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ABSTRACT
Anion exchange membranes (AEMs) are core components in fuel cells and water electrolyzers, 
which are crucial to realize a sustainable hydrogen society. The low anion conductivity and 
durability of AEMs have hindered the commercialization of AEM-based devices, and research 
and development (R&D) to improve AEM materials is often resource-intensive. Although 
machine learning (ML) is commonly used in many fields to accelerate R&D while reducing 
resource consumption, it is rarely used in the AEM field. Three problems hinder the adoption of 
ML models, namely, the low explainability of ML models; complication with expressing both 
homopolymers and copolymers in unity to train a single ML model; and difficulty in building 
a single ML model that comprehends various polymer types. This study presents the first ML 
models that solve all three problems. Our models predicted the anion conductivity for a diverse 
set of unseen AEM materials with high accuracy (root mean squared error = 0.014 S cm−1), 
regardless of their state (freshly synthesized or degraded). This enables virtual pre-synthesis 
screening of novel AEM materials, reducing resource consumption. Moreover, human-compre-
hensible prediction logic revealed new factors affecting the anion conductivity of AEM materi-
als. Such capability to reveal new important variables for AEM materials design could shift the 
paradigm of AEM R&D. This proposed method is not limited to AEM materials, instead it 
presents a technology that is applicable to the diverse set of polymers currently available.
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1. Introduction

The ever-increasing demand for clean-energy sources 
that emit minimal to no greenhouse gases during 
operation has resulted in a shift in attention from 
fossil fuels to fuel cells, especially toward polymer- 
electrolyte membrane fuel cells [1]. Polymer-electro-
lyte membrane fuel cells are receiving increasing 
industrial and academic attention as they can be used 
to achieve a zero-carbon emission society [2]. 
Polymer-electrolyte membrane fuel cells are energy- 
conversion devices that can efficiently generate elec-
trical energy from chemical energy by breaking the 
bonds in gaseous hydrogen and oxygen molecules [3]. 
Water is the only side product of this process [4]. 
Polymer electrolyte membrane fuel cells can be pri-
marily classified into two categories, namely, proton- 
exchange membrane fuel cells (PEMFCs) and anion- 
exchange membrane fuel cells (AEMFCs). PEMFCs 
are well-developed systems that are fabricated using 
perfluorinated sulfonic acid membranes such as 
Nafion, which is considered a benchmark system for 
developing proton-exchange membranes (PEMs)). 
PEMs exhibit high proton conductivities, excellent 
mechanical properties, and good chemical stabilities 
[5]. In contrast, anion-exchange membranes (AEMs), 
which are used to fabricate AEMFCs, do not employ 
such benchmarks [6]. Several commercial AEMs have 
been reported, and these are characterized by low 
anion conductivities (<0.1 S cm−1) [7–10] and poor 
chemical stabilities (<1,000 hours) [8,11–16]. Such 
poor AEM properties limit their application prospects. 
Several AEMs with anion conductivities exceeding 0.1 
S cm−1 have been reported in recent years [17–20]. 
Although these AEMs exhibit high anion conductiv-
ities, their chemical stabilities remain below several 
thousand hours [12]. Moreover, the anion conductiv-
ities and chemical stabilities of most reported AEMs 
were poorer than those of PEMs [21].

Improving the ion conductivity of AEMs is intrin-
sically harder than that of PEMs. This can be attrib-
uted to the fact that OH–, which is a major contributor 
of ion conduction in AEMs, exhibits low conductivity. 
Even in aqueous solution, OH–-based conductivity is 
equivalent to just 0.568, or slightly more than half of 
H+-based conductivity (H+ often contributes to ion 
conduction in PEMs) [10]. Addressing the problems 
associated with low chemical stability is difficult, as 
OH– readily attacks the anion-conducting functional 
groups or polymer backbones present in the systems 
[11,12,22–24]. The ion-exchange capacities of AEMs 
can be improved using various methods, for example, 
by incorporating a large number of ion-conducting 
functional groups into the membrane. This method 
helps improve ion conductivity but simultaneously 
increases the water uptake and deteriorates the 
mechanical properties of these materials [10,25]. 

Thus, designing AEMs that simultaneously exhibit 
high anion conductivities and chemical stabilities is 
difficult. Efforts have been made to simultaneously 
improve the anion conductivities and chemical stabi-
lities of AEMs by altering the molecular structure of 
the polymers [8]. Such enhancement efforts are aimed 
at improving the extent of hydrophilic/hydrophobic 
phase separation, hydrophilic domain connectivity, 
and controlling the water uptake of the materials [8]. 
Flexible side chains [26], multi-cationic groups [27], 
multi-block copolymer backbones [28], comb-shaped 
polymers [29], and layered backbones [30] are choices 
for incorporation into polymers during design as 
a structural modification to improve anion conductiv-
ity. The many combinations available for the incor-
poration of these building blocks makes it necessary to 
identify the optimal structures of the materials. The 
best combination of the design units must be identi-
fied to achieve higher anion conductivities and che-
mical stabilities.

Many studies have been conducted to improve the 
conductivities of AEMs [26–31]. The trial-and-error- 
centric (experiment-centric) approach has been pri-
marily used to conduct these studies. This approach 
involves the consumption of a significant amount of 
resources, such as funds, labor, and time [32]. Thus, 
synthesizing large numbers of polymer candidates for 
AEMs within a realistic timeframe becomes difficult. 
Various types and combinations of main-chain and 
side-chain structures have been explored for the fab-
rication of efficient AEMs [8,23], but numerous poly-
mers and side chains that were not previously used to 
fabricate AEMs await exploration. New methods 
should be developed to identify structural unit combi-
nations that can be used to fabricate ideal AEMs with 
excellent anion conductivities and chemical stabilities 
in a short time span. Recent advances in information 
technology have facilitated the emergence of the mate-
rials informatics (MI) technique, which uses a data- 
driven (data-centric) approach and employs the con-
cepts of machine learning (ML), big data analytics, and 
data mining (associated with the field of materials 
science) to assist the exploration, discovery, optimiza-
tion, and development of new materials [32–34]. Such 
advancements in the research and development 
(R&D) of materials science is dubbed as the ‘fourth 
paradigm of materials science’ [35]. These methods 
have been used in The Harvard Clean Energy Project 
[36] and The Materials Project [37].

The principles of MI have also been used in the field 
of polymer science to develop the field of ‘polymer 
informatics’ (PI) [38–42]. PI is primarily used to pre-
dict glass transition temperatures, dielectric constants, 
and other properties [42,43] directly associated with 
the main-chain structure of polymers. The relevant 
data used in PI are often available in open-source 
polymer databases such as PolyInfo [44]. Zou et al. 
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[45] and Zhai et al. [46] are the very few groups that 
studied AEMFCs using MI and reported the results 
obtained from the analysis of AEMs. Both studies built 
their own AEM database and used neural networks to 
develop their ML models. Zou et al. [45] predicted the 
chemical stabilities (particularly the alkaline stabili-
ties) of AEMs, and Zhai et al. [46] used MI to predict 
their anion conductivities. Notably, both studies sim-
plified the complexity of AEM polymers by using 
decomposed structural units as inputs in the ML 
model that was used to study the AEM polymers. 
Zou et al. [45] used quaternary ammonium groups as 
the anion-conducting functional groups and exclu-
sively used the structural units from the main-chain 
structure as inputs. Zhai et al. [46] fixed the main- 
chain polymer structure to poly(2,6-dimethyl pheny-
lene oxide) and varied the anion-conducting func-
tional groups. As such, these studies did not focus on 
the properties and differences of homopolymers and 
copolymers. Studies wherein the complete chemical 
structures of AEM polymers were used as input data 
have not been reported. Cases wherein homopolymers 
and copolymers were incorporated into a single ML 
model have also not been reported. Hence, it is impor-
tant to develop a general model that can be used to 
explore structurally diverse AEM polymers. Moreover, 
the prediction logic and results obtained using the ML 
models should be analyzable and explainable in 
a scientifically accurate manner to develop a relation 
of trust between researchers studying AEMs and the 
ML model. ML models often yield hard-to-interpret 
prediction logic, which can be attributed to the use of 

either exceedingly complex or proprietary functions 
[47]. Such explainability issues were not dealt with in 
the reports by Zou et al. [45] and Zhai et al. [46]. This 
raises questions on the accuracy and reliability of the 
results. To date, methods for interpreting the predic-
tion logic of ML models have been developed to 
increase trust between researchers and ML models. 
Shapley additive explanations (SHAP) [48] and local 
interpretable model-agnostic explanations (LIME) 
have been used to achieve this [49]. LIME is not 
commonly used in the field of MI, whereas SHAP 
values have been increasingly used for the elucidation 
of prediction logic [50–54]. Neither SHAP nor LIME 
has been used in the AEMFC field to date.

Herein, the authors present a comprehensive 
method that can be used to develop accurate and 
explainable anion-conductivity- and alkaline-stabi-
lity-prediction models. This method is trained using 
the complete chemical structures of a diverse set of 
AEM polymers (Schemes 1 and S1). Unlike previously 
reported methods, this method can be used to analyze 
an extensive range of AEM polymers because it does 
not limit the polymer structures to be included in the 
database, with homopolymers and copolymers both 
being recorded as well. Together with the inclusion 
of anion conductivity for both freshly synthesized and 
alkaline-stability-tested AEMs, the applicability of this 
method is not limited to any specific main-chain 
structural units, anion-conducting functional groups, 
or anion conductivity measuring conditions. An AEM 
polymer database containing a mixture of homopoly-
mers and copolymers was first created. Then, ML 

Scheme 1. Schematic illustration showing the steps followed in this study. Various polymer structures were collected and included 
in the database to train the ML model, and the prediction logic corresponding to the model was analyzed to increase the level of 
model transparency. To evaluate the applicability of the model in real-world settings, it was tested by determining its ability to 
make predictions for AEM polymer structures that were not used to train the model.
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models were built, and each model was combined with 
SHAP to construct easy-to-understand ML models. 
These models could accurately predict the anion con-
ductivities of various freshly synthesized AEM poly-
mers and the anion conductivities of AEM polymers 
subjected to alkaline-stability tests. Furthermore, the 
ability to interpret the prediction logic corresponding 
to the three models allowed for the determination of 
the dominant and controlling factor that dictates the 
anion-conducting properties of the materials. This 
could help design new AEM polymers. Thus, this 
method can be used as a platform to design new 
AEM polymers.

2. Methods

2.1. Database construction

Data corresponding to the structural and experimental 
properties of AEM polymers were collected and coa-
lesced from previously published papers and incorpo-
rated into a database to train the ML models. Five 
review papers [2,8,23,55,56] were selected as the 
sources for AEM papers with high quality AEM data. 
This analysis utilizing review papers identified the 
high-significance AEM papers for prioritization, 
simultaneously avoiding subjective bias during selec-
tion. The extracted data included information on the 
chemical structure, molar ratio of repeating units, 
anion conductivity, temperature at which the anion 
conductivity was measured, anion conductivity 
achieved during the alkaline stability test, duration of 
the alkaline stability test, temperature at which the 
alkaline stability test was conducted, and concentra-
tion of the alkaline solution used in the alkaline stabi-
lity tests. Written data was extracted directly, whereas 
graphical data was extracted using an online open- 
source tool (‘WebPlotDigitizer’ [57]). Data on the 
conductivity attributable to OH–, HCO3

–, and Cl– 

was extracted during data collection. The anion con-
ductivity data was extracted and recorded, and the 
information was segregated based on the types of 
ions used during the experiment. Subsequently, the 
data was incorporated into the database. Although 
experimental conditions, such as relative humidity, 
atmospheric gas composition (presence or absence of 
CO2), and pre-treatment conditions for membranes 
significantly affect anion conductivity, detailed infor-
mation on these parameters was not presented in most 
papers. Therefore, only the measurement temperature 
was included as the experimental condition for the 
anion-conductivity measurements. For the same rea-
sons, the experimental conditions of the alkaline-sta-
bility test were limited to the previously listed 
conditions.

Homopolymer and copolymer data was extracted 
and incorporated into a single database. The chemical 

structures of the AEM polymers were segregated into 
blocks A and B (Scheme 2). For copolymers, block 
A represents structures containing anion-conducting 
functional groups, whereas block B does not. For 
homopolymers, chemical structures containing 
anion-conducting functional groups were presented 
by both blocks. The CH3 unit was used as the capping 
unit in each block.

2.2. Pre-processing and feature selection

The data corresponding to the extracted chemical 
structures were transformed into a machine-processa-
ble form before using them to train the ML models. 
The chemical structures of the AEM polymers were 
drawn using ChemDraw, following which the data was 
converted into the simplified molecular input line 
entry specification (SMILES) form using the native 
function available in ChemDraw for the purpose. 
Following the generation of the SMILES code, each 
chemical structure was converted into molecular 
descriptors using Mordred, an open-source library 
for molecular descriptor calculations [58]. Mordred 
is a library that contains widely used chemical descrip-
tors in the field of chemoinformatics [58], such as the 
RDKit package [59]. RDKit package is a huge library 
that contains fingerprints such as MACCS Keys, 
RDKit fingerprint, Morgan fingerprint, MinHash fin-
gerprint, and Avalon fingerprint. In comparison, 
Mordred is a library that includes not only complete 
RDKit package, but also other fingerprints and 
descriptors used in quantitative structure-activity rela-
tionship, thereby placing Mordred as a comprehensive 
descriptor package. As Mordred generates more than 
1,600 molecular descriptors for each chemical struc-
ture [58], the descriptors for building ML models were 
selected using the data-pre-processing function in 
PyCaret [60]. PyCaret is an open-source automated 
ML tool that enables the determination of the best ML 
model from a series of ML models available in its 
library. Minimal coding is required to construct the 
desired models [60]. For each experimental condition, 
the condition with the highest repeating frequency was 
used as a substitute for missing values of the respective 
experimental condition. The filled-in values repre-
sented the dominant experimental conditions in the 
field of AEM research.

2.3. Model development via automated ML

Categorical Boosting (CatBoost) [61], eXtreme 
Gradient Boosting (XGBoost) [62], and Random 
Forest (RF) regression models [63] were used as 
ML algorithms, and these models were built using 
PyCaret. The three models are tree-based ensemble 
models that could be effectively used to conduct the 
research reported herein, as they do not require 
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a large amount of data for execution. The amount of 
data required for using these models is lower than 
that required for using deep learning models (such 
as neural networks). Ten iterations were performed 
during the process of training the models, and 
a group 10-fold cross-validation (CV) strategy was 
employed to ensure that splitting of data into train-
ing and validation datasets was done according to 
the AEM polymer structure, and not randomly. This 
prevents data leakage by keeping conductivity data 
points obtained from different experimental condi-
tions but of the same AEM polymer structure 
together. As such, the data in the validation dataset 
was not seen by the model during training, and vice 
versa. The model with the lowest average CV error 
was used as the final predictive model for anion 
conductivity.

2.4. Performance metrics

The performance of the models were evaluated by 
analyzing the root mean squared error (RMSE) and 
mean absolute error (MAE) values. Although these 
metrics do not indicate whether the values predicted 
by the model are over- or under-estimated, they quan-
tify the performance and accuracy of the model. RMSE 
is highly sensitive to large errors and outliers, whereas 
the sensitivity of MAE toward these factors is low. 

A combination of these metrics was used to evaluate 
the model performance based on the training, valida-
tion, and test datasets.

RMSE was calculated as follows: 

RMSE ¼
ffiffiffiffiffiffiffiffiffiffi
MSE
p

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1
ðyi � byiÞ2

r

; (1) 

where n represents the number of samples, yi repre-
sents the empirical anion conductivity with 
i ¼ 1; . . . ; n, and byi represents the predicted value 
of yi.

MAE was calculated as follows: 

MAE ¼
1
n

Xn

i¼1
yi � byij j (2) 

The variables in Equation (2) represent the same fac-
tors as those represented by the variables in 
Equation (1).

2.5. Evaluation of prediction logic

The model prediction logic was evaluated by extract-
ing feature-importance and SHAP values [48] corre-
sponding to the explanatory variables. Only the data 
that were deemed important (top 20 variables) were 
visualized. Feature importance evaluates the impor-
tance of a feature/variable by computing the rise in 
the prediction error of ML model following the 

Scheme 2. Method used to segregate structural data corresponding to AEM polymers for data curation. For copolymers, blocks 
a and B represent the chemical structures of molecules containing and devoid of anion-conducting functional groups, respectively. 
The blocks corresponding to homopolymers represent the same chemical structures.
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permutation of the particular feature/variable [63,64]. 
SHAP was developed from game theory and served as 
a tool for mapping the importance of each feature to 
a particular prediction [48]. The difference in feature 
importance can be attributed to the ability of SHAP to 
present the impact of each feature on the prediction 
output. SHAP does not reflect the influence on the 
process of model fitting.

3. Results and discussion

3.1. Database construction

A database containing 2,197 anion conductivity- 
related data from 62 AEM-related papers was built. 
Data on the temperature-dependent anion conductiv-
ity of freshly synthesized AEMs and temperature- 
independent anion conductivity of AEMs subjected 
to the conditions of alkaline-stability tests were 
recorded. The number of papers extracted was com-
parable to those used to conduct previously reported 
research [46]. Review papers were chosen as the 
sources of AEM-related papers. Most of the papers 
from which the data was extracted were published in 
or before 2018 (Figure S1a). The temperature-depen-
dent anion-conductivity data for the freshly synthe-
sized AEMs were segregated based on their respective 
ion forms. Of the 2,197 data points considered to 
conduct this study, 1,211 corresponded to OH–, 37 
corresponded to Cl–, 15 corresponded to HCO3

–, 
and 2 corresponded to (CO3)2

–. Thus, a total of 
1,265 data points related to the anion conductivity of 
freshly synthesized AEMs (fresh-anion conductivity) 
were collected. The data corresponding to OH– was 
used for ML, considering the differences in the con-
ductivities of OH–, Cl–, and HCO3

–. The anion con-
ductivity measured during the alkaline-stability tests 
(degraded-anion conductivity) yielded 932 data 

points. These data points corresponded to OH– due 
to the nature of alkaline-stability tests. The AEMs were 
submerged in alkaline solutions to simulate the accel-
erated degradation tests. Hence, a total of 2,197 anion 
conductivity-related data points were obtained from 
coalescing fresh- and degraded-anion conductivity 
data points. The box plot shown in Figure 1(a) pre-
sents the relationship between temperature and the 
distribution of anion conductivity in the case of 
fresh-anion conductivity. The two parameters were 
positively correlated with each other. The anion con-
ductivity of the majority of the AEMs was less than 
0.07 S cm−1. However, the anion conductivity of some 
AEM polymers was significantly higher than 0.10 
S cm−1 (Figure 1(a)).

Data corresponding to both homopolymers and 
copolymers were recorded in the constructed data-
base. The method used to incorporate polymer struc-
tural data into a single database (which involved 
segregating AEM polymers into blocks A and 
B based on their chemical structure) is similar to the 
method reported by Kuenneth et al. [42], who sepa-
rated the two monomers of copolymers into two 
blocks. The previously reported method and the 
method used in this study differed in the use of cap-
ping symbols corresponding to the polymer repeating 
unit. This study used the –CH3 unit (instead of *) as 
the capping unit because it represented a chemical 
structure, whereas * is a symbol. The use of the –CH3 

unit could address the problems faced during the 
conversion of the data to the Mordred descriptor and 
the training of the ML models. Capping with –CH3 

potentially changes the chemical information of the 
chemical structure since it adds a capping group that 
carries chemical information on its own. Such side 
effect can be suppressed by universally applying – 
CH3 capping to all polymers in the database: since 
all polymers contain –CH3 capping, averaging of the 

Figure 1. (a) boxplot of anion conductivity as a function of the measuring temperature. (b) distribution of the polymer types 
present in the built database (the data points are colored based on the anion conductivity values).
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chemical meaning that –CH3 might carry can be 
expected. The use of –CH3 as capping unit is impor-
tant because it allows the construction of a universal 
database: one that can be used for both ML and simu-
lation such as density functional theory calculation. 
This is because * is incompatible with simulation for 
use as capping unit, necessitating the use of capping 
unit that has actual chemical meaning. If simulation is 
to be done, it will require a separated and dedicated 
database for simulation that has –CH3 capping, mak-
ing the whole process filled with redundant steps and 
inefficiency. Such inefficiency could steer potential 
users away, keeping away the proposed method from 
becoming a platform for AEM research. Although 
capping with –CH3 has its own disadvantage, the 
advantage it provides – streamlining the whole process 
of implementing ML into current research, regardless 
of the involvement of simulation, outweighs its dis-
advantage, reinforcing the potential for the proposed 
approach to establish itself as a robust platform for 
AEM research. The homopolymer representation 
mode also differed. This study used the same chemical 
structure to fill two separate blocks, whereas Kuenneth 
et al. used the unit monomer corresponding to the 
homopolymer as the input data for only one of the 
blocks (block A in this study). The other block (block 
B in this study) was left empty [42]. Kuenneth et al. 
multiplied the matrices obtained from the blocks with 
their respective compositions in the original polymer 
and added these matrices to form a single matrix of 
descriptors to be used for ML [42]. This method could 
not be used in this study as it lowered the degree of 
explainability of ML by eliminating the information 
corresponding to the originating blocks of the descrip-
tors. This made mapping the blocks (A or B) with the 
descriptors and the process of backward tracing diffi-
cult. Additionally, matrices with the same value but 
originating from two different polymers could poten-
tially be obtained due to the summation and multi-
plication operators involved in the conversion process 
to a single matrix. Data points corresponding to 15 
types of homopolymers and 257 types of copolymers 
were extracted, indicating that copolymers were the 
go-to choice for polymer design. The types of polymer 
main-chains used by researchers and reported in the 
literature were analyzed, and the relevant data was 
extracted. Analysis of the distribution plot (Figure 1 
(b)) generated using the principal component analysis 
(PCA) method (used to compress the multi-dimen-
sional molecular descriptors into a two-dimensional 
vector) revealed that the database contains a wide 
variety of polymer main-chains that span the horizon-
tal axis. PCA is a popular exploratory data analysis 
technique used to plot the chemical space covered by 
chemical structures in a particular database [65]. This 
involves compressing every chemical structure in the 
database into two dimensions and then plotting the 

obtained value to generate a scatter plot. Several rela-
tively dense or sparse areas were identified in the plot, 
but overall, a database without a significantly biased 
polymer main-chain-type distribution was built. 
A gradient of colors (from blue to red) was used to 
represent the points corresponding to the fresh-anion 
conductivity values (blue and red represent low and 
high conductivity, respectively). A clear relationship 
between the position of the AEM chemical structures 
in the plot and the conductivity was not demonstrated, 
albeit AEMs characterized by high conductivities 
(exceeding 0.10 S cm−1) were primarily situated to 
the left of the plot (Figure 1(b)). Thus, investigating 
potential candidates for the development of new AEM 
polymers by solely analyzing the location of the poten-
tial candidates in the distribution plot was difficult. 
This is where advanced techniques, such as ML, can be 
used for speeding up the R&D of AEM polymers. The 
top 10 most commonly used types of polymer main- 
chains for block A are shown in Figure S1b, with poly 
(2,6-dimethyl-1,4-phenylene oxide) being the most 
frequently used main-chain structure for block 
A. A total of 46 AEMs containing this structural unit 
were identified. Poly(arylene ether sulfone), which is 
present in 59 AEMs, is the most frequently used main- 
chain for block B (Figure S1c). The most widely used 
anion-conducting moiety is trimethylammonium 
(Figure S1d), which is present in 91 AEMs. However, 
the use of the most widely used moiety does not 
necessarily result in the generation of high conductiv-
ity. For example, the fresh-anion conductivity of 
AEMs such as quaternary trimethylammonium func-
tionalized poly(2,6-dimethyl-1,4-phenylene oxide) is  
<0.01 S cm−1 [66].

3.2. Construction of regression models for the 
prediction of anion conductivity and 
alkaline-stability tests

The chemical structures were converted to 3,226 che-
mical descriptors using Mordred. Specifically, 1,613 
descriptors were generated for blocks A and 
B. Descriptors with non-numerical values (such as 
those with strings or Not a Number values), those 
with the same value for every AEM polymer, and 
those with perfect collinearity or multicollinearity 
were eliminated, and a total of 522 chemical descrip-
tors remained. The remaining descriptors (together 
with the data corresponding to the molar ratio asso-
ciated with blocks A and B, the temperature at which 
the conductivity values were measured, the number of 
days over which the alkaline stabilities of the com-
pounds were studied, and the temperature at which 
the alkaline-stability tests were conducted) were used 
as the explanatory variables. The fresh- and degraded- 
anion conductivity values measured in the OH–-form 
were considered as the target variables. During ML, 
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the database was split in the ratio of 95:5 based on the 
types of AEM polymer chemical structures. The ratio 
reflects that 95% of the data was used for training and 
validation, and the remaining 5% was isolated for 
testing. A group 10-fold CV was performed using the 
previously obtained train-validation data. The fresh- 
and degraded-anion conductivities for most of the 
AEMs in the database were 0.01–0.05 S cm−1 

(Figures 1(a) and S2).
The RMSE and MAE values (obtained using the 

trained models (Table 1)) calculated using the fresh- 
and degraded-anion conductivity values output dur-
ing training were smaller by an order of magnitude 
than the range of the empirically measured conductiv-
ity values. This indicates that the models were success-
fully trained. For the validation results, the RMSE and 
MAE values were also smaller than the empirical con-
ductivity values by an order of magnitude (Table 1). 
The validation step involved using the models to esti-
mate the conductivity of AEM polymers that were not 
used during training. Thus, high prediction accuracy 
and generalizability can be expected using the pro-
posed model in real-world settings. Linear regression 
models, such as Ridge and Lasso regression, were also 
used for the analysis, and the RMSE values obtained 
during validation using these models were 0.0357 and 
0.0322 S cm−1, respectively. Three separate models 
were individually built using scikit-learn [67] intended 
for use as a baseline: support vector regression (SVR; 
kernel used: rbf) [68], gaussian process regression 
(GPR; kernel used: ConstantKernel(1.0, constant_va-
lue_bounds=‘fixed’) * RBF(1.0, length_scale_-
bounds=‘fixed’)) [69], and multi-layer perceptron 
regression [70] (MLP; 2 hidden layers, 256 nodes). 
Their RMSE obtained from cross-validation were 
0.0712, 0.0543, and 0.0344 S cm−1, respectively. The 
orders of magnitude of all these RMSE values were the 
same as those of the AEM anion conductivities. The 
poor validation accuracy obtained using the Ridge and 
Lasso regression models can be attributed to the fact 
that these are linear regression models, which model 
the relationship between the explanatory and the tar-
get variable using linear predictor functions. However, 
the anion conductivity values of the AEM systems did 
not exhibit a linear dependency on their chemical 
structures. This indicated that linear regression mod-
els could not effectively analyze the non-linear rela-
tionship between the parameters to yield predicted 
anion conductivity values comparable with the actual 

values. For MLP, the ineffectiveness of these models to 
deal with extremely high dimension yet small sample 
dataset led to such results, due to their tendency to 
overfit [71]. As for GPR and SVR, cross-validation, 
which further splits a small dataset smaller, might have 
largely contributed to overfitting [72].

3.3. Interpretation of prediction logic

In addition to building ML models with high predic-
tion accuracies, the prediction logic must be effectively 
analyzed to develop trust between researchers and ML 
models. The focus on analyzing the prediction logic 
associated with ML models in the field of MI has 
recently increased. The methods used for analyzing 
prediction logic are primarily classified into two cate-
gories, namely, cases where feature importance is used 
for analysis [45] and those where a local interpreter 
(the SHAP value) is used for analysis [50–54]. The 
results obtained from both the feature importance 
and SHAP value were compared and analyzed 
(Figure 2, CatBoost; Figure S3, XGBoost and RF; the 
results for the top 20 features are explained in Table 
S1). The feature importance plots were generated 
using the three developed models (Figures 2(a) and 
S3(a–b)). The most common feature of importance 
was AMID_N_A (the average molecular identification 
number corresponding to the nitrogen atom [73] in 
block A). This feature is a descriptor of the chemical 
structure and presents the average of the total number 
of weighted paths corresponding to nitrogen atoms 
[73]. The feature importance plot indicates that it is 
unclear whether a large or small AMID_N_A value 
maximizes anion conductivity (Figures 2(a) and S3(a– 
b)). Approximately 10–13 features labeled ‘ATS’ 
ranked among the top 20 features identified using 
the three models, with each of them carrying 
a different meaning that is defined according to their 
respective complete name. The features that ranked in 
the top 20 list differed from model to model but could 
be grouped according to part of the acronym included 
in their name. All features represented by ‘ATS’ are 
related to the autocorrelation coefficient function, 
which represents the descriptors used to calculate 
a value representing the chemical structure based on 
the topology of the molecules [58]. Features contain-
ing the term ‘Estate’ in their names are associated with 
the electrotopological state of the molecules [74] and 
reflect the distribution of electrons. Again, analysis of 
the feature importance plots did not reveal if a large or 
small value of the feature results in the maximization 
of anion conductivity (Figures 2(a) and S3(a–b)). For 
commonly known factors that affect anion conductiv-
ity, such as the measuring temperature, it is unneces-
sary for the plot to reflect whether the feature should 
take a larger or smaller value since it is known that 
higher temperatures typically lead to higher 

Table 1. Summary of the train-validation accuracy correspond-
ing to CatBoost, XGBoost, and RF in terms of RMSE and MAE.

Model

RMSE (S cm−1) MAE (S cm−1)

Train Validation Train Validation

CatBoost 0.00290 0.00600 0.00170 0.00350
XGBoost 0.00220 0.00700 0.00110 0.00380
RF 0.00360 0.00840 0.00190 0.00470
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conductivity. However, there is a lack of consensus on 
uncommon or newly found important features. The 
lack of information on the relationship between the 
value of the feature and anion conductivity makes 
designing AEM polymers that reflect the effects of 
the features difficult, potentially discouraging the use 
of ML techniques.

The SHAP plots were analyzed (Figure 2(b), 
CatBoost; Figure S3c and d, XGBoost and RF; details 
of the top 20 features are explained in Table S1), and 
the top 20 features identified by the ML models, which 
can be used to predict anion conductivity, have been 
presented. A consensus was reached regarding the 
results obtained using the three models. It is worth 
noting that main chain capping-related descriptors 
were not present in the top 20 important variables 
(SHAP nor feature importance), confirming that 
using –CH3 as capping unit did not result in any 
adverse effect of concern. The most common features 
that were deemed to be important are the temperature 
at which conductivity is measured and AMID_N_A. 
These two features contribute the most to the deter-
mination of the anion conductivity of the AEM sys-
tems. As mentioned previously, temperature 
significantly affects the anion conductivities of 
AEMs, which increase with temperature. 
Considerable information can be obtained from the 
SHAP plots: the pink and blue data points represent 
high and low feature values, respectively. The effects 
(toward anion conductivity) of the data points located 
toward the positive direction of the horizontal axis are 
greater than the effects of the values in the negative 
direction. Analysis of the SHAP plots revealed 
a positive relationship between AMID_N_A and 
anion conductivity. This is reflected by the pink data 
points present on the far right of the plots. The models 
managed to effectively reflect the important features of 

the AEM polymer structure, because AMID_N_A is 
related to nitrogen, which is often present in anion- 
conducting functional groups. However, an increase 
in AMID_N_A is not directly associated with an 
increase in the number of anion-conducting func-
tional groups in the AEM polymers, even though the 
latter often results in high anion conductivity. Instead, 
it indicates a high average of the total number of 
weighted paths associated with the nitrogen atom. 
This can be attributed to the fact that an AEM polymer 
containing three anion-conducting functional groups 
(fresh-anion conductivity: 0.175 S cm−1 at 80°C; 
AMID_N_A: 0.20) [27] is characterized by an 
AMID_N_A value (0.20) that is lower than the value 
characterizing the polymer containing two anion-con-
ducting functional groups (fresh-anion conductivity: 
0.319 S cm−1 at 80°C; AMID_N_A: 0.43) [75]. In 
particular, AMID_N_A presents the position of 
anion-conducting functional groups in the polymer, 
which is represented in numerical form. Increasing 
AMID_N_A also showed three separate trends toward 
the effect on anion conductivity: i. rapid local max-
imization towards AMID_N_A = 0.079, followed by 
slow decline; ii. rather gentle local maximization 
towards AMID_N_A = 0.204, followed by steeper 
decline than the first maxima; iii. steep increase 
towards global maximum at AMID_N_A = 0.433 
(Figure S4a). In general, increase in AMID_N_A 
could lead to increase in anion conductivity, but care 
must be taken to not fall into the valleys in the plot 
that leads to subpar anion conductivity. Other impor-
tant features positioned among the top 20 features, 
identified by the models, are the number of days 
corresponding to the alkaline-stability test (duration 
of soaking AEM in alkaline solutions) and the molar 
ratio between blocks A and B. A common consensus is 
available for these features: an increase in the soaking 

Figure 2. (a) feature importance and (b) SHAP plots generated using CatBoost.
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time of an AEM in an alkaline solution results in 
a decrease in its anion conductivity; an increase in 
block A of an AEM, which contains a cationic group, 
typically increases its anion conductivity. However, it 
is interesting to note that simply increasing block 
A ratio in an AEM polymer does not always result in 
high anion conductivity, as too much of block A will 
lead to sharp decline of anion conductivity (Figure 
S4b), most likely due to weak mechanical strength of 
the membrane formed. Most of the features in the list 
contained the term ‘ATS’ in their names, and as men-
tioned previously, these features are chemical descrip-
tors related to the autocorrelation coefficient function. 
Such descriptors are generally suggested to not be 
related to the target variable [76,77], but the analysis 
of the SHAP plots indicates the opposite for the case of 
using anion conductivity as the target variable. The 
correlation between all variables deemed to be impor-
tant by the three models and anion conductivity were 
confirmed using correlation matrix (Figure S4c). 
Block A ratio and AMID_N_A indeed has positive 
correlation, and several ATS-es has negative correla-
tion, coherent to the relationship shown by SHAP 
plots. Developing or designing AEM polymers char-
acterized by a high average total number of weighted 
paths for the nitrogen atom or topological shape is 
difficult, as the guidelines presented for them based on 
such explanations are difficult to understand. Instead, 
using new approaches to design molecules, such as the 
Monte Carlo tree search-based molecular generative 
model [78], can potentially use such guidelines to 
rapidly design new AEM polymers. For example, 
novel AEM polymers characterized by high anion 
conductivities may be developed by setting a high 
target for AMID_N_A during the molecule generation 
process, preferably those exceeding 0.433 due to the 
lack of exploration beyond 0.433 (Figure S4a). The 
advantage of the SHAP plot lies in the ability to ana-
lyze and understand the function and effect of each 
feature on the ease of AEM to conduct anions, whereas 
such detailed information cannot be obtained by ana-
lyzing feature-importance plots. The use of a SHAP 
plot to gain insights into the results may aid the 
development of a highly transparent ML model. 
Therefore, the analysis of SHAP plots is recommended 
during the implementation of ML models in R&D 
associated with AEMs.

3.4. Unseen data prediction test

The models were used to predict the results for a set of 
AEMs that were not used during training to ensure the 
applicability of the models under real-world settings, 
with the polymers used named as ‘unseen AEM poly-
mers’. The models were used to predict both the fresh- 
and degraded-anion conductivities of 14 unseen AEM 
polymers (chemical structures shown in Figure S5a – n), 

all of which were excluded from the train-validation 
dataset. The accuracy obtained using the models 
(Figure 3 for overall results of CatBoost; Figure S6 for 
XGBoost and RF; Figure S7a – n for the fresh-anion 
conductivity results of individual AEM polymers, with 
individual AEM polymers having a call sign of unseen a – 
n, respectively; Figure S8a – g for the results of degraded- 
anion conductivities, covering unseen b, c, f, g, i, j, 
and m polymers) was in the range of 0.01393–0.016037 
S cm−1 for the RMSE and 0.009879–0.011407 S cm−1 for 
the MAE of all 14 polymers (Table 2 and Figure S9; 
distribution plot). Analysis of the overall prediction 
results revealed that the best prediction performance 
for unseen AEM polymers can be obtained using 
CatBoost, with RMSE and MAE values as low as 
0.013930 and 0.009879 S cm−1, respectively. The worst 
results were obtained using XGBoost. Overall, the mod-
els over- or under-estimated several of the unseen poly-
mers, with prediction results matching the exact value of 
empirical anion conductivity remain rare. This is attrib-
uted to the fact that ML models tend to over- or under- 
estimate the anion conductivity of an AEM polymer 
depending on the amount of data available for similar 
polymers in the high or low anion conductivity region, 
respectively. In this study, unseen a, c, d, k, and l was 
overestimated, while unseen f was underestimated. The 
reason behind such trend and behavior of ML models 
were clarified in the distribution plot for empirical anion 
conductivity (of all AEM polymers included in the data-
base) against temperature (Figure S10). Large density of 
high conductivity data for AEM polymers similar to the 
structure of unseen a, c, d, k, and l (Figure S10b) might 

Figure 3. Predicted conductivity versus empirical conductivity 
plot generated using CatBoost. Different colors indicate differ-
ent unseen AEM polymers. Multiple dots of the same color 
represent temperature-dependent and alkaline-stability-test- 
based prediction values for the same AEM polymers, where 
the empirical data was extracted from their respective paper.
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have led to overestimation, while large density of low 
conductivity data for AEM polymers similar to unseen 
f (Figure S10f) might have led to underestimation. 
Nevertheless, the performance of all models was compar-
able, with differences of only approximately ± 0.001 
S cm−1, revealing that the models can appropriately 
understand the relationship between the chemical struc-
tures, anion conductivity, and alkaline-stability test con-
ditions. The fresh- (Table S3) and degraded-anion 
conductivity (Table S4) values for the unseen b, c, f, g, 
i, j, and m polymers (referred to as the ‘seven unseen 
polymers’) were analyzed because degraded-anion con-
ductivity data was present in their respective reports. 
Comparing the prediction accuracy between the fresh- 
and degraded-anion conductivities for the seven unseen 
polymers, the models were more effective at analyzing 
the degraded-anion conductivity than fresh-anion con-
ductivity of the materials. The RMSE and MAE values 
for degraded-anion conductivity were lower than 0.01 
S cm−1 for most of the seven unseen polymers, regardless 
of the model used. The best results for fresh-anion con-
ductivity were obtained using CatBoost, with the least 
number of unseen polymers (four out of seven unseen 
polymers with alkaline stability test results provided in 
their respective paper) characterized by RMSE and MAE 
values > 0.01 S cm−1, whereas XGBoost and RF fared 
worse and yielded equally poor results (five out of 
seven). Good RMSE and MAE values were obtained 
when the degraded-anion conductivity of the seven 
unseen polymers was analyzed. This can be attributed 
to the fact that detailed information on the systems other 
than the AEM polymer structure can be obtained by 
conducting alkaline-stability tests and used as para-
meters: the period for which AEM was soaked in the 
alkaline solution, temperature of the alkaline solution 
during the alkaline-stability test, and concentration of 
the alkaline solution. In contrast, during the analysis of 
fresh-anion conductivity, only the temperature at which 
anion conductivity was measured was considered as 
a parameter.

The RMSE values obtained using the models 
were mostly comparable with, and in some cases 
lower than, the values reported by Zhai et al. (the 
RMSE values were 0.007–0.025 S cm−1 depending 
on the functional group [46]). (Table S2). Only 
a few unseen AEM polymers were characterized 
by RMSE values higher than the reported range 
(Table S2). Generally, it is more challenging and 
complex to predict the fresh- and degraded-anion 
conductivities for a set of structurally diverse AEM 

polymers than those faced during the prediction of 
the fresh-anion conductivity of a specific set of 
AEM polymers, assuming that the same ML 
model was used. These challenges were overcome, 
and low RMSE values were obtained when the ML 
models reported herein were used. This signifies 
that high prediction accuracy could be achieved 
even with a limited amount of training and valida-
tion data, and the success in unitarily representing 
homopolymers and copolymers (Scheme 2) might 
have also contributed to overcoming such chal-
lenges. Notably, this method used less data than 
that required by ML models based on neural net-
works, such as those reported by Zhai et al. and 
Zou et al. [45,46]. Thereby, the three models used 
herein could efficiently and effectively understand 
the relationship between explanatory variables 
(chemical structure descriptors, experimental con-
ditions, and polymer structure information) and 
target variables (anion conductivity). As men-
tioned, the high prediction accuracy achieved for 
the test data revealed that a single model can pre-
dict both the fresh- and degraded-anion conductiv-
ities of various AEM polymers. This demonstrates 
the high potential for this method to significantly 
reduce the frequency of conducting a resource- 
intensive degradation test during materials explora-
tion, which can potentially help to streamline the 
R&D process associated with the production of 
novel AEM polymeric materials. Together with 
the explainable results that were obtained by ana-
lyzing the SHAP plots in this study, a versatile, 
transparent, and easy-to-execute method was devel-
oped for incorporation into the AEM polymer 
R&D cycle. The developed method can be used to 
predict both the fresh- and degraded-anion con-
ductivities of yet-to-be synthesized novel AEM 
polymers designed in-house. This helps to acceler-
ate the R&D process by reducing the number of 
synthetic cycles followed. Although this study 
focused on developing a method for the analysis 
of AEM polymers, the proposed method can be 
used to investigate all types of polymers, including 
those used to fabricate gas-separation membranes, 
lithium-ion conducting membranes, and other 
functional polymers. Naturally, this method can 
be applied to the R&D of general polymers as 
well. Similar to the field of AEM polymers, reports 
on ML models trained using a set of structurally 
diverse polymers are scarce. Therefore, the results 

Table 2. General prediction accuracies obtained using CatBoost, XGBoost, and RF in terms of RMSE and MAE for 14 unseen 
AEM polymers.

AEM polymer

RMSE (S cm−1) MAE (S cm−1)

CatBoost XGBoost RF CatBoost XGBoost RF

All 0.013930 0.016037 0.014827 0.009879 0.011407 0.010817
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reported herein can be used to develop a platform 
for developing methodologies aimed at implement-
ing the ML technique in the field of polymers.

4. Conclusions

The results reported herein revealed that a single 
model can be used to predict the fresh- and 
degraded-anion conductivities of materials. This indi-
cates the increased versatility of the ML models used 
in the R&D processes associated with the materials 
exploration of AEM polymers. The models 
(CatBoost, XGBoost, and RF) are easy to build and 
use, and good prediction accuracies for both fresh- 
and degraded-anion conductivities for unseen AEM 
polymers were achieved using them. The SHAP values 
were analyzed to study the transparency and explain-
ability of these models. The importance of individual 
features could be understood and an in-depth analysis 
of the features could be conducted by analyzing how 
the values of each feature (corresponding to each AEM 
polymer) affect the anion conductivity and alkaline 
stability of the materials. The ability to visualize the 
vector of impact for each feature that is deemed 
important by ML models is the first step toward 
achieving transparency in ML prediction logic. 
Simultaneously, the difficulties in interpreting the 
important chemical-structure descriptors, which are 
those obtained from currently available and widely 
used descriptors in the chemoinformatic field, were 
also discussed herein. Although it is difficult to manu-
ally implement the important features originating 
from chemical-structure descriptors into the design 
of AEM polymers, molecular generative models can 
be used to optimize these features if used as the target 
variables for such models. This gives hope to rapidly 
design AEM polymers with high anion conductivities 
and alkaline stabilities. By overcoming difficulties in 
manual interpretation by developing highly interpre-
table chemical descriptors in future studies, the pro-
posed approach can further accelerate the 
development of explainable ML for use in AEM R&D.
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