
1Scientific Reports |         (2019) 9:13077  | https://doi.org/10.1038/s41598-019-49222-w

www.nature.com/scientificreports

Damped resonance for broadband 
acoustic absorption in one-port and 
two-port systems
Taehwa Lee   , Tsuyoshi Nomura    & Hideo Iizuka   

We demonstrate broadband perfect acoustic absorption by damped resonances through inclusion of 
lossy porous media. By minimally placing the lossy materials around the necks of single-resonance 
Helmholtz resonators, where acoustic energy is concentrated, we show an increase in absorption 
bandwidths (>100% of the resonance frequency). Using the damped resonance, we demonstrate three 
types of broadband acoustic absorbers in one-port and two-port systems: broadband absorbers (one-
port), broadband sparse absorbers (two-port), and broadband duct absorbers (two-port). Our approach 
for broadband absorption allows to minimize the number of resonances for compact absorbers, while it 
is beneficial for practical applications owing to the minimum use of porous materials.

Acoustic metamaterials allow unprecedented control of sound waves1–4, enabling intriguing phenomena such 
as acoustic cloak5, asymmetrical transmission6,7, topological insulators8,9, and perfect absorbers10–13. Especially, 
acoustic metamaterials for perfect absorption lead to lots of practical applications for noise and vibration control, 
since they have advantages over conventional acoustic absorbers, e.g., for low-frequency sound absorption10,11. 
Despite such an advantage, resonance-based acoustic metamaterials often suffer from a relatively narrow absorp-
tion bandwidth. There have been extensive efforts devoted to increasing absorption bandwidths12,13. The most 
common approach uses multiple resonances, whose frequencies are closely placed for overlap of their absorption 
spectra12–14. Recently, multi-resonance metamaterials overlaid with a thin lossy medium have shown an extremely 
broadband acoustic absorption14.

Some complexities are involved in designing such multi-resonance metamaterials. For example, each reso-
nance in such a metamaterial should fulfill critical coupling conditions12–14. In addition, combination of multiple 
resonators each having a different resonance frequency leads to a bulky structure. Thus, minimizing the number 
of resonators in a unit cell is practically desired for constructing compact broadband absorbers. One approach 
implements multi-order resonances of one resonator in the unit cell, simultaneously satisfying critical coupling 
conditions at these multi-order resonances15. In this device, the spacing between the individual resonances is 
restricted by the fundamental frequency and its higher harmonics. Alternatively, ultra-broadband absorption 
can be realized with a single-resonance resonator in the unit cell, which has been theoretically demonstrated16. In 
addition, single-resonance broadband absorbers operating in water have been reported17. For airborne absorbers, 
broadband absorption has been demonstrated by combining a lossy medium with acoustic resonances18–24, prov-
ing the effectiveness of damped resonance.

In this work, we demonstrate broadband airborne acoustic absorption by maximizing the contribution of 
damped resonance. We first discuss conditions for perfect absorption in systems with and without transmission 
channels. For damped resonance, a lossy porous medium is minimally implemented in the regions of Helmholtz 
resonators where acoustic pressure field is highly concentrated. The effect of the lossy material on acoustic per-
formance is systematically investigated. We demonstrate three types of broadband absorbers based on damped 
resonance.

Results
Perfect acoustic absorption in one-port and two-port systems.  As the acoustic absorption (A) is 
given by = − | | − | |A r t1 2 2 with the reflection coefficient r and the transmission coefficient t, perfect acoustic 
absorption (A = 1) is ensured when reflection and transmission are zero (i.e. = | | =R r 02  and = | | =T t 02 ). The 
perfect absorption requires different approaches, depending on presence of transmission channels. For one-port 
systems, where transmission is prohibited by reflectors backing resonators (i.e. T = 0), the perfect acoustic 
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absorption condition is equivalent to a zero-reflection condition (R = 0), requiring the impedance matching11,25. 
As illustrated in Fig. 1(a), one-port systems are composed of acoustic resonators and an acoustic reflector, and the 
distance (l) between the resonator and the reflector can be chosen as either λl  or λ∼l /4. For two-port sys-
tems, where acoustic transmission channels exist, besides zero reflection, transmission needs to be zero in order 
to demonstrate perfect acoustic absorption. Transmission in two-port systems results from the radiation symme-
try. For zero transmission, breaking the symmetry of systems has been implemented for a relatively small open 
channel13. For systems with relatively large open channels, resonance degeneracy (or dual resonance) is required 
to demonstrate perfect absorption26–28. As seen in Fig. 1(b), for perfect absorption, one can use two approaches 
based on dual resonances consisting of lossy/lossy28 or lossy/lossless resonators29.

To understand the need of such resonance degeneracy, consider a single resonance in a two-port system, as 
illustrated in Fig. 1(c). For a lossy subwavelength resonator, the theoretical absorption limit is A = 0.5 because of 
the radiation symmetry (R = 0.25 and T = 0.25)30. In this case, perfect absorption is possible only when two acous-
tic waves are coherently incident from the opposite directions (i.e. coherent perfect absorption mechanism)31,32. 
In contrast, a lossless subwavelength resonator in a two-port system works as a perfect reflector33, because the 
radiated wave from the resonator is out-of-phase with the incident wave (i.e. destructive interference).

From an interference perspective, perfect acoustic absorption is explained for one-port and two-port systems, 
as shown in Fig. 1(a,b). For zero reflection in one-port systems, the backward radiated wave of a single-resonance 
resonator should be cancelled by reflected waves from the reflector that is placed with a quarter-wavelength dis-
tance ( λ=l /4). When a single-resonance resonator is placed on a reflector, the reflected wave from the reflector 
should be directly cancelled with the radiated wave from the resonator30. In this case, the area ratio between the 

Figure 1.  Perfect acoustic absorbers in one-port and two-port systems. (a) Single-resonance resonators in one-
port systems. For a resonator away from a reflector ( ≠l 0), a lossy resonator has perfect absorption when the 
backward-radiated waves from the resonator are cancelled by the reflected waves of the forward-radiated waves 
by the reflector, thus requiring a relative phase shift of π and a quarter-wavelength distance λ∼l /4. For a 
resonator on the reflector (l = 0), perfect absorption occurs when the reflected waves from the reflector is 
directly cancelled by the radiated waves from the resonator. (b) Dual-resonance resonators in two-port systems. 
For lossy/lossless resonators, perfect absorption occurs when λ∼l /4, as the lossless resonator functions as a 
reflector. For lossy/lossy resonators, de-tuning of their resonance frequencies is needed to cancel the radiated 
waves out of each resonator. The distance between the resonators can be much smaller than the wavelength 
( λl ). (c) Single-resonance resonators in two-port systems. A lossy single-resonance resonator has 0.5 
absorption, 0.25 reflection, and 0.25 transmission, whereas a lossless resonator functions as a reflector with no 
transmission (i.e. the forward-radiated waves from the resonator are out-of-phase with the incident waves).
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resonator and the surrounding reflector is critical. On the other hand, for two-port systems, the perfect absorp-
tion of lossy/lossless resonators is realized by the lossless subwavelength resonator that functions as a reflector (i.e. 
no transmission). When dual resonances result from lossy/lossy resonators, they need to be slightly de-tuned for 
perfect absorption28. Such de-tuning leads to a π phase difference between the radiated waves from the two reso-
nators, resulting in cancellation of these radiated waves. These de-tuned resonators can be placed in close prox-
imity at a distance of λl .

Theoretical absorption bandwidth limit.  For single-resonance resonators in one-port systems, the peak 
absorption (A) is expressed by

=
+

A C C
C C

4
( )

,
(1)

leak loss

leak loss
2

where Cleak is the radiation leakage (kg/s), and Closs is the intrinsic loss (kg/s). The detailed derivation of Eq. (1) can 
be found in Methods. From Eq. (1), the maximum absorption occurs when =C Cleak loss, i.e. the critical coupling 
condition stating that the radiation leakage (Cleak) out of the resonator should be matched with the intrinsic losses 
(Closs)18,34. In general, the leakage rate has a complex value35. Under the assumption ( λd ), the leakage rate can 
be expressed as a simple form. For two-dimensional (2D) resonators on a reflector with a period of λd , the 
radiation leakage (kg/s per unit depth) is given by17
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where s is the width of the vibrating mass, d is the period and Zs is the acoustic impedance of the surrounding 
fluid ( ρ=Z cs s s; ρs density, cs sound speed) (see Supplementary information). When resonators are isolated in free 
field36, or the period is comparable to the wavelength, the acoustic reactance (i.e. imaginary part of Cleak) is 
non-negligible37. Note that Cleak is proportional to s2 and inversely proportional to d, indicating that the critical 
coupling (Cleak = Closs) can be realized by adjusting these geometrical parameters. In addition, Cleak is proportional 
to Zs; the radiation leakage from resonators in water is much higher than that from the same resonators in air, i.e. 

>C Cleak leak,water ,air.
By using the fact that the quality factor ( Δ .f f/res 0 5) is inversely proportional to damping ratio ξ = +( )C C
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38, 
the full-width-at-half-maximum (FWHM) absorption bandwidth (Δf0.5) is given by
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where Cc is the critical damping, fres is the resonance frequency ( π=C f m/ 4c res 0), and m0 is the vibrating mass of 
a resonator ( ρ=m shv0  per unit depth with ρv the density, s the width, and h the height). For the critical coupling 
( =C Cleak loss), Eq. (3b) becomes Δ = =
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From Eq. (3b), we can identify the fundamental difference in absorption bandwidth between membrane-type 
resonators and Helmholtz resonators. Membrane-type resonators operating in air have a relatively narrow band-
width because of a large density difference ∼

ρ

ρ
−10 3s

v
, thus requiring a thin membrane (i.e. small h) to compensate 

such a difference. However, when operating in water, membrane-type resonators enable a much broader band-
width owing to the similar mass density ∼

ρ

ρ( )1s

v

17. On the other hand, Helmholtz resonators are effective for 

broadband absorption in both air and water, because their vibrating masses in the necks have the same density as 
the surrounding fluid, i.e. =

ρ

ρ
1s

v
. Thus, the absorption bandwidth of Helmholtz resonators (neck width wn, neck 

length ln) is given by Δ =
π ε. +
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, indicating that broadband absorption is enabled by small 

d and large w
l

n

n
 (i.e. wide neck width and short neck length).

Bandwidth of perfect acoustic absorbers.  To analyze the absorption bandwidth, we consider 
single-resonance Helmholtz resonators in a one-port system (Fig.  1(a)). Figure  2(a) shows the 
numerically-calculated absorption spectrum of Helmholtz resonators with the period (d = 25 mm), the neck size 
(wn = 0.5 mm, ln = 4 mm), and the cavity size (wc = 5.5 mm, lc = 15 mm). The absorber demonstrates the perfect 
absorption with a bandwidth of Δf0.5 = 395 Hz (0.22fres), satisfying the critical coupling condition (Closs = Cleak = 0
.0041 kg/s m). By using Eqs (2) and (3), the absorption bandwidth is estimated to be Δ = =

π.f 379 HzZ w
dm0 5
s n

2

0
 

(0.21fres) with the vibrating air mass within the neck ( ρ=m w ln n
eff

0 air ) and the effective neck length 
[ π=l w wl f/ (2 )n

eff
n c c res

2 or ε= +l l wn
eff

n n with end correction]. A critical question arises whether the absorption 
bandwidth can be further increased by changing the physical dimensions (e.g. wn, ln, or d) without introducing a 
more lossy material. We find that the absorption bandwidth of Helmholtz resonators (Δf0.5/fres) is fundamentally 
limited to ~0.2 for the perfect absorption (A = 1) regardless of the physical dimensions.
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To understand the fundamental bandwidth limit, one can consider increasing Closs by increasing the neck 
length (ln). This approach is contradictory to the derived condition of 

 1w
l

n

n
. Moreover, increasing ln leads to an 

increase in the vibrating mass ( ∝m ln0 ) and, therefore, both C
m

loss

0
 (=c0 ≅ 1200 s−1) and the bandwidth Δf0.5 remain 

constant (see Eq. (3b)). Thus, the fundamental bandwidth limit is set with the maximum of C
m

loss

0
, which is rather 

insensitive to the physical dimensions. In this regard, porous media are effective in increasing the intrinsic losses 
(Closs) without increasing the vibrating mass (m0) due to their high porosity. Evidently, lossy porous materials (e.g. 
foams) have been used in combination of resonators, increasing the absorption bandwidth13,19,20.

To maximize the effect of lossy media on the absorption bandwidth, we investigate Helmholtz resonators with 
different inclusions of lossy media (Design I, II, and III), as illustrated in Fig. 2(b). Figure 2(b) also shows the 
absorption spectra of the three configurations. The neck width (wn) and the cavity length (lc) of the resonators are 
adjusted to ensure =C Closs leak and the same resonance frequency, while the other dimensions remain constant 
(d = 18 mm, ln = 2 mm, and wc = 11 mm). With increasing Closs by the lossy foams, Cleak should be increased by 
using a larger neck width (wn) or smaller period (d) (see Eq. (2)). By covering with lossy foams (Design I; 
wn = 0.5 mm, lc = 12 mm), the absorption bandwidth is increased by a factor of two (Δ = ..f f0 44 res0 5 ), compared 
to the resonator without a lossy medium (Fig. 2(a)). Such an increase results from both increased leakage and 
intrinsic losses (Closs = Cleak = 0.0037 kg/s m; Closs/m0 = 1801 s−1 = 1.49c0). Notably, filling the neck with lossy 
foams (Design II; wn = 2 mm, lc = 28 mm) significantly increases the bandwidth to Δ = ..f f0 96 res0 5  due to 
Closs/m0 = 3.29c0. By partially filling the cavity (Design III; wn = 4 mm, lc = 34 mm), the bandwidth is further 
increased to Δ = ..f f1 28 res0 5  (a slight increase in Closs/m0 = 3.93c0). For comparison, the spectrum of a resonator 
(wn = 4 mm, lc = 34 mm) having the cavity completely filled with the foam is plotted (dashed line), showing only 
a slight increase in bandwidth. Intuitively, placing lossy media near a region, where the acoustic energy is concen-
trated, would be effective in maximizing the acoustic loss while minimizing the use of lossy media.

For Design III, we further study the effects of the period (d) and the neck length (ln) on the absorption band-
width. With varying only d, the leakage rate (Cleak) is changed while the loss (Closs) remains the constant. There is 
no change in the cavity size and thus constant resonance frequency. Figure 3(a) shows peak absorption for differ-
ent d. The numerical results (symbols) show the good agreement with the analytical results (solid line), which are 
calculated from Eq. (1) by using Cleak from Eq. (2) and constant Closs. The analytically-calculated Cleak is plotted in 
Fig. 3(b), while the constant Closs is obtained from Cleak for A = 1, i.e. Closs = Cleak,A=1. As shown in Fig. 3(c), the 
absorption bandwidth analytically calculated from Eq. (3b) with end correction ( = + .h l w2 1n n) is well-matched 
with the numerical results (symbols), verifying Eq. (3b). Note that the absorption bandwidth increases up to 1.6fres 
for = .C C1 5leak loss with a peak absorption of A = 0.95.

Figure 2.  Absorption bandwidth of Helmholtz resonators. (a) Absorption spectrum and bandwidth of 
Helmholtz resonators relying on neck friction losses. The dimensions of the resonators are given by the period 
(d = 25 mm), the neck size (wn = 0.5 mm, ln = 4 mm), and the cavity size (wc = 5.5 mm, lc = 15 mm). The resonator 
satisfies the critical coupling condition, i.e. Cleak = Closs = 0.0041 kg/s m (or Closs/m0 = 1193 s−1). (b) Helmholtz 
resonators with inclusions of lossy media into different regions: Design I (wn, lc) = (0.5 mm, 12 mm); Design II 
(wn, lc) = (2 mm, 28 mm); Design III (wn, lc) = (4 mm, 34 mm). The other dimensions remain constant (d = 28 mm, 
ln = 2 mm, and wc = 11 mm). All the configurations fulfil the critical coupling condition, i.e. for Design I, II, and 
III, Cleak = Closs = 0.0037, 0.0588, and 0.2352 kg/s m (or Closs/m0 = 1801, 3951, and 4711 s−1), respectively. The 
absorption spectrum and bandwidth of each configuration are compared. The black dashed line represents the 
absorption spectrum of resonators having cavities [(wn, lc) = (2 mm, 28 mm)] completely filled with foams. Each 
foam layer has a thickness of tI = 10 mm, tII = 12 mm, or tIII = 22 mm for Design I, II, or III.
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With varying the neck length (ln) for constant neck width (wn), the loss rate (Closs) is changed while the leakage 
rate (Cleak) remains the constant. For different ln, the cavity size is adjusted to ensure the constant resonance fre-
quency. As shown in Fig. 3(d), from the perfect absorption (A = 1; =C Closs leak), the peak absorption decreases 
with ln since Closs becomes larger than Cleak. The estimated peak absorption (dashed line) is obtained by assuming 
a linear increase of ≅ .C l l0 4 /loss n n,0 with ln,0 the neck length for = .l w/ 0 5n n,0  (Fig. 3(e)). Despite the increase in 
Closs, there is only a slight change in absorption bandwidth in Fig. 3(f) because of the increase of the vibration 
mass, as we have confirmed it without lossy foams. The estimated bandwidth (dashed line) is obtained by the 
assumed vibrating mass (Fig. 3(e)).

To demonstrate an absorption-bandwidth increase through judicious inclusion of lossy media, we fabricate 
different types of absorbers based on Design III: broadband absorbers (one-port system), sparse acoustic absorb-
ers (two-port system), and duct absorbers (two-port system). We observe a significant increase in the absorption 
bandwidth of these absorbers.

One-port broadband absorbers.  Using damped resonances (Design III), we minimize the number of res-
onances in a one-port system, while obtaining broadband absorption. Figure 4(a) illustrates a one-port acoustic 
absorber consisting of dual resonances (without the top plate). The low-frequency resonator has a larger cavity 
area (WL − wl), which surrounds the smaller cavity (wl) of the high-frequency resonator. The two resonators have 
the similar neck dimensions (wn, L or H = 5 or 4 mm, ln = 2 mm) and are partially filled with a lossy material with a 
combined thickness of t = 20 mm + ln (Design III), as the 3D-printed prototypes of the unit cell with and without 
the foam are shown in Fig. 4(b).

Figure 4(c) shows the acoustic absorption (A) and reflection (R) spectra of the dual-resonance absorber 
(W = 40 mm, L = 43 mm, w = 18 mm, l = 20 mm). We observe that high acoustic absorption (>0.8) extends from 

Figure 3.  Limits of absorption bandwidth. (a) Peak absorption with respect to the period d. The symbols 
indicate numerical results, while the solid line is analytically obtained from Eq. (1). (b) Radiation leakage 
rate (Cleak) for different d and constant intrinsic loss (Closs). Cleak is calculated by Eq. (2). (c) Dimensionless 
absorption bandwidth for different d. The numerical results (symbols) are compared with the analytical result 
(solid line) using Eq. (3). (d) Peak absorption with respect to the neck length ln. The dashed line represents the 
fit line using Eq. (1) with assumed linear intrinsic losses (Closs). (e) Assumed intrinsic loss (blue dashed line) and 
vibration mass (black dash-dotted line) used for the fit lines of the peak absorption and absorption bandwidth. 
(f) Dimensionless absorption bandwidth for different ln.
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800 Hz to 2500 Hz. Accordingly, in the high-absorption frequency band, the acoustic reflection is significantly low 
(bottom plot). The resonance frequencies of the two resonators are approximately 1000 Hz and 1800 Hz, respec-
tively. The experimental results (symbols) show a good agreement with the numerical results. Note that the 
high-frequency resonator has a broader bandwidth than the low-frequency one (i.e. Δ > Δ. .f fH L0 5, 0 5, ), because 
the bandwidth is proportional to the resonance frequency (Δ ∝.f fres0 5  from Eq. (3a)) and the same thickness 
of the foam is more lossy in the high frequency (i.e. increase in Closs). The thickness of the foam is much smaller 
than the resonance wavelengths of the both resonators.

The absorption bandwidth can be increased by decreasing the period (W) and thus increasing Cleak, as shown 
in Fig. 5(a). Increasing Cleak through smaller W is feasible as long as it does not compromise the peak absorption. 
The period (W) cannot be practically too small, because the constituent resonators need spaces occupied by their 
cavities; for smaller W, a larger L is needed to keep the resonance frequencies unchanged. Without the use of the 
foam, the absorption bandwidth is very small. Figure 5(b) shows the absorption spectrum for a dual-resonance 
resonator with the same period W = 40 mm, but without foam. We observe perfect absorption for very small neck 
widths (wn, L = wn, H = 0.7 mm). These small neck widths lead to small radiation leakage (Cleak) that can be matched 
with small intrinsic losses without foams (Cleak = Closs). In addition, each resonance has a very narrow bandwidth, 
compared to Fig. 4(c). In Fig. 5(b), the absorption spectrum (dashed line) is plotted for the same device of the 

Figure 4.  Broadband Helmholtz resonators in a one-port system. (a) Helmholtz resonators (period W and 
length L) consisting of dual-resonance resonators partially filled with foams. The two necks have similar widths 
(wn, L or H = 5 or 4 mm), while the low-frequency resonator (WL − wl) has a larger cavity size than the high-
frequency resonator (wl). (b) Prototypes of the unit device with and without foams. (c) Absorption (A) and 
reflection (R) spectra. The symbols represent the measurement data, while the solid lines indicate the numerical 
results.

Figure 5.  Bandwidth of the dual-resonance Helmholtz resonators. (a) Absorption spectra of damped 
resonators with respect to the period (W). (b) Absorption spectrum of the dual-resonance resonators without 
foams. The resonators have small neck widths (wn, H or L = 0.7 mm) for the perfect absorption. The dashed line 
represents the same resonator overlaid with a thin foam layer (2 mm thick).
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small neck with a thin foam plate (2 mm) on top, showing a decrease in peak absorption and a slight increase in 
absorption bandwidth because of Closs > Cleak.

Broadband sparse absorbers.  Sparse absorbers are composed of an array of resonator pairs, which are 
sparsely arranged, as illustrated in Fig. 6(a). Such a sparse arrangement falls into two-port systems, allowing 
acoustic transmission channels (Fig. 1(a)). The sparsity of the resonator is defined as the width (W) of the resona-
tor to the ratio of the period (d) (i.e. W/d), and a high sparsity is desired in minimizing fluid flow resistance29. 
Each resonator pair consists of two resonators of the same resonance frequency, but only the resonator, facing 
acoustic sources, is combined with the lossy foam (Design III), as shown in Fig. 6(b). The other resonator without 
a lossy medium is considered a lossless resonator. The pair of the lossy/lossless resonators leads to the perfect 
absorption, when the distance (l) between the two necks of the resonators is chosen to cancel the reflected waves 
from the lossless resonator by the reflected waves from the lossy resonator (Fig. 1(b)). To meet the distance 
requirement ( λ∼l /4), the neck of the lossless resonator is positioned on the side wall.

Figure 6(c) shows the absorption (A), transmission (T), and reflection (R) spectra of the sparse resonators 
(W = 20 mm, L = 66 mm, l = 42 mm, wn = 4 mm, and ln = 2 mm) with a period of d = 40 mm. The cavity sizes of 
the two resonators are identical (wc = 16 mm, lc = 30 mm) for the same resonance frequency. We observe that 
the absorption bandwidth (Δf0.5) is approximately 900 Hz. Notably, despite the high sparsity (W/d), the acoustic 
transmission is near zero around the resonance frequency. The resonance frequency is 1600 Hz. The experimental 
results (symbols) show a good agreement with the numerical result (solid lines).

Our approach for increasing the absorption bandwidth with lossy media is effective in the design of sparse 
absorbers that need a high sparsity. By minimizing the number of resonances, the sparse absorber is enabled 
with a compact structure of a high sparsity. Similar to the broad absorber in a one-port system, the absorption 
bandwidth increases with decreasing d, as shown in Fig. 7(a). Alternatively, to increase the absorption bandwidth, 
one can consider adding another layer of sparse resonators of a different frequency, resulting in dual resonances, 
unless fluid flow resistance is significantly compromised. Figure 7(b) shows pressure fields for resonators of lossy/
lossless, lossy alone, and lossless alone. For the lossy/lossless case, all the acoustic energy (black arrow) goes to 
the front lossy resonator, whereas the lossy resonator alone permits considerable acoustic transmission. For the 
lossless resonator alone, acoustic wave is reflected back without transmission.

Broadband duct absorbers.  Our approach for the broadband sparse absorbers can be extended to broad-
band duct absorbers, as these two types of absorbers operate in two-port systems. In addition, for λd , the 
periodic boundary of the sparse absorber can be replaced by the hard-reflecting boundary, and thus the same 
physics can be applied to both the sparse absorber and duct. Broadband duct absorbers enable lots of practical 
applications such as HVAC (Heating, Ventilation, and Air Conditioning) systems for vehicles and buildings. Our 
duct absorber implementing damped Helmholtz resonators is illustrated in Fig. 8(a). Based on the perfect absorp-
tion mechanism in two-port systems (Fig. 1(b)), we use a lossy/lossless combination of resonators of the identical 
resonance frequency; the constituent resonators have the same size (wn = 10 mm, ln = 1.5 mm, wc = 30 mm, and 

Figure 6.  Broadband sparse absorbers. (a) Helmholtz resonators (period d, width W and length L) consisting 
of dual-resonance resonators: the upstream resonator partially filled with foams and the downstream resonator 
with no foam. The cavity sizes of the two resonators are identical (wc = 16 mm, lc = 30 mm), and the distance 
between the necks of the resonators is given by l. (b) Prototypes of the unit device with and without foams. (c) 
Absorption (A), transmission (T) and reflection (R) spectra. The symbols represent the measurement data, 
while the solid lines indicate the numerical results.

https://doi.org/10.1038/s41598-019-49222-w


8Scientific Reports |         (2019) 9:13077  | https://doi.org/10.1038/s41598-019-49222-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

lc = 50 mm). The upstream resonator only includes a lossy medium around its neck (a thickness of t = 21.5 mm), 
while the downstream resonator is considered lossless because it has a large radiation leakage and a small loss 
owing to its short length and large width of the neck (i.e. Q Qleak loss). The distance (l) between these two reso-
nators is chosen to cancel the reflected waves from the lossy resonator with the reflected waves from the lossless 
resonator. As shown in Fig. 8(b), the prototype of the duct absorber is fabricated with transparent acrylic plates, 
allowing to see the black foam in the lossy resonator.

Figure 8(c) shows the absorption (A), transmission (T), and reflection (R) spectra of the duct noise absorber 
(l = 49 mm, d = 40 mm). The numerical peak absorption is approximately 90% at the resonance frequency of 
fres = 1000 Hz, while the measurement shows the peak absorption is about 70%. We observe the absorption band-
width of ~650 Hz (=0.65fres) compared to ~0.2fres without a lossy inclusion. Although the numerical results (solid 
lines) captures well the spectral characteristics of the experimental results (symbols), such a discrepancy between 
the numerical and experimental results comes unexpectedly large reflection in the measurement, possibly because 
of a small size difference between the two cavities and thus unwanted resonance de-tuning.

The absorption bandwidth can be further increased by reducing the width (d) of the duct and thus increasing the 
radiation leakage (Cleak), as shown in Fig. 9(a). For example, the radiation leakage is increased to Cleak = 1.5Closs (i.e. 
a small deviation from the critical coupling condition), which leads to a 25% bandwidth increase (From Eq. (4a)) 
without significantly compromising peak absorption, i.e. = = ..

. +
A 0 96C C

C C

4(1 5 )

(1 5 )
loss loss

loss loss
2

. Figure 9(b) shows pressure 
fields for Helmholtz resonators of lossy/lossless, lossy alone, and lossless alone. The acoustic energy is concentrated 
on the lossy resonator with no transmission. For lossy alone, considerable transmission is observed. For lossless 
alone, no transmission is seen, since the lossless resonator works as a reflector.

De-tuning approach (Fig. 2(b)) has been used for perfect duct absorbers28,39, but it may be ineffective in real-
izing broadband absorption through damped resonators. Damped resonators require a large de-tuning 
( −f fres H res L, , ) for out-of-phase responses at = +f f f( )/2res H res L, , . We expect that the length (l) of our prototype 
device can be further optimized to a length of λ= .~l 0 2 res.

Conclusions
We have demonstrated broadband perfect acoustic absorption by using lossy porous media in combination with 
acoustic resonators. By placing the lossy materials around the regions of the resonators, where acoustic energy 
is concentrated, we have shown a significant increase in absorption bandwidths (>100% of the resonance fre-
quency), while minimizing the use of the lossy materials. Using the damped resonances, we have demonstrated 
bandwidth increases for three types of acoustic absorbers. Our design approach can benefit acoustic absorbers 
based on Helmholtz resonators for broadening absorption bandwidths.

Methods
Sample fabrication.  The two types of absorbers (one-port broadband absorbers and sparse absorbers) 
are fabricated by using a fused-deposition-molding (FDM) style 3D printer (Model: Markforged Mark Two, 
Markforged Inc., MA, USA) with 400 µm nozzle diameter and 100 µm layer height. The duct absorbers are made 
of acrylic plates with a thickness of 5 mm. The 3D-printed and acrylic resonators are partially filled with lossy 
foams (polyurethane foam, Monoprice Inc., CA, USA).

Experiments setup.  Acoustic performance is characterized with an in-house impedance tube measurement 
system, consisting of an impedance tube with a square cross section (40 × 40 mm2), a full-range speaker (2½”, 
model: SB65WVAC25-4, SB Acoustics, http://www.sbacoustics.com/), pressure-field microphone and preampli-
fier (¼” prepolarized, sensitivity: 1 mV/Pa, model: 378C10, PCB Piezotronics, NY, USA), audio power amplifier 
(model: APA150, Dayton Audio, OH, USA), data acquisition device (24-bit, 102.4 kS/s, model: NI USB-4431, 
National Instruments). For characterization of two-port systems, the four-microphone measurement method 
is employed with pyramid-shaped anechoic termination (polyurethane foam), while the two-microphone 

Figure 7.  Bandwidth and pressure fields of the sparse resonators. (a) Absorption spectra of the sparse absorbers 
with respect to the period (d). (b) Pressure fields for lossy/lossless, lossy alone, and lossless alone.
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measurement method is used for one-port systems. The measured signals are processed with Matlab data acqui-
sition toolbox (Mathworks, MA, USA).

Numerical calculation.  Acoustic pressure fields are calculated by a commercial finite-element method 
solver, COMSOL Multiphysics 5.3. To simulate acoustic absorption in porous layers, empirical models of the 
complex acoustic impedance (Zf) and complex wave number (kf) are used40, which are given, respectively, by

ρ= + +Z c c f ic f[1 ], (4)f
c c

1 3
2 4

π
= + +k f

c
c f ic f2 [1 ], (5)f

c c
5 7

6 8

where c1 − c8 are the constants (c1 = 74891, c2 = −1.8432, c3 = −1489000, c4 = −2.404, c5 = 42, c6 = −1.0813, 
c7 = −11.5412, and c4 = −0.4794) extracted by acoustic measurement (see Supplementary Materials). In 
COMSOL, with Eqs (4) and (5), the material properties of the foam are defined by the complex sound speed 
( π=c f k2 /f f ) and complex mass density (ρ = Z c/f f f ).

Figure 8.  Broadband duct absorbers. (a) Duct absorbers (duct width d) consisting of identical resonators: the 
upstream resonator partially filled with foams (t = 21.5 mm) and the downstream resonator with no foam. The 
cavity sizes of the two resonators are identical (wc = 30 mm, lc = 50 mm), and the distance between the necks of 
the resonators is given by l. (b) Prototype of the unit device. (c) Absorption (A), transmission (T) and reflection 
(R) spectra. The symbols represent the measurement data, while the solid lines indicate the numerical results.

Figure 9.  Bandwidth and pressure fields of duct absorbers. (a) Absorption spectra of the duct absorbers with 
respect to the duct width (d). (b) Pressure fields for duct absorbers composed of lossy/lossless HRs, lossy HR 
alone, and lossless HR alone. The arrows represent the acoustic intensity field. For lossless HR alone, there are 
no arrows because of perfect reflection.
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Harmonic oscillator model.  The equation of motion of the one-dimensional (1D) harmonic oscillator is 
described by

ω+
+

+ =
d x t

dt
C C

m
dx t

dt
x t F t

m
( ) ( ) ( ) ( ) ( ) ,

(6)
loss leak

2

2
0

0
2

0

where x(t) is the oscillating amplitude, and F(t) is the force acting on the oscillator. In the regime of the period d 
that is much smaller than the wavelength λ, we have the forms of =F t p t S( ) 2 ( ) osc and η = Z S S/r s osc inc

2 , respec-
tively, where p(t) is the pressure of the incident acoustic wave, Z is the acoustic impedance of the surrounding 
fluid, Sosc is the area of the oscillator, and Sinc is the area of the unit cell. By solving Eq. (6), the oscillating amplitude 
in the frequency domain (ω) is given by

ω ω

ω ω ω
=

− − +
.

( )
x F

m i
( ) ( ) 1

( ) (7)
C
m

C
m

0 0
2 2 loss leak

0 0

The dissipation power of the oscillator is represented by

ω ω

ω ω ω ω
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By using Eq. (8) and the incident power = | |Pinc
p t S

Z
1
2

( ) inc

s

2
, the acoustic absorption (power) coefficient, the 

ratio Pdiss/Pinc, is expressed by

ω
ω ω ω ω

=
− + +

.
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( / / ) 4 (9)
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The peak absorption at resonance (ω ω= 0) is given by

=
+

.A C C
C C

4
( ) (10)

leak loss

leak loss
2

Perfection absorption occurs when Cleak = Closs, i.e. critical coupling condition. Rigorously, the critical coupling 
condition states that the radiated power (Pleak) is balanced with the dissipated power (Ploss):

= .P P (11)leak loss

These power forms are given by =P Cleak leak
dx t

dt
1
2

( ) 2
, and =P Closs loss

dx t
dt

1
2

( ) 2
, where dx t

dt
( )  is the 

root-mean-square average of vibration velocity. Thus, the equality of Pleak = Ploss implies Cleak = Closs.
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