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Substance abuse is a chronic, relapsing disorder characterized by compulsive drug use regardless of neg-
ative consequences. Incremental increases in pregabalin abuse have been observed in Saudi Arabia and
throughout the world. In previous studies, the potential for pregabalin abuse with escalating doses of
the drug (30, 60, 90, and 120 mg/kg) were investigated in male mice. Notably, researchers have argued
that women may exhibit a greater tendency to consume drugs without a prescription to alleviate stress
and depression. Moreover, female subjects are more prone to impulsivity in drug intake or abuse than
their male counterparts. Therefore, in the present study, we compared the potential for pregabalin abuse
between male and female mice using a conditioned place preference paradigm. Male and female BALB/c
mice were divided into four groups based on the pregabalin dose administered (30, 60, 90, or 120 mg/kg,
intraperitoneal). Preference scores were then calculated and compared between male and female mice in
each dosage group. Interestingly, preference scores were significantly higher in female mice than in male
mice at dosages of 30 and 120 mg/kg. These findings indicate that female mice may be more prone to
pregabalin abuse and tolerance than male mice. These results might be helpful to the healthcare provi-
ders and policymakers to consider these sex differences in choosing therapeutic plans and consider alter-
natives to the misused prescription medications.
� 2020 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction
Drug addiction is a major health problem worldwide. While
previous reports have documented addiction to various substances
of abuse such as amphetamine, heroin, alcohol, and cannabis in
Saudi Arabia (Bassiony 2013), more recent studies have revealed
a progressive increase in the abuse and misuse of prescription
drugs (Maier and Schaub 2015, Brady et al., 2016, Schifano et al.,
2018). Among the most abused drugs in recent years is prega-
balin—a gamma-aminobutyric acid (GABA) analog that binds to
the alpha-2 delta protein in presynaptic voltage-dependent cal-
cium channels (Carmeliet and Jain 2011). Pregabalin is used in
the treatment of several diseases including generalized anxiety
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disorder, partial epilepsy, fibromyalgia, postherpetic neuralgia, and
diabetic neuropathy (Boschen 2011, Feltner et al., 2011, Pexton
et al., 2011). Despite extensive research to suggest that misuse of
pregabalin has increased considerably in the United States and
Europe (Al-Husseini et al., 2018, Evoy et al., 2019), factors influenc-
ing pregabalin addiction remain to be fully elucidated.

Although addiction affects both men and women, several stud-
ies have reported sex-based differences in the ways in which it
modulates various neurotransmitter systems in the brain (Lynch
2006, Becker and Hu 2008, Becker and Taylor 2008, Becker et al.,
2012, Bobzean et al., 2014). Accumulating evidence demonstrates
that sex-related differences impact all phases of drug abuse,
including initiation, escalation, addiction, and relapse following
abstinence (Etten et al., 1999, Van Etten and Anthony 2001,
Lynch et al., 2002, Carroll et al., 2004). While these differences
may vary among certain classes of misused drugs, they are largely
similar for all drugs of abuse (Becker and Hu 2008).

Cumulative evidence suggests that women tend to abuse drugs
at lower doses than men, although their risk of relapse is higher
following abstinence (Becker and Hu 2008, Ruda-Kucerova et al.,
2015). Additional studies have reported that women are more
likely than men to abuse cocaine, opioids, marijuana, and alcohol
(Brady and Randall 1999, Randall et al., 1999, Hernandez-Avila
et al., 2004). Drug dependence also appears to be more difficult
to reverse in women than in men (Lynch et al., 2002, Back et al.,
2005, Breese et al., 2005, Carpenter et al., 2006). However, the
overall percentage of women engaging in drug abuse is lower that
reported for men (Becker and Hu 2008). Despite this trend, the
number of women using and abusing both prescription and illegal
drugs has increased in recent years (Becker and Hu 2008).
Researchers have suggested that these phenomena may be due
to the more profound effects of drug abuse/dependence among
men than women, and that sex-based differences in drug abuse
may reflect variations in opportunity rather than vulnerability
(Etten et al., 1999, Van Etten and Anthony 2001).

The influence of sex on drug abuse has been investigated in
both humans and animal models for many years (Cailhol and
Mormede 1999, Etten et al., 1999, Lynch and Carroll 1999).
Recently, we observed pregabalin preference in male mice utilizing
the conditioned place preference (CPP) paradigm (Althobaiti et al.,
2019). The conditioned place preference (CPP) paradigm is widely
used as a tool to explore the reinforcing effects of many condition-
ing stimuli including drugs of abuse (Tzschentke 2007). This para-
digm has been used to explore different pharmacological and
genetical manipulation and its role in animal behaviors (McBride
et al., 1999, Sakoori and Murphy 2004, Müller et al., 2007, Brown
et al., 2008). The conditioning process includes a series of repetitive
sessions in the drug paired chamber in order to build an associa-
tion between the rewarding/reinforcing stimuli and the chamber
cues (Cunningham et al., 2006, Tzschentke 2007, Aguilar et al.,
2009). There are some advantages using the CPP over other models,
such as CPP paradigm does not require surgical procedure which
minimizes the amount of stress and discomfort in animals (Carr
et al., 1989). However, to the best of our knowledge, no published
studies have directly compared pregabalin preference between
male and female mice using the CPP paradigm. Therefore, in the
present study, we investigated the potential impact of sex differ-
ences on pregabalin-seeking behavior in BALB/c mice.
2. Materials and methods

2.1. Animals

Male and female BALB/c mice weighing 25–30 g were pur-
chased from King Fahd Medical Research Center (Saudi Arabia).
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The mice were placed under a 12-h light/dark cycle in a tempera-
ture and humidity controlled enviroment. Mice were allowed ad li-
bitum access to food and water throughout the experiments. Mice
were acclimated to the environment for 7 days prior to any exper-
iments. The experimental procedures of the present study were
approved by the ethical committee of our institution, in accordance
with the guidelines issued by the Institutional Animal Care and Use
Committee of the National Institutes of Health.

2.2. Drugs and animal dosing

Pregabalin was obtained from Jamjoom Pharmaceuticals (Jed-
dah, Saudi Arabia), following which it was diluted in 0.9% NaCl.
Mice were randomly divided into four groups, each of which
included six males and six females. Each group received a fixed
dose of pregabalin, as follows: group 1 (30 mg/kg, intraperitoneal
(i.p.)), group 2 (60 mg/kg, i.p.), group 3 (90 mg/kg, i.p.), and group
4 (120 mg/kg, i.p.). Animals were injected with pregabalin one day
and vehicle the next during the conditioning phase, resulting in
four days of pregabalin treatment and four days of vehicle treat-
ment. Following the conditioning phase, we investigated place
preferences among mice in each group (Fig. 1A). The doses of 30,
60, 90 and 120 mg/kg/day, which are small as compared to the
LD50 of pregabalin in mice (>5000 mg/kg), were selected based
on our previous work and others (Andrews et al., 2001,
Althobaiti et al., 2019). In these previous studies, the dose of
30 mg/kg did not induce any rewarding effects in male mice, so
in our previous work, we have increased the dose to 60, 90, and
120 mg/kg (escalating doses) (Althobaiti et al., 2019). We chose
the 8-day treatment as we did in our previous studies. In addition,
the estrous cycle length in most laboratory mice is 4–5 days and
the experiment performed here was 12 days long, so mice likely
went through 2–3 estrous cycles during this period.

2.3. CPP paradigm

The CPP device consisted of two conditioning chambers of iden-
tical size (35 cm � 35 cm � 50 cm) and one start box
(10 cm � 15 cm � 10 cm) located outside of the CPP apparatus,
as previously described (Althobaiti et al., 2019). The inside walls
of chamber 1 were white with horizontal black lines, the walls
were textured, and the floor was perforated with round holes.
The inside walls of chamber 2 were black with vertical white lines,
the walls were smooth, and the floor was perforated with rectan-
gular holes. The habituation phase (days 1 to 3) and condititioning
phase (days 4 to 11) were performed as previously described
(Althobaiti et al., 2019).

On day 12 (post-test), mice were permitted to enter the condi-
tioning chambers freely for 30 min, and the time spent in each
chamber was recorded using the ANY-maze video tracking system
(Stoelting Co; IL, USA). Preference scores were then calculated
based on the time spent in each chamber during the pre- and
post-tests, as follows: Preference score = time spent in
pregabalin-paired chamber – time spent in saline-paired chamber.

2.4. Statistical analysis

Unpaired t-tests were used to compare preference scores
between males and females. GraphPad Prism was for all analyses,
and the level of statistical significance was set to p < 0.05.
3. Results

Unpaired Samples t-tests were used to compare preference
scores between male and female mice during the pre-test, as



(A) 

(B) 

Fig. 1. (A) Experimental design of the conditioned place preference (CPP) paradigm. (B) Baseline preference scores for all female and male mice prior to any treatments. No
significant differences in preference scores were observed between female and male mice at baseline. (Note: All values are presented as the mean ± standard error of the
mean (S.E.M.) (n = 6 mice/group).
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shown in Fig. 1B. There were no significant differences in prefer-
ence scores between female (M = 5.267) and male mice
(M = 6.779) at this stage (t(46) = 0.01993, p = 0.9842).

As shown in Fig. 2A, an unpaired Samples t-test revealed signif-
icant increases in preference scores among female mice in the
30 mg/kg group (M = 356.8), when compared to those observed
for male mice (M = 254.4) (t(10) = 3.223, p = 0.0091). However,
no significant differences in preference scores were observed
between male (M = 331.8) and female mice (M = 418.4) following
treatment with 60 mg/kg of pregabalin (t(10) = 1.302, p = 0.2221)
(Fig. 2B). Similar results were observed when mice were treated
with 90 mg/kg of pregabalin (females, M = 533.6; males,
M = 572.8; t(10) = 0.1596, p = 0.8764) (Fig. 3A). Interestingly, pref-
erence scores were significantly higher in females (M = 874.3) than
in males (M = 253.4) following administration of 120 mg/kg of pre-
gabalin (t(10) = 3.203, p = 0.0094) (Fig. 3B).
4. Discussion

In this study, we investigated the potential impact of sex differ-
ences on pregabalin-seeking behavior in BALB/c mice. Preference
scores for the pregabalin-paired chamber were significantly higher
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among female mice than among their male counterparts at doses
of 30 and 120 mg/kg. Previous study reported that pregabalin
induces place preference in a mouse model of drug addiction
(Althobaiti et al., 2019). However, in most previous studies, the
maximum dose used to examine the rewarding effects of prega-
balin was 30 mg/kg—a small dose that may fail to induce any
rewarding effects or place preference (Andrews et al., 2001,
Rutten et al., 2011). For example, Andrews et al. reported that
increasing pregabalin to 30 mg/kg did not induce any place prefer-
ence in male rats (Andrews et al., 2001). Consistent with these
findings, no changes in place preference among male mice at a pre-
gabalin dose of 30 mg/kg have been detected in male mice in pre-
vious study. However, pregabalin doses of 60 and 90 mg/kg
induced a significant place preference, while a dose of 120 mg/kg
did not in male mice (Althobaiti et al., 2019). This finding indicates
that the rewarding effects of pregabalin are dose-related, consis-
tent with the findings of previous clinical studies (Drug
Enforcement Administration, 2005, Lang et al., 2006, Chua et al.,
2012, Chew et al., 2014). Interestingly, in the present study, prefer-
ence scores for the pregabalin-paired chamber were significantly
higher among female mice than among their male counterparts
at doses of 30 and 120 mg/kg, although there were no significant
differences between males and females at doses of 60 or 90 mg/



Fig. 2. Mice received intraperitoneal (i.p.) injections of pregabalin (30 mg/kg,
4 days) and vehicle (10 ml/kg, 4 days) for 8 days throughout the acquisition phase,
as shown in panel (A). As shown in panel (B), mice in this group received
intraperitoneal injections of pregabalin (60 mg/kg, 4 days) and vehicle (10 ml/kg,
4 days) for 8 days throughout the acquisition phase. Subsequently, place preference
was assessed in all groups following the conditioning phase. (A) Preference scores
were significantly higher in female mice than in male mice at 30 mg/kg. However,
(B) no significant differences in preference score were observed between male and
female mice at a pregabalin dose of 60 mg/kg. (Note: All values are presented as the
mean ± standard error of the mean (S.E.M.) (n = 6 mice/group, **p < 0.01).

Fig. 3. Mice received intraperitoneal (i.p.) injections of pregabalin (90 mg/kg,
4 days) and vehicle (10 ml/kg, 4 days) for 8 days throughout the acquisition phase,
as shown in panel (A). As shown in panel (B), mice in this group received
intraperitoneal injections of pregabalin (120 mg/kg, 4 days) and vehicle (10 ml/kg,
4 days) for 8 days throughout the acquisition phase. Subsequently, place preference
was assessed in all groups following the conditioning phase. (A) No significant
differences in preference score were observed between male and female mice at a
pregabalin dose of 90 mg/kg. However, (B) preference scores were significantly
higher in female mice than in male mice at 120 mg/kg. (Note: All values are
presented as the mean ± standard error of the mean (S.E.M.) (n = 6 mice/group,
**p < 0.01).
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kg. This finding may be explained by the remarkable increases in
preference scores among male mice at the 60 and 90 mg/kg doses,
consistent with recent findings (Althobaiti et al., 2019).

Numerous research groups have utilized animal models to
investigate the influence of sex differences on drug abuse (Becker
and Ramirez 1981, Lynch and Carroll 1999, Russo et al., 2003,
Zakharova et al., 2009, Hilderbrand and Lasek 2014). Different
brain regions may play essential roles in the rewarding properties
of drugs of abuse at different points throughout the menstrual
cycle, with more stimulation occurring throughout the mid-
follicular phase when levels of estrogen are highest (Dreher et al.,
2007). Estrogen plays a crucial role in cocaine reward, whereas
progesterone can block cocaine reward in rats and humans
(Russo et al., 2008, Evans and Foltin 2010). In ovariectomized rats,
estradiol itself can express CPP (Frye and Rhodes 2006), increase
cocaine CPP (Segarra et al., 2010, Twining et al., 2013), and enhance
the sensitivity of the brain to reward (Galankin et al., 2010),
whereas the estradiol antagonist tamoxifen can block the acquisi-
tion in healthy females (Lynch 2006). In addition, previous studies
have demonstrated that the cocaine-seeking effect can be elicited
in female mice at lower doses and with fewer conditioning ses-
sions than required for males (Russo et al., 2003, Zakharova
et al., 2009). Furthermore, female rats in estrus exhibit a preference
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for a more substantial amount of cocaine than that preferred by
males or females in further phases of the estrus cycle (Lynch
et al., 2000, Lynch 2006). Moreover, individual reactions to cocaine
and d-amphetamine are enhanced during the follicular phase (i.e.,
when progesterone and estradiol levels are low) when compared to
those observed in the luteal phase (i.e., when progesterone levels
are high and estradiol levels are moderate) (Evans and Foltin
2010). Given that the estrus cycle lasts 4 to 5 days in most labora-
tory mice (Byers et al., 2012), female mice in the present study
likely completed 2 to 3 estrus cycles. As previously mentioned,
ovarian hormones may affect pregabalin reward; however, we
did not examine the estrus cycle of female mice throughout the
experiments. The vaginal lavage process may affect pregabalin
CPP results, as previous studies have suggested that it may be a
reinforcing stimulus during the proestrus and estrus cycles, which
may have in turn confounded our results (Romeo et al., 2000,
Walker et al., 2002). Taken together, however, the present and pre-
vious findings suggest that females may be more sensitive to the
addictive properties of pregabalin than males. Given that varia-
tions in levels of ovarian hormones can also influence the reward-
ing properties of pregabalin, the stage of the estrus cycle may also
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alter the experience of pregabalin-induced reward, which may in
turn influence the extent of pregabalin use in females.

Accumulating evidence has highlighted the modulatory impact
of ovarian hormones on dopamine release in the central dopamin-
ergic system (Chen et al., 2003). Estrogen is known to increase
dopamine release in the nucleus accumbens (Thompson and
Moss 1997). The classical estradiol receptors (ERs) act at the cell
membrane in the brain and mediate rapid responses to estradiol
(Becker and Hu 2008). In adult females, the influence of estradiol
in the dorsal striatum has been reported to be mediated through
ERs on medium spiny GABA neurons that lower GABA release, thus
improving the potential for dopamine release (Mermelstein et al.,
1996, Mermelstein 2009, Schultz et al., 2009, Grove-Strawser
et al., 2010). In female rats, estradiol rapidly down-regulates dopa-
mine D2 receptor binding and regulates dopamine D1 receptor
binding in the dorsal striatum, and the activation of D1 rather than
D2 receptors is known to mediate rewarding effects (Lévesque
et al., 1989, Bazzett and Becker 1994, Yoest et al., 2014). Calipari
et al. noted that estradiol may increase dopamine release in the
nucleus accumbens and basal ventral tegmental area, suggesting
that dopamine neuron activity is enhanced in female mice during
the estrus cycle, as well as an essential role of estradiol in the
reward pathway (Calipari et al., 2017). Additional studies have
reported that estradiol can block dopamine uptake, indicating that
estradiol may be responsible for increases in dopamine release,
dopamine neuron firing, and phosphorylation of dopamine trans-
porters (Calipari et al., 2017). The Mermelstein laboratory has
demonstrated that ERa and ERb in the dorsal striatum can combine
with caveolin protein in particular metabotropic glutamate recep-
tors (mGluRs) in order to regulate dopamine release indirectly
(Boulware et al., 2007, Mermelstein 2009, Grove-Strawser et al.,
2010, Meitzen and Mermelstein 2011). Collectively, our data indi-
cate that sex differences influence the expression of pregabalin
preference in mice, thus mediating direct or indirect modifications
of dopamine activity within the reward circuit. Further studies are
required to investigate the neurochemical changes that occur in
response to pregabalin, and to determine whether these changes
differ between males and females (Becker and Ramirez 1981,
BeCker and Cha 1989).

Researchers have argued that learning and memory processes
provide the foundation for the development of CPP (Hsu et al.,
2002, McIntyre et al., 2002). Ovarian hormones influence the acti-
vation of learning and memory processes, and ovarian hormone
replacement or ovariectomy in female rats has been shown to
impact the development of cocaine-induced CPP in learning and
memory tasks (Farr et al., 1995, Gibbs 2000, Johansson et al.,
2002, Russo et al., 2008). Progesterone can inhibit avoidance con-
ditioning, whereas allopregnanolone (an active progesterone
metabolite) can inhibit learning in the Morris water maze test
(Farr et al., 1995, Johansson et al., 2002). On the other hand, co-
administration of progesterone and estrogen increases the ability
to learn a spatial memory task in ovariectomized rats (Gibbs
2000). Several studies have provided evidence that hormone-
dependent alterations in dopamine and serotonin activity play
key roles in learning and memory processes (Fink et al., 1996,
McEwen et al., 1997, Bowman et al., 1999, Heikkinen et al., 2002,
Segarra et al., 2010). Therefore, ovarian hormones may influence
storage and recall capabilities in relation to the rewarding effects
in CPP paradigms via alterations in serotonergic/dopaminergic sys-
tems, which are directly connected to sex-based differences in
drug abuse (Becker and Chartoff 2019). Despite evidence for the
influence of sex differences on substance abuse behavior obtained
from studies of neural systems development (Becker and Chartoff
2019), further studies are required to determine the molecular
and genetic mechanisms that underlie sex differences in addictive
behavior (Hilderbrand and Lasek 2014). Despite the reliability of
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the mouse as an animal model for genetic research, few such stud-
ies have been conducted (Hilderbrand and Lasek 2014).

5. Conclusion

In summary, our findings support the notion that sex differ-
ences play an essential role in producing pregabalin preference in
mice. Ovarian hormones may represent the source of this variation,
given that estradiol may influence the addictive properties of pre-
gabalin in female mice. In addition, neuroendocrine mechanisms
maymediate the influence of estrogen on the dopaminergic system
to drive differences in pregabalin reward between male and female
mice. Future studies should utilize ovariectomized BALB/c mice
treated with estradiol to determine whether estradiol influences
the expression of pregabalin CPP. Additional studies are required
to identify potential interactions between estrogen and mesolim-
bic dopamine signaling, as well as their effects on pregabalin
reward. Such studies will ultimately advance our understanding
of sex-related differences in pregabalin abuse.
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