points
with large prediction errors were (2, 2, 2) for sequence T,
and (1, 8, 1) and (2, 2, 2) for A, with absolute residuals of
∼200, compared to the rest being less than 100.

Although GPR does not directly provide easily inter-
pretable coefficients as in linear regression, the estimated
hyperparameters do confirm our findings from the linear
model (Supplementary Table S2). For the squared exponen-
tial and Matérn class covariance functions, the length pa-
rameter l controls the effect size of the difference in the cor-
responding predictor variable, and its large value suggests
that the response variable is not very sensitive to the corre-
sponding feature. Consistent with the linear regression re-
sult, we observed that the length parameters l1,A, l1,C, l1,T
for minL were shorter than those for maxL, implying that
the intensity depended on minL more than on maxL, with
the effect being most notable for the T nucleotide.

DISCUSSION

We have developed a simple model that can explain the GQ
folding potential of a large set of dsDNA sequences. The
model is based on studying the distribution of NMM in-
tensity values measured in over 400 putative GQ sequences;
this comprehensive sampling spans the potential folding
space of loop parameters that cover the generally accepted
range of GQ folding sequences. Our results suggest that the
most significant composition property that facilitates GQ
folding in dsDNA is the minimum loop length. For exam-
ple, sequences with minimum loop length (minL) of 1 con-
stitute 63 and 97% of the combined and strong folding pop-
ulations, respectively, implying that those with minL longer
than 1 are not as likely to fold into GQ (Figure 5C). This
result is consistent with the finding from a recent in vivo
study that GQs containing at least one loop length of 1
are preferentially associated with genomic replication errors
(36). Furthermore, there is a significant folding propensity
bias among base compositions, with T promoting the high-
est level of GQ formation. Our computational predictive
models based on the order statistics of loop lengths and

sequence compositions accurately capture these rules, and
cross-validation shows that these models can predict unseen
GQ forming sequences with high accuracy.

Our regression model is based on the order statistics of
loop lengths and thus assumes that the folding propensity
is invariant under the permutation of loop lengths. How-
ever, a recent study suggests that having a long middle
loop may disfavor folding; specifically, it is shown that the
(1,maxL,1) configuration has reduced GQ folding poten-
tial compared to the shuffled configurations (1, 1, maxL)
and (maxL, 1, 1) (36). Our NMM data also exhibits slightly
diminished intensities for (1, maxL, 1) compared to (1, 1,
maxL) and (maxL, 1, 1) for nucleotides T and A, but not for
C. Similarly, in our experiments, the configuration (maxL,
1, maxL) exhibits lower intensities than (1, maxL, maxL)
and (maxL, maxL, 1) for all nucleotides. These two cases
suggest that our model assumption of permutation symme-
try may not hold for some GQ sequences and may lead to
prediction errors (Figure 3B). In order to investigate the im-
pact of rearranging loop lengths on folding potential, one
can decompose the NMM intensities into Fourier modes
that are basis functions defined on the six permutations of
(minL, medL, maxL) (Supplementary Method S1); this ap-
proach mathematically characterizes the dominant fluctu-
ating behavior of NMM values on permutation elements
(Supplementary Figure S10, Supplementary Table S3). Im-
plementing this analysis shows no consistent pattern for
192 sequences containing unique loop lengths, but uncovers
the pattern previously observed for sequences with repeated
loop lengths (36). That is, the Fourier decomposition of
NMM intensities identifies two dominant modes that com-
bine to reduce intensity in the (1, maxL, 1) configuration
for T and A––but not for C––nucleotides (Supplementary
Figure S11; one-sided unpaired Wilcoxon rank sum test for
{(1, 1, maxL), (maxL, 1, 1)} versus {(1, maxL, 1)} p-value =
7.8 × 10−4, 0.705, 0.003 for T, C, A, respectively). A similar
analysis finds reduced folding potential in (maxL, 1, maxL)
compared to its permuted configurations for all nucleotides
(Supplementary Figure S12; one-sided unpaired Wilcoxon
rank sum test for {(1, maxL, maxL), (maxL, maxL, 1)} ver-
sus {(maxL, 1, maxL)} p-value = 0.002 for all T, C, A).
However, our data and mathematical analysis clarify that
these patterns of reduced folding potential do not general-
ize to sequences with minimum loop length greater than 1.

We note that the interpretation of our result may be lim-
ited by several factors. In terms of the experimental setup,
the DNA constructs used in the study lacks supercoiling
that may exist in genomic DNA. Additionally, we employ
PEG mediated folding condition for inducing GQ forma-
tion in dsDNA (34), which may have promoted or dimin-
ished the GQ formation. In terms of computational meth-
ods, even though our two regression models can predict GQ
folding propensity with high accuracy, both models have
limitations. First, our models, as they currently stand, can-
not be directly applied to sequences that contain any gua-
nine bases in a loop, because of the ambiguity in assigning
guanines to either a loop or G-tetrads. Second, our mod-
els have been validated only on sequences with a single uni-
form base composition in the loops. For sequences contain-
ing more than one type of base, it may require modeling not
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only the concentration of each nucleotide, but also the spe-
cific ordering of the nucleotides. Thus, future research direc-
tions include developing a predictive model that can handle
sequences with intervening loops consisting of a combina-
tion of A, C, G and T. For such a set of complex sequences,
the flexibility of Gaussian process regression will likely pro-
vide additional advantages over the linear regression ap-
proach. As an important step towards achieving these goals,
our work provides a reliable experimental and computa-
tional framework that greatly reduces the search space for
potential GQ forming sequences and quantitatively predicts
the likelihood of folding for a broad range of candidate se-
quences.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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