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Abstract

Summary: The significant decline in the cost of genome sequencing has dramatically changed the typical bioinfor-
matics pipeline for analysing sequencing data. Where traditionally, the computational challenge of sequencing is
now secondary to genomic data analysis. Short read alignment (SRA) is a ubiquitous process within every modern
bioinformatics pipeline in the field of genomics and is often regarded as the principal computational bottleneck.
Many hardware and software approaches have been provided to solve the challenge of acceleration. However, pre-
vious attempts to increase throughput using many-core processing strategies have enjoyed limited success, mainly
due to a dependence on global memory for each computational block. The limited scalability and high energy costs
of many-core SRA implementations pose a significant constraint in maintaining acceleration. The Networks-On-Chip
(NoC) hardware interconnect mechanism has advanced the scalability of many-core computing systems and, more
recently, has demonstrated potential in SRA implementations by integrating multiple computational blocks such as
pre-alignment filtering and sequence alignment efficiently, while minimizing memory latency and global memory
access. This article provides a state of the art review on current hardware acceleration strategies for genomic data
analysis, and it establishes the challenges and opportunities of utilizing NoCs as a critical building block in next-
generation sequencing (NGS) technologies for advancing the speed of analysis.

Contact: jg.harkin@ulster.ac.uk or p.shukla@ulster.ac.uk

1 Introduction

In the 1990s, the human genome project created the first draft se-
quence of the entire human genome at an estimated cost of USD 3
billion (Muir et al., 2016; Sboner, 2011). Since then, the cost of
sequencing has been declining exponentially. The significant output
of massively parallel next-generation sequencing (NGS) technologies
has a compounding effect on many challenges across the bioinfor-
matics pipelines (Lightbody et al., 2019). Such technologies within
the field of genomics have caused a shift in emphasis from sequenc-
ing as the principal challenge to efficient methods of accessing, shar-
ing and analysing data (Lightbody et al., 2019; McVicar et al.,
2016; Muir et al., 2016). Personalized medicine, aims to make gen-
omic medicine part of a standard battery of tests (Lightbody et al.,
2019). Readily available genomic data insights offer the promise of
tailored prescription of treatment and ultimately, highly bespoke
care (Brittain et al., 2017). For the realization of the goals of person-
alized medicine and to be genuinely personal, genomic data insights
must be accessible (Orth et al., 2019).

In the field of genomics, short read alignment (SRA) is an essen-
tial component within the modern bioinformatics pipeline and is

one of the most significant computational challenges to date
(Lightbody et al., 2019). Fundamentally a string matching problem,
the complexity of read alignment arises from the sheer volume of

raw genomic input data (Lightbody et al., 2019; Muir et al., 2016;
Sboner, 2011). For perspective, the human genome is an estimated
3.2 billion characters long, with short read lengths typically contain-
ing 100-300 characters (Sboner, 2011). Thus, a search usually

extends the full reference genome for each read resulting in billions
of searches, making it computationally intensive (McVicar et al.,
2016). Previous attempts to increase read alignment throughput
have included multistage alignment algorithms (McVicar et al.,
2016), pre-alignment filters (Kaplan et al., 2019) and many-core
processing (Liu et al., 2017).

This article presents a review of the literature on the computa-

tional challenges of SRA and in particular, focuses on hardware ac-
celeration strategies. Furthermore, it examines previously
implemented NoCs as a mechanism to overcome the principle prob-
lem of memory accessibility that currently limits the scale of acceler-

ation. Section 2 provides contextual background and introduce the
process of SRA and a typical genomics study with bioinformatics
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pipeline. Sections 3 and 4 present the principle computational chal-
lenges and opportunities related to SRA, focusing on hardware ac-
celeration and NoCs. Lastly, Sections 5 and 6 offer discussion and

concluding thoughts on the information presented.

2 Genome sequencing and genomic data

analysis

2.1 Next-generation sequencing (NGS)
NGS techniques are massively parallel, allowing for whole-genome

sequencing at unprecedented scale and speed (Behjati and Tarpey,
2013; ThermoFisher Scientific, 2020).

First generation: Sanger sequencing, a dominant technology of
the 70s and 80s, were enablers in realizing the human genome for
the first time (Rizzo and Buck, 2012). Some estimates placed the

cost of sequencing the human genome with Sanger sequencing at
$10millon and $25million (Margulies et al., 2005). The highly tar-

geted chain termination method known as Sanger sequencing pro-
duce long reads (approx. 400 - 1000 bp), which in turn lends itself
to the validation of NGS sequencing data due to its high accuracy

(Kosuri and Church, 2014). Although expensive and labour inten-
sive, Sanger sequencing created a demand for reliable high through-

put sequencing at low cost (Rizzo and Buck, 2012).
Second generation: Pyrosequencing method commercialized by

Roche/454 Life Sciences, sequencing-by-synthesis method commer-
cialized by Solexa/Illumina and sequencing by oligonucleotide liga-
tion and detection (SOLiD) method commercialized by ABI/Life

Technologies represent the second generation of sequencing meth-
ods and beginning of NGS revolution. Shorter read lengths (35-

700 bp) and high-throughput (1 million—2 billion) are the notable
features of these methods. The chemistry behind these methods has
been extensively reviewed elsewhere (Goodwin et al., 2016). The

pyrosequencing method maintained an average read length of
108 bp, now typically producing between 230-700 bp; the longest
read length among second-generation sequencing technologies

(Hasnain, 2020). Sequencing machines based on sequencing-by-
synthesis and SOLiD methods boast a throughput in billions, espe-

cially the NovaSeqTM 6000 system from Illumina claims to produce
3000 gigabases (Illumina Inc., 2019).

Third generation: Single Molecule Real-Time (SMRT) sequenc-
ing method commercialized by Pacific Biosciences, produces 100 -
200 gigabases per single 20-hour run, with approximately 30000 bp

read lengths (Du et al., 2019). Despite its high throughput, SMRT
lacks the raw sequence accuracy of pyrosequencing at 87% com-

pared to 99% (Du et al., 2019). The cost per one million bases is
$10 compared to approximately $2400 for pyrosequencing (Liu
et al., 2012). However, in recent years algorithms such as LSCplus
(Hu et al., 2016), HybridSPAdes (Antipov et al., 2016), HALC (Bao
and Lan, 2017) and ReMILO (Bao et al., 2018) have been proposed

improving the accuracy and reducing associated costs of SMRT as-
sembly through overlap detection and misassembly detection.

Fourth generation: Nanopore sequencing method commercial-

ized by Oxford Nanopore Technologies offers high consensus raw
read accuracy of 99.96% at a comparative cost to SMRT sequencing

methods (Hasnain, 2020). In addition, as nanopore sequencing is en-
tirely library dependant, it can produce up to 500 kbp, with the lon-
gest read recorded at 2272580 bp (Hasnain, 2020; Payne et al.,
2019). The MinION system from Oxford Nanopore weighs <100 g
and thus offers the portability for sequencing as-you-go in a real-

time environment (Oxford Nanopore Technologies, 2020).
Modern multiplexing methods overcome a historical limitation

of many first and second-generation sequencing technologies; that
of requiring large volumes of input DNA. Particularly where investi-
gations concern different target regions while additionally reducing

runtime and associated costs (Fleckhaus and Schneider, 2020; Shang
et al., 2020). An extensive review of the evolution of NGS technolo-
gies has been covered elsewhere (Niedringhaus et al., 2011).

2.2 Applications of genomic data
De novo assembly typically refers to the development of a genome
from which genomic data insights are gained without the presence
of a reference genome (Lightbody et al., 2019). De novo assembly
relies on comprehensive deep sequenced and high coverage sample
data to construct a genome (Ayling et al., 2020; Ghurye et al.,
2016). Long reads are naturally more suited to de novo studies
where the length of the read typically makes genome assembly easier
(Turakhia et al., 2019). Long reads are often associated with studies
advocating reference-free variant calling (Croville et al., 2018; Li,
2018; Turakhia et al., 2019), discussed later in more detail.

Metagenomics is primarily concerned with the sequencing of an
environmental sample for phenotype identification and quantitative
analysis of various microorganisms (Ayling et al., 2020). NGS
applied to environmental samples rely on the availability of refer-
ence genome databases. The low coverage of most species in a sam-
ple renders de novo assemblies unviable (Ayling et al., 2020; Ghurye
et al., 2016).

Epigenomics is an integral part of functional genomics, exploring
reversible modifications to DNA that affect gene expression without
altering the DNA sequence (Angerer et al., 2017). Such modifications
play a crucial role in gene expression and regulation (Angerer et al.,
2017; Chen and Snyder, 2013). The study of how proteins interact
with DNA to regulate gene expression is essential to fully understand
complex biological processes and disease states (Clark et al., 2013;
Joshi and Patil, 2017). Chromatin immunoprecipitation followed by
sequencing (ChIP-seq), DNase I hypersensitive sites sequencing
(DNase-seq) and formaldehyde assisted isolation of regulatory ele-
ments followed by sequencing (FAIRE-seq), among others, are used to
determine such protein interactions (Park, 2009).

Transcriptomics represents the complete set of all the ribonucleic
acid (RNA) molecules (Milward et al., 2016). Therefore, transcrip-
tomics covers all types of transcripts, including messenger RNAs
(mRNAs), microRNAs (miRNAs) and different kinds of long non-
coding RNAs (lncRNAs), including their transcription and expression
levels, functions, locations and degradation (Milward et al., 2016).

Targeted resequencing refers to the sequencing of a discrete gen-
omic locus of an individual or population to detect variations be-
tween the individual or population and the standard genome of the
species. It can be divided into: i) genotyping, i.e. testing for known
mutations, and ii) variation analysis, i.e. scanning for any mutation
or variants in a target genomic region. Variants are defined as single
nucleotide variants (SNVs), small insertions and deletions (indels)
and structural variants (SVs) (Bohannan and Mitrofanova, 2019).

Variant calling focuses on the identification of genetic variants at
a whole genome or exome level from DNA sequencing data by com-
paring it to a known reference genome. For cases where no reference
is available or consist of a high number of variants or poor quality
sequence alignments, de novo assembly can recover genomic vari-
ation at the expense of computational resources (Audano et al.,
2018). In addition, approaches such as Kestrel (Audano et al.,
2018), MALVA (Denti et al., 2019) and MALVIRUS (Ciccolella
et al., 2020) allow for reference-free variant calling via haplotype re-
construction from k-mer frequencies and known variants (Audano
et al., 2018; Denti et al., 2019).

2.3 Typical bioinformatics pipeline
A bioinformatics based research study typically consists of study de-
sign, sample collection, library preparation to eventual NGS sequenc-
ing and data analysis (Fig. 1, upper panel) (Lightbody et al., 2019).
Within which, a typical bioinformatics pipeline represents data pre-
processing and data analysis workflows actioned to yield useable
insights from sequenced samples. Such workflows are typically de-
pendent upon the end application, such as variant calling (Fig. 1, mid-
dle panel), and thus, overall study design. However, they share some
common steps such as quality control, alignment, pre- and post-align-
ment filtering and visualization. Each step has its own unique set of
barriers and facilitating factors, which have an ultimate bearing on the
quality of data output for analysis (Lightbody et al., 2019).

NGS quality control (QC) is an integral part of the bioinformat-
ics pipeline, one which ultimately determines the quality of insights
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achieved (Patel and Jain, 2012). Typically, early QC consists of se-
quence trimming, format conversions and QC statistics (Patel and
Jain, 2012). Tools such as Picard (Broad Institute, 2015) and NGS-
QC toolkit (Patel and Jain, 2012) provide a comprehensive suite of
tools and workflows for QC and the generation of FASTQ files
required for downstream analysis (Patel and Jain, 2012).

Sequence pre-filtering or pre-alignment filtering dramatically
decreases the overall mapping time by identifying candidate loca-
tions for match and masking repetitive regions, thereby reducing the
search space for alignment (Alser et al., 2019). Dedicated pre-
alignment filters, such as Gatekeeper (Alser et al., 2017) Shouji
(Alser et al., 2019) and grim-filter (Kim et al., 2018), are computa-
tional blocks available for implementation within hardware acceler-
ation architectures.

Sequence alignment is the process of aligning short reads to a
known reference genome, in order to generate a sequence alignment
map (.SAM) file (Patel and Jain, 2012). This process typically con-
sists of supplying a file containing the short reads and quality score
(.FASTQ or .fq) (Patel and Jain, 2012) and a reference genome file
(.FASTA or .fa) to a short read alignment algorithm, such as BWA
(Li and Durbin, 2009), Bowtie (Langmead et al., 2009a) or SOAP
(Li et al., 2008a), which complete the mapping. The process of short
read alignment is, as previously mentioned, a significant challenge
for genomic data analysis and is the topic of this review. As such,
various aspects of short read alignment and associated hardware ac-
celeration are discussed in the following sections.

Post-alignment filtering and realignment QC measures, such as
removing low quality or duplicate alignments are often implemented
using SAMtools mpileup (Genome Research Ltd, 2020), Genome
Analysis Toolkit (GATK) (Broad Institute, 2020) and Atlas2 (Challis
et al., 2012). Local realignment is considered an alignment improve-
ment step consisting of alignment quality control measures such as
indel realignment and base quality score recalibration. It enhances
the quality of alignment for regions of the mapping which either

contain indels, mismatches or with lower coverage compared to the
rest of the map (Tian et al., 2016).

Variant calling is of primary importance to clinical practice and
pharmacogenomics (Lightbody et al., 2019). Traditional and bench-
marking variant callers include GATK (Broad Institute, 2020),
Mapping and Assembly with Quality (MAQ) (Li et al., 2008b) and
SAMtools (Li et al., 2009a), among others. While MAQ and
SAMtools are popular in practice, GATK is one of the oldest, most
commonly used and a benchmark tool that has been extensively
adapted by many bioinformatics pipeline developers (Goyal et al.,
2017). Regardless, all variant callers must solve the problem of dis-
tinguishing between legitimate mutations, experimental noise and
sequencing error (Bohannan and Mitrofanova, 2019). As such,
many algorithms concerned with a variant calling are multistage
and have significant accuracy constraints to maximize clinical im-
pact (Cardon and Harris, 2016; Ward et al., 2013).

Variant annotation and visualization is an essential step for gen-
omic data analysis where functional information is added to identi-
fied positions using tools such as ANNOVAR (Wang et al., 2010)
and snpEff (Cingolani et al., 2012) and visualized using tools such
as UGENE (Golosova et al., 2014) and integrative genomics viewer
(IGV) (Robinson et al., 2011).

2.4 Short read alignment
The output reads from NGS machines lack any genome location
(coordinates) information. Consequently, for meaningful insights,
each read must be first mapped to a known reference genome
(Lightbody et al., 2019). This process is known as short read align-
ment (SRA), or mapping to reference (McVicar et al., 2016). As
Muir et al. (2016) suggest, sequence alignment is typically an early
critical stage of a long bioinformatics pipeline. The complexity of
modern high throughput sequence alignment is the challenge of
comparing highly repetitive short read strings to a more extensive,
equally repetitive reference string that is � 3:2 billion characters

Fig. 1. Typical variant calling bioinformatics pipeline composed of steps following NGS sequencing leading to the visualization of data is presented in the middle panel. The

variant calling bioinformatics pipeline is contained within the data pre-processing and data analysis stages of a much larger bioinformatics-based research study as illustrated

in the upper panel. Data file formats at each step are presented in the lower panel (Al Kawam et al., 2017; Lightbody et al., 2019). *Platform-specific raw sequence output ei-

ther .BAM or .FASTQ or .HDF5 (NCBI, 2019).
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(McVicar et al., 2016). Short read alignment is, in essence, a
string matching problem of vast scale in which two strings are com-
pared and scored based on dissimilarity (Doan et al., 2012). Many
computational tools have been introduced to facilitate sequence
alignment and are discussed in greater detail in the subsequent
sections.

Edit distance is the primary calculation metric used to quantita-
tively measure dissimilarity between two sequences (Fei et al.,
2018). Thus, it is fundamental within SRA and typically imple-
mented via the Levenshtein or Hamming distance calculation
(Zokaee et al., 2018). Hamming distance is defined between two
sequences of equal length, where the returned value is the number of
positions with a mismatch (Doan et al., 2012). Conversely,
Levenshtein distance does not require two sequences of equal length
and returns the minimal number of edit operations required to
change one sequence to another (Doan et al., 2012). Such edit oper-
ations are defined as insertion, deletion and mismatch, i.e. alteration
of a single character in either sequence (Doan et al., 2012). Edit
distance is often implemented using a generalized form of
Levenshtein distance, such as the Needleman-Wunsch (NW) algo-
rithm or Smith-Waterman (SW) algorithm (Doan et al., 2012).
Such methods represent pairwise sequence alignment, which aligns
two sequences either via global or local alignment, typically pro-
ducing a highly accurate and exhaustive alignment. Global align-
ment aligns two sequences base-by-base from one end to the other
such as the NW alignment algorithm (Li and Wren, 2014). Local
alignment, aligns sub-sequences of two sequences, based upon
highest similarity matching, for example, the SW algorithm
(Banerjee et al., 2019).

While edit distances measure the dissimilarity of two sequences,
in molecular biology, it is common to define scores as measures of
sequence similarity (Lesk, 2008). Algorithms for finding optimal
alignment, such as dynamic programming (DP), can seek either to
minimize a dissimilarity measure or to maximize the scoring func-
tion (Lesk, 2008).

Computation of the two dimensional DP matrix for finding the
optimal pairwise sequence alignment(s) between the two sequences
consists of four distinct steps: i) defining the scoring schema, ii) initi-
alizing the boundary conditions for top row and left column of the
matrix, iii) populating the matrix using an update function and fi-
nally iv) backtracking to highlight the optimal alignment(s) (Al
Kawam et al., 2017; Lesk, 2008).

i. Defining the scoring schema: A penalty or cost function is an ar-

bitrary integer assigned for the match, mismatch and insertion

or deletion represented as D (Banerjee et al., 2019; Lesk, 2008),

and generally expressed as:

D Qi;Rj

� �
¼ D matchð Þ if Qi ¼ Rj 1

D Qi;Rj

� �
¼ D mismatchð Þ if Qi 6¼ Rj 2

D U;Rj

� �
¼ D Qi;Uð Þ ¼ D deleteð Þ ¼ DðinsertÞ 3

where Q and R are two input strings of length m and

n; respectively, ðU;RjÞ represents deletions in Q or insertions in R

and ðQi;UÞ correspond to insertions in Q or deletions in R and D is

the cost function or penalty associated with edit operation. (Al

Kawam et al., 2017; Lesk, 2008).
An alternative and more sophisticated method of imposing penalty
scores is an affine gap penalty model, which distinguishes between
the cost of opening a gap and the cost of continuing a gap rather
than applying a fixed penalty for gaps greater than 1 bp in length
(Doan et al., 2012). The model assigns Co þ k� 1ð ÞCr to each gap
of length k where Co is the cost of opening a gap, Cr the cost of con-
tinuing, such that Cr < Co (Doan et al., 2012). For simplicity of ex-
planation of the alignment process, we have focused on constant
gap penalty model here.

ii. Initialization of boundary conditions in DP matrix: For NW

global alignment, following the scoring schema expressed in

Equations 1, 2 and 3, the gap penalty conditions are imposed in

the top row and leftmost column while initializing the first cell

within the matrix, by deploying the Equations 4 and 5 (Lesk,

2008).

S i; 0ð Þ ¼
Xi

k¼0

D Qk;Uð Þ for 0 � i � m 4

S 0; jð Þ ¼
Xj

k¼0

D U;Rkð Þ for 0 � j � n 5

For SW local alignment, top row and leftmost column of the DP ma-
trix are usually set to a fixed value following the Equations 6 and 7
(Al Kawam et al., 2017).

S i; 0ð Þ ¼ boundary 1 value 0 � i � m 6

S 0; jð Þ ¼ boundary 2 value 0 � j � n 7

iii. Populating the DP matrix: Following initialization, each cell in

S is updated according to the recurrent relationship expressed

in Equation 8 (Al Kawam et al., 2017).

S i; jð Þ ¼ max
S i; j� 1ð Þ þ D U;Rj

� �
S i� 1; j� 1ð Þ þ D Qi;Rj

� �
S i� 1; jð Þ þ D Qi;Uð Þ

8<
:

9=
; 8

where Qi represents the base in position i of first sequence Q and Rj

represents the base in position j of second sequence R,
S i� 1; j� 1ð Þ þ D Qi;Rj

� �
corresponds to a match between

Qi and Rj or a mismatch leading to substitution Qi $ Rj,
S i; j� 1ð Þ þ D U;Rj

� �
inserts a gap in the sequence Qi and finally

S i� 1; jð Þ þ D Qi;Uð Þ inserts a gap in the sequence Rj.

iv. Backtracking to highlight the optimal alignment(s): In the case

of NW global alignment, the optimal alignment score is

achieved in only the lower-right cell of the DP matrix.

Therefore, optimum alignment is recovered by tracing a path

back through the matrix from m; nð Þ to ð0; 0Þ indicating all the

possible optimum alignments (Lesk, 2008). In the case of SW

local alignment, the optimal alignment score is the maximum

score which can be encountered anywhere in the matrix.

Therefore, optimum alignment is recovered by tracing a path

back from that particular cell, and it continues only as far as the

region of local similarity continues (Lesk, 2008).

Consider an example whereby two sequences Q ¼ GTT and R ¼
GAGTTA are aligned as per NW global alignment (Fig. 2a) and SW
local alignment (Fig. 2b) strategies. Scoring schema is set as:

D matchð Þ ¼ þ1; D mismatchð Þ ¼ �1; D insertð Þ ¼ D deleteð Þ ¼ �2

Following the above scoring schema and Equations 4 and 5, the

matrix for NW global alignment is initialized for top row and left-
most column, and populated from the recurrence relationship
defined in Equation 8 (Fig. 2a). For SW local alignment, the DP ma-
trix is initialized with a constant boundary value of 0 for both top
row and leftmost column following Equations 6 and 7, and popu-
lated from the recurrence relationship defined in Equation 8

(Fig. 2b). In the case of NW global alignment, optimal alignment
score always appears in the lower-right column; hence here it is -2
(Fig. 2a). There are two possible global alignments with the same
optimal score of -2, backtracked in bold arrows (Fig. 2a). In the case
of SW local alignment, optimal alignment score is the maximum
score which can appear anywhere in the matrix; hence here it is 3
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(Fig. 2b). There is only one local alignment with an optimal score of
3, backtracked in bold arrows (Fig. 2b).

3 Computational challenges of short read

alignment

Sboner (2011) highlighted the changing computational priorities,
estimating downstream analysis and experimental design becoming

principal problem areas, compared to fifteen years ago, where the
most significant bottlenecks were associated with gene sequencing.
The following section outlines the current challenges in SRA and

their memory intensive nature.

3.1 Alignment challenges
The dominant alignment paradigm, pairwise sequence alignment,
produces optimal exhaustive alignments either via global or local
alignment at the expense of speed and power consumption (Muir

et al., 2016). Although both alignments are accurate, such pragmatic
short read alignment makes it impossible to map sequences to large

reference genomes due to quadratic complexity; where the time
taken to process the data grows exponentially when the data input
increases linearly (Muir et al., 2016).

According to Banerjee et al. (2019), edit distance computation in
short read alignment typically dominates 50% - 70% of the runtime.

To illustrate this further, the SRA algorithm SNAP (Zaharia et al.,
2011) calls the edit distance 51 times per read. There has been exten-

sive research involving index strategies to reduce the number of can-
didate locations requiring calculation (Alser et al., 2019; Banerjee
et al., 2019). As such, a large proportion of alignment algorithms

have been designed to pre-filter alignment candidate locations be-
fore Levenshtein distance calculations as a means to reduce the
search space (Banerjee et al., 2019).

Multistage heuristic algorithms such as BLAST (Altschul et al.,
1990), MAQ (Li et al., 2008a) and STAR (Dobin et al., 2013) use

hash and index lookups to identify promising location data, and
then scan for a match typically using a Smith-Waterman stage

aligner (McVicar et al., 2016). As such, they usually are much faster
at alignment and more flexible than exhaustive DP algorithms; al-
though they deliver sub-optimal results (McVicar et al., 2016; Muir

et al., 2016). Table 1 below provides a comparison between some
popular SRA algorithms.

3.2 Hardware acceleration
There are several key hardware platforms that support the acceler-
ation of sequence alignment algorithms, as discussed below.

High-performance computing (HPC) cluster is a series of inter-
connected desktop computers with central processing units (CPUs)
or network servers linked together to form a computing array, typic-
ally in a ‘master-mason’ configuration (Hackl et al., 2014;
Langmead et al., 2009b). A specified computer acts as the user inter-
face to the rest of the network. The remaining machines within the
system carry out computational tasks as defined by the master com-
puter. This configuration has gained popularity due to the low cost
and low barrier to entry for small to medium laboratories using
standard hardware and software (Ben Abdallah, 2017; Lightbody
et al., 2019; Sboner, 2011). Despite the relative accessibility of
HPC, the technical expertise required in-house for setup and
bespoke maintenance of software applications running on the cluster
is a limiting factor (Lightbody et al., 2019). Open-source software
frameworks such as Apache Hadoop support the scheduling of par-
allel operations across the network to manage computational load
(Lightbody et al., 2019). Furthermore, MapReduce, a popular paral-
lel programming framework by Google, has increased popularity
within the genomic data processing literature as a means to facilitate
SRA within a computing cluster (Al-Absi and Kang, 2015; Jourdren
et al., 2012; Schatz, 2009). As noted by Lightbody et al. (2019),
MapReduce concepts have been implemented in other parallel solu-
tions specific to genomic data processing such as the GATK (Goyal
et al., 2017; Lightbody et al., 2019; Lv et al., 2016).

Cloud computing cluster is similar to an HPC except, rather than
connected via a local area network (LAN), computing nodes are con-
nected remotely usually over the internet (Jackson et al., 2010;
Lightbody et al., 2019; Schatz, 2009). One of the significant advan-
tages of cloud computing is that they are highly scalable, on-demand
and without the barrier of the in-house deployment of fixed computa-
tional resources (Lightbody et al., 2016). As such, recent years has
seen a surge in online vendors offering high-performance cloud com-
puting as a service, providing accessibility of high-performance com-
puting to researchers (Jackson et al., 2010; Lightbody et al., 2019).
While an internal cloud network might be more suitable for sensitive
information, public clouds such as Amazon Web Services (AWS) are a
viable option if data is anonymised and encrypted beforehand
(Jackson et al., 2010; Lightbody et al., 2019).

Graphics processing units (GPUs) are high performance inte-
grated circuits first proposed for graphic processing in 1973 (Barron
and Glorioso, 1973). However, It was not until 1991 upon the re-
lease of the PlayStation one (PS1) by Sony and Toshiba that the
GPU became a mainstream technology (Peddie, 2020). Like field-
programmable gate arrays (FPGAs), GPUs offer a high degree of
parallelism with more than 1000 fine-grained processing cores
(Sundfeld et al., 2017). Within the scope of genomic analysis,
Sundfeld et al. (2017) demonstrated a GPU approach up to 24 times
faster than a 16-core CPU solution for RNA alignment using the

Fig. 2. (A) Global and (B) local alignment of two sequences Q ¼ GTT and R ¼ GAGTTA, with scoring schema D matchð Þ ¼ þ1; D mismatchð Þ
¼ �1; D insertð Þ ¼ D deleteð Þ ¼ �2. Optimal alignment scores are highlighted in bold font and paths for tracing back the optimal alignments are highlighted in bold arrows.

Note the gaps in (A) appearing outside the matched regions, leading to global alignments. No gaps appear in (B) outside the matched region leading to a local alignment.
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CUDA-Sankoff sequence alignment algorithm (Sundfeld et al.,
2017). The high performance of GPUs, however, results in consider-
able power consumption compared to FPGAs (Yano et al., 2014).
Despite this, GPUs are popular within high-performance computing
and particularly within bioinformatics due to the relative ease at
which a designer may implement an already existing short read align-
ment algorithm such as BWA (Fei et al., 2018; Houtgast et al., 2018).

Field programmable gate array (FPGAs) (Xilinx, 1999) are a pro-
grammable logic device consisting of an array of configurable logic
blocks enabling both fine and coarse-grained parallelism of an algo-
rithm to be exploited. Thus, enabling faster execution or acceleration
with lower energy costs than HPCs. Each block is comprised of mem-
ory and computational units (Lightbody et al., 2019). The significant
advantages and principal reasons behind their surge in popularity for
hardware acceleration are their intrinsic parallelism, re-programmable
nature, significant flexibility for acceleration across many applications
and low cost (Lightbody et al., 2019). A principal barrier to the use of
FPGAs is the requirement for technical expertise; however, more recent
high-level design synthesis tools are addressing this issue (Lightbody
et al., 2019). The flexibility afforded by FPGAs also supports scalabil-
ity, similar to cloud and computing clusters. In addition, FPGAs allow
for the inclusion of dedicated computational blocks, such as pre-
alignment filters (Kim et al., 2018). A limitation compared with cloud
and computing clusters is the interoperability of algorithms for FPGA
deployment, as many SRA algorithms are designed for CPUs realiza-
tions, utilizing concepts such as hyperthreading to increase throughput
(Wang and Wang, 2019).

3.3 Many-core processing and NoC interconnect
Due to the significant volume of data involved in sequence align-
ment, a stark relationship exists between scalability and speed of
execution. The reliance on global memory access results in a sub-
stantial increase in system delays as the system scales in both vol-
umes of data and processing cores. To successfully address the issue
of scalability with the ability to maintain a high throughput of data
from memory to processing cores, researchers such as Nsame et al.

(2014) and Sarkar et al. (2010) explored the use of the Networks-
on-Chip (NoC) interconnect strategy in many applications.

To appropriately convey the significance of NoC enabled hard-
ware acceleration, it is necessary to illustrate the core components of
an NoC which is comprised of three distinct physical parts (Fig. 3);
network interface (NI) that connects the individual processing elem-
ent (PE) to the switching router (R). The overall structure is referred
to as a topology; for example, Figure 3 depicts a 2D array of inter-
connected nodes. Packets of data are communicated around the top-
ology from source to destination processing element using the
networks of routers. A routing algorithm is embedded within each

Table 1. CPU based alignment algorithms and their critical performance metrics.

Algorithm Performance features Basic features References

Speed

(reads/sec)

Reads

aligned

(%)

Memory

footprint

(GB)

Min read

length

(bp)

Max read

length

(bp)

Compression

method

BLAT 185 95.0 3.8 11 5000000 – Kent (2002) and Fonseca et al. (2012)

Bowtie 5556 79.9 5.0 4 1024 FM-index Langmead et al. (2009a) and Fonseca

et al. (2012)

Bowtie2 2083 99.2 5.1 4 5000000 FM-index Fonseca et al. (2012) and Langmead

and Salzberg (2012)

BWA 1282 92.8 7.6 4 200 BWT Li and Durbin (2009) and Fonseca

et al. (2012)

MAQ 51* 97.4* 1.0* 28 63 Hash table Li et al. (2008b)

SNAP 37000† 94.0† 1.2† – – Hash table Zaharia et al. (2011)

SOAP2 4167 79.9 5.3 27 1000 BWT Li et al. (2009b) and Fonseca et al.

(2012)

STAR 2083‡ 94.0‡ 2.3‡ – >1000 Suffix arrays Dobin et al. (2013)

Note: Performance features, where unless stated otherwise, are based upon the alignment of 1 million, 100 bp, single-end reads with the human genome

(Homo sapiens, assembly GRCh37) on a single-core CPU, with 32 GB of RAM. Speed (reads/sec) is the number of reads aligned to the reference genome per se-

cond. Reads aligned (%) is the percentage of reads aligned to the reference genome. Memory footprint is the quoted operational peak memory usage (GB) per

processing core. Min and Max read length (bp) are the reported read lengths that can be aligned. The compression method is the algorithm used by the aligner for

reference genome compression. The information which is not obtainable is denoted as (–). Please refer to the respective article(s) mentioned in the table for further

details.
*MAQ performance features are based upon mapping of 100 million, 35 bp, paired-end reads. Computing hardware specifications are unavailable.
†SNAP performance features are based upon mapping of 100 million, 125 bp, single-end reads. SNAP benchmarking, as reported by Zaharia et al. (2011) is

based on a 256 GB RAM computing system.
‡STAR performance features are based upon mapping 10 million, 76 bp, paired-end reads. STAR benchmarking, as reported by Dobin et al. (2013) is based on

a 148 GB RAM computing system.

Fig. 3. NoC mesh and ring topology adapted from Das and Ghosal (2018). PE, proc-

essing element; NI, network interface; R, switching router.
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router which reads the packet to obtain its origin and its destination
node(s) and provides a direction (pathway) for the packet to travel
in its destined journey. Given the multiple parallel links between
routers, many packets can be communicated simultaneously, ena-
bling a high throughput of data to be achieved via the use of mul-
tiple parallel paths with multiple packets. A comprehensive review
of NoC structures and design is given by Tsai et al. (2012).

In addition, Subbulakshmi and Balamurugan (2014) provide a
detailed analysis of NoC architectures of many-core systems-on-chip
processing. The key benefit of NoC is the ability to scale in size (of
processing elements that can be connected) while maintaining high
levels of data throughput across the NoC structure. This has the im-
pact of enabling acceleration to be maintained when a high fre-
quency of data sharing among processing elements is required. The
broad attributes of any NoC include the topology, routing algorithm
and arbitration schemes. These combined together define an NoC
and are explored in the design of NoC-based computing systems.

Early many-core alignment and NoC implementations such as
Subbulakshmi and Balamurugan (2014) and Das and Ghosal (2018)
demonstrated NoCs as an enabling mechanism that significantly
increases the performance of hardware-based genomic data analysis.
However, the correlation between the number of processing cores
and transmission delays within the network poses a significant bar-
rier to the implementation of NoC for SRA (Wang and Wang,
2019). Therefore, there exists an optimum network size depending
on the alignment algorithm used; e.g. BWA scales linearly, whereas
HISAT2 (Kim et al., 2019) shows a decay in execution speed with

higher than 4 x 4 network sizes. This is further illustrated by Das
and Ghosal (2018) who suggest that the NoC network topology,
particularly those relying exclusively on mesh topologies, result in
higher latency (slower performance) at higher network dimensions.
Joardar et al. (2019) among others, identified significant routing
constraints with NoCs for genomic data analysis, and add that read
alignment algorithms require repeated memory accesses resulting in
idle computation units and high latency times (Joardar et al., 2019).
As such, the traffic patterns produced are highly irregular. Many
‘off-the-shelf’ routing algorithms assume uniform traffic patterns
and therefore are not suitable for k-mer counting or sequence align-
ment at large (Joardar et al., 2019; Subbulakshmi and Balamurugan,
2014). This is echoed by Turakhia et al. (2017) who advocate the
importance of co-design of software and hardware (Turakhia et al.,
2017, 2019). A key challenge in exploiting NoC is tailoring the rout-
ing algorithm for the application’s traffic profile to minimize system
latency and therefore, increase the throughput of data transmission
(Liu et al., 2016). Complexity arises from the dependency between
the topology, arbitration scheme and routing algorithm in the tailor-
ing exploration process.

4 Opportunities in short read alignment

acceleration

There has been significant progress in recent years, combining many
of the algorithms available to form hybrid SRA algorithms as

Table 2. Comparison summary of four different hardware accelerators for sequence alignment.

Features AligneR

(Zokaee et al., 2018)

FPGASW

(Fei et al., 2018)

Darwin

(Turakhia et al.,

2017, 2019)

ASAP (Banerjee

et al., 2019)

Speed (reads/sec) 483k* – 23k† �10k§

Max read length (bp) 1024 – 10k 128

Data structure FM-index – – –

Hardware accelerator processor ReRam (specialist) Xilinx Virtex-7

XC7VX485T FPGA

Xilinx Kintex-7 FPGA‡ Xilinx Virtex-7

XC7VX690T FPGA

Operating frequency (MHz) 100 200 250 250

Processing elements (PE) per array – 512 64 256

GCUPS – 105.9 – 609.6

Data bus – – NoC interconnect Crossbar

External memory (DRAM) No external memory

dependence

3 x 8GB DDR3-1600 4 x 32GB LPDDR4 –

Host CPU – Intel i5 Intel Xeon E5-26200 IBM power8

Host memory (GB) (DDR3 RAM) – 8 64 –

Host interface – SFPþ Optical interface �16 PCIe 2.0 CAPI interface

Search space reduction – – D-SOFT –

Edit distance function Hamming Levenshtein – Levenshtein

Gap penalty model – Affine Affine Constant

Edit distance implementation Process-In-Memory (PIM) Sequential logic Sequential logic Sequential logic

Power consumption (W) 1.9 44 15 6.9

Note: Speed is quoted in reads per second for simulated reads. Maximum read length (bp) is the reported maximum read length that can be aligned. Data struc-

ture corresponds to the compression mode utilized. Hardware accelerator processer is the main accelerator device used. Operating frequency (MHz) is the clock

frequency of the accelerator hardware. Processing elements (PE) is the number of computational cells per dynamic programming (DP) matrix/array. GCUPS (Giga

Cell Updates Per Second) is a performance measure of the number of processing element cell updates per second for a single array cell. Data bus is the interconnec-

tion strategy used. External memory (GB) corresponds to the available DDR3 RAM required to support accelerator operation. Host CPU is the CPU of interface

computer to the accelerator. Host memory (GB) is the memory capacity of the host computer which the accelerator can draw upon. Host interface is the commu-

nication interconnect between host and accelerator. Search space reduction corresponds to the search space reduction strategy used in the pre-alignment filtering

stage. Edit distance function corresponds to the specific edit distance calculation method used. Gap penalty model corresponds to the specific gap (insertion or de-

letion) penalty method used for each implementation. Edit distance implementation is the mode in which each accelerator computes the edit distance function to

determine optimum alignment. Power consumption (W) is the power consumed by the accelerator during alignment. The information which is not obtainable is

denoted as (–). Please refer to the respective article(s) mentioned in the table for further details.
*AligneR computing speed is based upon 10 million, 100 bp simulated short reads from human genome reference hg19.
†Darwin computing speed is based upon 3 million, 1000 bp simulated short reads from human genome reference GRCh38.
‡Details on the actual device used in the case of Darwin are unavailable other than the Kintex-7 series by Xilinx.
§ASAP computing speed is based upon 100 million, 128 bp simulated short reads from human genome reference hg38.
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previously discussed in Section 3. Furthermore, considerable effort
has been made in exploiting the overlap between the various imple-
mentation technologies such as CPU clusters, GPU, cloud computing
and FPGA hardware accelerators (Lightbody et al., 2019).
Techniques such as filtering and prefetching have been used to assist
in accelerating the speed of computational operations in hardware
(Alser et al., 2019). In addition, the use of MapReduce frameworks
in hardware and cluster implementations (software) with lossless
compression methodologies, have attempted to bring the unfathom-
able data quantity to more manageable proportions (Al-Absi and
Kang, 2015; Jourdren et al., 2012). Table 2 provides a comparison
between the four key hardware acceleration approaches representing
the current state-of-the-art; AligneR (Zokaee et al., 2018), ASAP
(Banerjee et al., 2019), FPGASW (Fei et al., 2018) and Darwin
(Turakhia et al., 2019). The technologies chosen have significantly
improved the speed of sequence alignment and serve to illustrate the
computational challenges and opportunities discussed in this review.

4.1 Alignment computation
Levenshtein distance calculations are typically performed sequential-
ly on CPU by most alignment algorithms limiting data throughput.
Notably, AligneR and ASAP have shown a considerable acceleration
in their computation through the implementation of different dedi-
cated hardware (Banerjee et al., 2019; Zokaee et al., 2018). AligneR
uses specialized ReRAM devices instead of logic blocks where
ReRAM modules are set to logic one and reset to logic zero, corre-
sponding to different alignment scores as per the Hamming distance
calculation (Zokaee et al., 2018). ASAP implements Levenshtein dis-
tance calculations in sequential logic using FPGAs in which parame-
ters are coded into clock cycle delays and operators to logic gates
(Banerjee et al., 2019). Both methods demonstrate reduced power
consumption and higher throughput (Table 2).

4.2 Search space reduction
Darwin utilizes a novel algorithm known as D-SOFT (Turakhia
et al., 2017). D-SOFT uses large bins (i.e. ranked containers for can-
didate locations) covering 9 bp each, therefore composed of 18 bits
(Turakhia et al., 2017). AligneR uses variants of FM index pre-
alignment and compression (Fei et al., 2018; Zokaee et al., 2018).
ASAP and FPGASW do not disclose the search space reduction
strategy used. Instead, they discuss such approaches within the con-
text of alignment, therefore adopting an ‘alignment as a filter’ ap-
proach (Banerjee et al., 2019).

4.3 Latency and memory overhead
Efforts to increase speed through closely coupling memory and com-
putation, i.e. physically stacking computational blocks used for
alignment with dedicated RAM has resulted in decreased accuracy,
high energy consumption and high implementation costs (Liu et al.,
2017). As such, further scale in this regard produces diminishing
returns. Therefore, memory overhead and memory accessibility are
universal critical barriers to increasing speed of execution (Fei et al.,
2018). Turakhia et al. (2019) have illustrated the latency associated
with random memory access patterns inherent within SRA as a po-
tential point of acceleration.

Darwin produces 16GB of memory overhead from seed position
tables stored in external memory with each processing element (PE)
contributing 2kB per reading for storage in on-chip SRAM
(Turakhia et al., 2019). In addition, its 4 x 32GB DDR4 DRAM
module contains copies of each of the alignment tables, thus balanc-
ing and optimising memory access with each DRAM module load-
ing up to 4 seeds per cycle (Turakhia et al., 2019). Overall, Darwin
reports 15x speedup from memory optimization; 3x from reduced
random access to DRAM (prefetching required data from SRAM)
and 5x from changing the random access pattern to near sequential
(Turakhia et al., 2019). Similarly, ASAP used a modified shift regis-
ter as part of the processing array to expand memory bandwidth
and support larger reference tables for implementing more dynamic
gap penalty models (Banerjee et al., 2019). However, it does not

include memory optimization, instead focuses on larger input data
strings (Banerjee et al., 2019).

AligneR bypasses memory latency bottlenecks entirely by adopt-
ing a process-in-memory (PIM) methodology (Zokaee et al., 2018).
Combined with an FM index compression strategy, this results in
lower search space and memory overhead for associated indexing
(Arram et al., 2017). AligneR, unlike ASAP and Darwin dynamical-
ly switches between active process elements (PEs) within the array
due to the short ReRAM cell endurance (Zokaee et al., 2018). The
mechanism adopted by AligneR potentially limits its scalability; as
six error-correcting pointer tables are required for switching and
reducing diagonal processing space (Zokaee et al., 2018).
Interestingly, Darwin utilizes Networks-on-Chip (NoC) intercon-
nect for data transfer instead of a crossbar (Turakhia et al., 2019).

4.4 Advances using Networks-On-Chip
The dependence on large external memory significantly limits scal-
ability as the operational cost rises with the number of computation-
al units (Sarkar et al., 2010). However, the use of NoCs has shown
potential in mitigating this dedicated RAM dependency through the
intelligent management of global and local data memory access (Das
and Ghosal, 2018). Initially proposed for short read alignment by
Sarkar et al. in 2010, NoC-based hardware demonstrated a 2.5 x
104 (reads per second) increase in speed compared to traditional
CPU based alignment. Sarkar et al. (2010) argued that NoC-based
implementations offer increased flexibility and further integration of
computational elements within a chip. Wang and Wang (2019) fur-
ther demonstrated the acceleration of popular computational algo-
rithms using a novel NoC-based accelerator. Thus, the NoC
paradigm provides a practical interconnection mechanism for ena-
bling high integration of many-core designs with a high degree of
modularity and explicit data-parallelism (Das and Ghosal, 2018;
Joardar et al., 2019; Sarkar et al., 2010; Wang and Wang, 2019).

5 Discussion

As Muir et al. (2016) suggested, challenges associated with genome
sequencing have been replaced with computational challenges
related to downstream analysis (Muir et al., 2016; Sboner, 2011).
Efficient management, alignment, lossless compression and sharing
of data with emphasis on security and privacy are now the dominant
challenges of the modern bioinformatics pipeline (Lightbody et al.,
2019). SRA is a fundamental step in genomics data analysis and is,
therefore, commanding in the overall efficiency of the analysis pipe-
line. SRA is perhaps one of the most significant challenges as the vol-
ume of data generated through genome sequencing continues to rise
exponentially (Sboner, 2011). Thus, SRA efficiency is crucial to en-
able a balanced and robust bioinformatics pipeline as data require-
ments grow.

FPGAs are aptly suited to addressing these challenges due to
their inherent fine and coarse-grained parallelism and flexibility
(Lightbody et al., 2019; McVicar et al., 2016). Therefore, FPGA
implementations, such as those demonstrated by Arram et al.
(2013), Chen et al. (2014), McVicar et al. (2016) and more recently
Gök et al. (2018) and Banerjee et al. (2019) have shown consider-
able promise of efficiently accelerating SRA in FPGA hardware. The
majority of SRA algorithms are designed for CPU, cluster and cloud
computing, utilizing concepts such as hyperthreading and linear task
management (Shang et al., 2014). As such, they do not take advan-
tage of the fine-grained parallelism offered by FPGAs (Alser et al.,
2017). Alser et al. (2017), Kim et al. (2018) and Joardar et al.
(2019) argue the need for co-design; the design of the hardware ac-
celeration and SRA software in parallel. This is especially true at
scale, with more varied computational blocks included within the
system (Liu et al., 2017). Implementations such as ASAP (Banerjee
et al., 2019) and AligneR (Zokaee et al., 2018) sufficiently illustrate
this requirement in which edit distance computation is executed as a
systolic array in parallel within dedicated electronic hardware rather
than sequentially on CPUs.
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Interestingly, what Liu et al. (2017) identified with many-core
implementations is that the dependence on global data RAM access
with irregular traffic patterns prevent scalability and efficient use of
the systems-on-chip resources (Liu et al., 2017). Thus, this estab-
lishes the need for more adaptive and intelligent on-chip communi-
cations architectures (Subbulakshmi and Balamurugan, 2014; Wang
and Wang, 2019). Sarkar et al. (2010) were perhaps the first to dem-
onstrate the application of NoCs as a means to overcome this scal-
ability issue. Later Das and Ghosal (2018) and Wang and Wang
(2019) demonstrated the potential of NoCs as a means to enable
scalability and efficient management of on-chip resources, removing
the dependence on global memory through intelligent routing and
arbitration.

Wang and Wang (2019) stipulated that the latency of the NoC
results from transmission and computation times, where transmis-
sion time becomes exacerbated upon data packet congestion. As
such, they proposed a bufferless mesh/ring network topology,
whereby the ring network acts as an overflow in the event of conges-
tion, providing a simple alternative path for data packets. They util-
ize a basic and standard non-adaptive XY routing algorithm within
their proposal. A comparison between different routing algorithms
is given by Sharifi et al. (2013). These works establish the need for
adaptive routing algorithms and illustrate the complexity in balanc-
ing the goal of designing an effective adaptive routing algorithm,
while ensuring it does not limit scalability due to large hardware
area overheads.

In addition, Bahrebar and Stroobandt (2016) provide further
details where NoC routing algorithms are explored within the scope
of many-core design. This is a crucial design challenge in any NoC-
based system and is not unique to the many-core design and is to
date, not fully explored in the design of NoC-based hardware for
genomic data analysis. Therefore, there is a requirement for new
routing schemes, which are tailored for the NoC-based SRA hard-
ware implementations, congestion aware and able to adapt to dy-
namic traffic requirements. This exploration is done in conjunction
with topology design, investigating hybrid and hierarchical topolo-
gies such as combining ring, mesh and star, to name a few (Carrillo
et al., 2013; Subbulakshmi and Balamurugan, 2014). In addition,
some general NoC-based system designs have explored the actual
compression of data packets (Carrillo et al., 2012; Maruyama et al.,
2017) and prediction of data traffic (Das and Ghosal, 2018; Javed
et al., 2020; Maruyama et al., 2017) as a means to accelerate the
execution of the application. These design decisions establish the
challenge, complexity and motivation, to investigate NoC traffic
compression and prediction techniques as mechanisms to advance
SRA performances further.

6 Conclusion

This review offers a critical analysis of some of the key technical
challenges and opportunities within genomic data analysis. SRA is a
primary bottleneck due to the volume of raw sequence data for
alignment. Various solutions explored throughout offer increased
data throughput by scaling the system. As one might assume, this
does not ensure effective use of resources. Thus, a point exists where
further scale produces diminishing returns on data throughput and
acceleration of execution speeds. The use of dedicated external
memory to support computational blocks is a convenient way to fa-
cilitate this scale and overcome the challenge of memory bandwidth.
However, it fundamentally limits the scalability of such solutions,
increasing power requirements and financial cost of implementation.
This leads to a step backwards from one of the core concepts of per-
sonalized medicine, that of being routine and readily available. The
use of network architectures to increase the global accessibility of
RAM could potentially remove the dependency on dedicated RAM
modules per computational block, thereby re-introducing the econ-
omy of scale. This review article has attempted to establish future re-
search directions in the utilization of NoCs for SRA hardware
acceleration with a focus on combined NoC topology and routing
algorithm co-design. In addition, the article has identified the

requirements for the co-design of the NoC topology and routing al-
gorithm to accelerate SRA in hardware.
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