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Abstract Resting-state fMRI (rs-fMRI) has been widely

used to segregate the brain into individual modules based

on the presence of distinct connectivity patterns. Many

parcellation methods have been proposed for brain par-

cellation using rs-fMRI, but their results have been some-

what inconsistent, potentially due to various types of noise.

In this study, we provide a robust parcellation method for

rs-fMRI-based brain parcellation, which constructs a sparse

similarity graph based on the sparse representation coeffi-

cients of each seed voxel and then uses spectral clustering

to identify distinct modules. Both the local time-varying

BOLD signals and whole-brain connectivity patterns may

be used as features and yield similar parcellation results.

The robustness of our method was tested on both simulated

and real rs-fMRI datasets. In particular, on simulated rs-

fMRI data, sparse representation achieved good

performance across different noise levels, including high

accuracy of parcellation and high robustness to noise. On

real rs-fMRI data, stable parcellation of the medial frontal

cortex (MFC) and parietal operculum (OP) were achieved

on three different datasets, with high reproducibility within

each dataset and high consistency across these results.

Besides, the parcellation of MFC was little influenced by

the degrees of spatial smoothing. Furthermore, the con-

sistent parcellation of OP was also well corresponding to

cytoarchitectonic subdivisions and known somatotopic

organizations. Our results demonstrate a new promising

approach to robust brain parcellation using resting-state

fMRI by sparse representation.
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Introduction

Resting-state fMRI (rs-fMRI) has been widely used to

explore the functional coupling between distinct brain

regions by calculating low-frequency spontaneous fluc-

tuations in the time series, i.e., functional connectivity

(Biswal et al. 1995; Fox and Raichle 2007; Buckner

et al. 2013; Song and Jiang 2012). Functional connec-

tivity has been a powerful tool to identify the resting-

state networks (Greicius et al. 2003; Tomasi and Volkow

2012; Damoiseaux et al. 2006). Recently, rs-fMRI has

also been exploited to delineate distinct subregions

within a larger brain region based on differential patterns

of functional connectivity (Craddock et al. 2012; Kim

et al. 2010; Nelson et al. 2010; Yeo et al. 2011; Shen

et al. 2010; Deen et al. 2011). As we know, the func-

tional connectivity could be influenced by various arti-

facts in rs-fMRI data including physiological artifacts

(Birn et al. 2008), transient head motion (Van Dijk et al.

2012), different scanning conditions (Patriat et al. 2013)

and preprocessing procedures (Van Dijk et al. 2010;

Satterthwaite et al. 2013). Hereby, these artifacts might

also have impacts on the parcellation results. Generally,

there are three approaches proposed to reduce the impact

of noise during the parcellation procedures. The first is

to average the connectivity profiles (Deen et al. 2011;

Yeo et al. 2011) or similarity matrices across subjects

(Craddock et al. 2012), which, however, eliminates inter-

individual variability, which has been widely reported in

both structure and function of the human brain (Mueller

et al. 2013; Rademacher et al. 2001; Zilles and Amunts

2013). The second is to employ spatial constraints to

improve the stability of parcellation (Craddock et al.

2012), which might bias the results towards spherical-

shaped clusters. Another approach is to remove the noisy

edges lying between clusters by constructing a sparse

similarity matrix, for instance the KNN graph (Shen

et al. 2010; von Luxburg 2007). But the KNN graph

method requires a global sparsity parameter, which is

often difficult to determinate (Nadler and Galun 2006)

and could significantly affect the performance of par-

cellation (Shen et al. 2010). Thus, a more efficient sparse

technique is required, which could generate robust brain

parcellation by guaranteeing the stability of parcellation

and retaining the individual variability at the same time.

The sparse representation theory (Elad 2010) has been

widely employed in the classification of face, natural and

medical images (Wright et al. 2009, 2010; Su et al.

2012; Wee et al. 2014; Mairal et al. 2008). Recently, it

also has been proposed for data clustering and achieved

robustness on high-dimensional data (Elhamifar and Vi-

dal 2013), which construct a sparse similarity graph

based on the sparse representation coefficients and

employ the spectral clustering to cluster local subspaces

(Elhamifar and Vidal 2009). Instead of identifying the

linear dependence relations between each pair of vari-

ables, sparse representation employs the multivariate

regression model to characterize the unique contribution

of each point to the objective point. In addition to the

self-representation model, an extra sparsity constraint on

the representation coefficients is emphasized to identify

the most relevant variables. Consequently, noise effects

can be reduced (Elad and Aharon 2006; Elhamifar and

Vidal 2013) and the signals may be recovered (Elad

2010). More importantly, the sparse representation

coefficients may identify the nearest subspaces for each

point with minimum embedding dimensions (Elhamifar

and Vidal 2013; Wang and Xu 2013), which gives hints

to the local organization of data. Thus, the similarity

matrix constructed based on these representation coeffi-

cients could be used for data clustering (Elhamifar and

Vidal 2013; Vidal 2011). Additionally, with the

approximately block diagonal form (Elhamifar and Vidal

2013), the similarity matrix could maintain a hierarchical

consistency when different clusterings were performed.

All these properties could be very helpful for rs-fMRI-

based brain parcellation.

Here, we propose a brain parcellation method based

on the sparse representation, which is robust to noise and

preserves individual variability during brain parcellation.

We tested the method on simulated, multi-site and dif-

ferent spatially smoothed rs-fMRI datasets. The robust-

ness of the method was first tested on the simulated rs-

fMRI data. To further assess the stability of the method,

two different brain areas, i.e., the medial frontal cortex

(MFC, including SMA and pre-SMA) and parietal

operculum (OP), were parcellated on multi-site rs-fMRI

datasets. The parcellation of MFC with a clear segrega-

tion between SMA and pre-SMA has been widely used

as a validation for parcellation methods (Johansen-Berg

et al. 2004; Klein et al. 2007), especially on rs-fMRI

data (Kim et al. 2010; Ryali et al. 2013; Crippa et al.

2011; Nanetti et al. 2009). Area OP, on the other hand,

has been widely accepted as a heterogeneous region

(Keysers et al. 2010; Zu Eulenburg et al. 2013; Burton

et al. 2008), with cytoarchitectonic mapping of this

region (Eickhoff et al. 2006a) available as a represen-

tation of its microstructure and a clear somatotopic

organization (Eickhoff et al. 2007) among its subdivi-

sions. Thus, we first subdivided MFC on multi-site

datasets to evaluate the consistency across different

datasets and on differently smoothed datasets to study

the influence of smoothing conditions. Then, we parcel-

lated OP using rs-fMRI data and compared its functional

parcellation with the cytoarchitectonic subdivisions

(Eickhoff et al. 2006a).
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Materials and methods

Brain parcellation using sparse representation

The proposed parcellation scheme consisted of two key

steps. First, sparse representation (SR) was employed to

calculate the representation coefficients for each voxel by

all the other voxels (Fig. 1a–c). Then, a similarity matrix

was constructed based on these representation coefficients

(Fig. 1d), and spectral clustering was applied to generate

individual parcellation for each subject (Fig. 1e–f).

Sparse representation

After defining a seed mask in the Montreal Neurological

Institute (MNI) standard space (Fig. 1a), the time course of

each voxel within the seed region was extracted from the

rs-fMRI datasets (Fig. 1b), serving as the data matrix in

sparse representation. Importantly, both the whole-brain

functional connectivity patterns and the local time-varying

BOLD signals may be employed as features in our method.

Here, we focus on the use of the local time courses to

illustrate the proposed method. Each voxel may be

represented as a sparse linear combination of other voxels

within the seed region (Fig. 1c). The linear representation

was intrinsically sparse, because seed voxels were highly

correlated with spatially neighboring voxels due to the

averaging effect of BOLD signals and spatial smoothing.

The sparse representation of each voxel was calculated by

solving the convex ‘1-norm minimization problem (Eq. 1).

min cik k1þ eik k1 s:t: FNi
ci þ ei � f ik k2 � e i ¼ 1; . . .n

ð1Þ

where f i 2 Rd is the feature vector of voxel vi with a unit

norm fik k2¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

j fji
�

�

�

�

2
q

¼ 1, FNi
2 Rd�ðn�1Þ is the residual

featurematrix within the seed region by eliminating voxel vi,

e is a small real number to control the accuracy of the liner

representation, ci 2 Rn�1 is the representation coefficient

vector with the summation constraints 1Tci ¼
P

j cji ¼ 1

which could accelerate the convergence process of the Lasso

problem, and the ‘1-norm was defined as cik k1¼
P

j cji
�

�

�

�.

Here, the feature vector is referring to the time course of each

voxel, with n denoting the total number of voxels within the

seed region and d denoting the number of time points.

Fig. 1 Brain parcellation scheme using sparse representation. After

defining the seed region in the standard space (a), we generated the

feature matrix by extracting time courses within the seed region or

calculating the whole-brain functional connectivity patterns (b). For
each seed voxel, the ‘1-norm minimization problem was solved

independently and its representation coefficient vector ci was

extended into ĉi through the insertion of a zero entry at the i-th row

(c). Then, the absolute value of the coefficients ĉij j was combined into

a coefficient matrix, and a similarity matrix was constructed based on

it (d). Finally, spectral clustering was applied to the similarity matrix

(e), generating parcellation results for each individual (f)
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The above objective function (Eq. 1) can then be con-

verted into an equivalent Lagrangian function:

mink
ci

ei

� �
�

�

�

�

�

�

�

�

1

þ 1

2
FNi

I½ � �
ci

ei

� �

� f i

�

�

�

�

�

�

�

�

2

2

s:t: 1Tci ¼ 1; i ¼ 1; . . .n ð2Þ

where the sparsity parameter k is a tradeoff between the

accuracy of the linear expression and the sparsity of the

coefficient vector. In addition, each coefficient vector ci is

extended into an n-dimensional vector ĉi by inserting a

zero entry at the i-th row, which represents the neighbor-

hood relationship between voxel vi and the remaining

voxels in the seed region. To solve the ‘1-minimization

problem (Eq. 2), we used the basis pursuit denoising ho-

motopy (BPDN homotopy) method (http://www.eecs.ber

keley.edu/*yang/software/l1benchmark/l1benchmark.zip;

Yang et al. 2010), which starts at the trivial solution

x0 ¼ 0, and successively builds a sparse solution by adding

or removing elements from its active set until the repre-

sentation error term was satisfied (Donoho and Tsaig

2008). We chose this method because of its high compu-

tational efficiency and robustness against corruption (Yang

et al. 2010), which could solve the sparse representation

problem in less than 2 h for the whole brain.

Spectral clustering

After solving the sparse representation equation for each

seed voxel (Fig. 1 c), the coefficient vectors were com-

bined into a coefficient matrix C ¼ ½ĉT1 ; ĉ
T
2 ; . . .; ĉ

T
n � with

zero-diagonal elements (Fig. 1d). A directed graph was

constructed based on the coefficient matrix, with each node

denoting a seed voxel vi who is only adjacent to the voxels

with nonzero entries in its coefficient vector ĉTi , and the

weight of edges defined by the absolute value of its rep-

resentation coefficients ĉij j. The coefficient matrix C, with

zero-diagonal elements and unit sum for each row, repre-

sents the transition matrix of random walk on the graph.

Specifically, each element ĉij represents the probability of

transition from voxel vi to voxel vj. Thus, the element
P

k ĉikĉjk in C � CT represents the joint probability of

transitions from voxel vi and voxel vj to the same end,

which also represents the probability that voxel vi and

voxel vj were represented by the same other voxels or

located in the same subspace. But, the effect of ‘‘hub’’

representation voxels that appear in the majority of repre-

sentation equations should be avoided. In other words, the

contribution of each voxel to each representation should be

normalized by its summation in all representations.

Therefore, the final similarity matrix was defined as

W ¼ C � E�1 � CT, where E was the diagonal matrix saving

the column summations of the coefficient matrix C. The

similarity matrix W could be applied to spectral clustering

to generate the final parcellation results (Fig. 1e–f).

In spectral clustering, a similarity graph was first built,

with each node denoting a seed voxel and the voxel-to-

voxel similarity matrix defining the weight of the edges. It

is worth mentioned that the spectral clustering used here is

different from the spectral reordering method (Johansen-

Berg et al. 2004), which requires a manual definition of the

boundaries between clusters. Spectral clustering is intended

to calculate the spectral embedding of the data, which is

actually a nonlinear dimensionality reduction process (von

Luxburg 2007). First, the Laplacian matrix was calculated

as L = D - W, where D was a diagonal matrix saving the

degree of each node (i.e., the row sum). Second, the gen-

eralized eigenvalue problem Lu ¼ lDu was solved, with its
first few eigenvectors ui; i ¼ 1; . . .; k saved in a matrix

U as a low-dimensional representation of the data, where

k was specified by the predefined cluster number. Last,

classical clustering methods, such as k-means clustering

(Ng et al. 2002) or orthogonal projection (Shi and Malik

2000), were applied to the spectral embedding matrix

U. Here, we used the k-means clustering during the

implementation of spectral clustering.

The proposed method generates individual parcellation

results for each subject with the predefined cluster numbers

(Fig. 1f). For real rs-fMRI data, an additional group-level

parcellation procedure was performed on each dataset

separately. Specifically, first, the parcellation results on

each subject was aligned with each other to have the same

labeling scheme. Then, a population probabilistic map of

each cluster was calculated by counting the percentage

among the subjects who had the same labels at the specific

voxels. Last, these probabilistic maps were merged into a

maximum probability map (MPM) based on the majority

rule (each voxel is assigned to the cluster with the highest

probability).

Seed regions

The medial frontal cortex (MFC) and the parietal opercu-

lum (OP) were chosen as the seed regions. They were both

defined in Montreal Neurological Institute (MNI) space and

resliced into 3 mm using FLIRT (Jenkinson and Smith

2001). The MFC, including the supplementary (SMA) and

pre-supplementary motor area (pre-SMA), was manually

drawn in the MNI152 brain image, extending from y =

-22 to y = 30, with a short distance above the cingulate

sulcus (Johansen-Berg et al. 2004; Eickhoff et al. 2011).

The parietal operculum, consisting of four subregions in

each hemisphere, was extracted as the MPM image based

on the cytoarchitectonic subdivisions (Eickhoff et al.

2006a) using the Anatomy toolbox (Eickhoff et al. 2005).

The rs-fMRI time course of each seed voxel was extracted
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from the preprocessed fMRI datasets and employed as the

feature matrix in sparse representation.

Data acquisition and preprocessing

We acquired three different resting-state fMRI datasets

with eyes closed from a total of 93 healthy right-handed

participants. Detailed information of these subjects was

listed in Table 1. All subjects provided written informed

consent to the study protocol as approved by the local

ethics committee. The subjects were instructed to rest with

their eyes closed, relax their minds, and remain as

motionless as possible during the scanning. The first two

datasets were acquired from two different Chinese popu-

lations using the same Philips Achieva 3.0 T MRI scanner.

The first dataset consisted of 29 subjects [16 males; age

range = 20–36 years, mean age = 25.0, standard devia-

tion (SD) = 4.35]. The second dataset consisted of 32

subjects (14 males; age range = 22–34 years, mean

age = 26.0, SD = 2.1). A total of 240 volumes, each

covering the entire brain including the cerebellum with 33

axial slices, were acquired using gradient-echo echo planar

imaging (EPI) sequence [repetition time (TR) = 2,000 ms,

echo time (TE) = 30 ms, field of view

(FOV) = 220 9 220 mm2, matrix = 64 9 64, slice

thickness = 4 mm, gap = 0.6 mm, flip angle = 90�]. A

structural scan was also acquired for each participant, using

a T1-weighted 3D turbo field echo (TFE) sequence

(TR = 8.2 s, TE = 3.8 ms, FOV = 256 9 256 mm2,

matrix = 256 9 256, number of slices = 188, slice

thickness = 1 mm, no gap, flip angle = 7�).
Using a Siemens Tim-TRIO 3.0 T MRI scanner, the

third dataset was acquired from 32 German participants (14

males; age range = 22–39 years, mean age = 29.0,

SD = 4.82), selected from a sample of 100 subjects at the

Research Centre Jülich used in the following studies

(Kellermann et al. 2013; Jakobs et al. 2012; Zu Eulenburg

et al. 2012; Cieslik et al. 2013; Rottschy et al. 2013) to

match the age and gender of the other two datasets. For

each subject, 300 resting-state EPI images were acquired

using BOLD contrast [gradient-echo EPI pulse sequence,

TR = 2.2 s, TE = 30 ms, flip angle = 90�, in plane res-

olution = 3.1 9 3.1 mm2, 36 axial slices (3.1 mm thick-

ness) covering the entire brain]. A structural scan was also

acquired for each participant, using a T1-weighted 3D

magnetization-prepared rapid acquisition with gradient-

echo (MPRAGE) sequence (176 axial slices, TR = 2.25 s,

TE = 3.03 ms, FOV = 256 9 256 mm2, flip angle = 9�,
final voxel resolution: 1 mm 9 1 mm 9 1 mm).

All three rs-fMRI datasets were preprocessed using the

same script as described in the 1000 Functional Connec-

tome Project (http://www.nitrc.org/projects/fcon_1000)

(Biswal et al. 2010). The preprocessing steps included: (1)

discarding of the first ten volumes in each scan series for

signal equilibration, (2) performing slice timing correction

and motion correction, (3) removing the linear and qua-

dratic trends, (4) band-pass temporal filtering

(0.01 Hz\ f\ 0.08 Hz), (5) spatial smoothing using

6-mm full-width at half-maximum (FWHM) Gaussian

kernel, (6) performing nuisance signal regression [includ-

ing white matter (WM), cerebrospinal fluid (CSF), the

global signal, and six motion parameters], and (7) resam-

pling into Montreal Neurological Institute’s (MNI) space

with concatenated transformations from the mean func-

tional volume to the individual anatomical volume and

spatial normalization of the individual anatomical volume

to the MNI152 brain template. Finally, a four-dimensional

time-series dataset in standard MNI space was obtained for

each subject after preprocessing. No participant exhibited

head motion of more than 1.5-mm translation or 1.5�
angular rotation. In addition, to generate differently

smoothed datasets, the second dataset was also spatially

smoothed using different Gaussian kernels (i.e.,

unsmoothed, FWHM = 4, 6 and 8 mm).

Simulated rs-fMRI datasets

The simulated rs-fMRI datasets were generated based on

the preprocessed rs-fMRI data selected from the second

dataset, filling the bilateral medial frontal cortex (MFC)

with synthetic BOLD signals instead of original time-

varying signals (Fig. 2). As preparation, the seed region

was first manually separated into supplementary motor area

(SMA) and pre-SMA in both hemispheres using a vertical

line at y = 0 as the boundary (Zilles et al. 1996; Picard and

Strick 1996). Then, the simulated dataset was generated by

the following steps: (1) defining a region of interest (ROI)

on each subunit, i.e., ROI1/ROI2 was a 3 9 3 9 3 cube

centered at (±9, -6, 64) in SMA, and ROI3/ROI4 was a

3 9 3 9 3 cube centered at (±8, 22, 50) in pre-SMA; (2)

extracting the mean time courses from each of the four

ROIs and using these time courses as the source signals for

Table 1 Detailed information

of the subjects from the three rs-

fMRI datasets

Datasets Scanner Populations Subjects Age range Gender

Dataset 1 3.0 T Philips Chinese Bai 29 20–36, mean 25.0 16 males

Dataset 2 3.0 T Philips Chinese Han 32 22–34, mean 26.0 14 males

Dataset 3 3.0 T Siemens German 32 22–39, mean 29.0 14 males
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the synthetic data in the corresponding subunit; (3) adding

different amounts of Gaussian noise throughout the entire

seed region. As a result, each of the four subunits was filled

with different synthetic noisy time courses, i.e., different

source signals among the four subunits and different noise

signals within each subunit.

We constructed seven sets of the simulated rs-fMRI

data, each consisting of ten virtual subjects, contaminated

with different noise levels, ranging from fairly low levels

(the SD of additional noise is 20) to relatively high levels

(SD = 100). Notably, the noise has been spatially

smoothed with a three-voxel Gaussian kernel. Additionally,

we calculated the mean temporal signal-to-noise ratio

(mTSNR) (Murphy et al. 2007) to evaluate the SNR of the

simulation data.

TSNRi ¼
1
T

P

k fik
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
T

P

k fik � 1
T

P

fik
fik

� �2
r ;

mTSNR ¼ 1

N

X

i

TSNRi

ð3Þ

where fik stands for the BOLD signals of voxel vi at the k-th

time point and TSNRi stands for the TSNR of voxel vi, with

T denoting the total number of time points and N denoting

the total number of voxels within the seed region. Our

simulation data had comparable SNR with the real data

using different smoothing conditions, as shown in Fig. 2.

For the simulation data with a low noise level (SD = 20),

the TSNR was comparable with the real data spatially

smoothed with a FWHM = 8 mm kernel. For the simula-

tion data with a relatively high noise level (SD = 60), the

TSNR was comparable with the unsmoothed real data. As

for very high noise levels, i.e., SD = 80 or 100, the TSNR

of the simulation data was lower than that for the real rs-

fMRI data.

Sparsity parameter selection

The sparsity parameter k in the sparse representation

equation (Eq. 2) controls the number of nonzero entries in

the representation coefficients. It consequently controls the

sparsity of the similarity graph constructed based on them.

Fig. 2 Generation of the simulated rs-fMRI datasets. Four subunits

were defined within medial frontal cortex (MFC) and filled with noisy

synthetic BOLD signals (a). MFC was manually separated into

supplementary motor area (SMA) and pre-SMA in both hemispheres

using a vertical line at y = 0 (Zilles et al. 1996). Each of the four

subunits was filled with different source signals, and each voxel

within a single subunit had different noise signals. First, a ROI was

manually defined on each subunit, and its mean time course was

extracted as the source signal for the synthetic data of the

corresponding subunit. Then, different amounts of Gaussian noise

were added throughout the entire seed region. Finally, the simulation

data was generated by filling each subunit with the corresponding

synthetic BOLD signals. The mean temporal signal-to-noise ratio

(mTSNR) was calculated for each simulation data and compared with

the real data using different smoothing conditions (b). The error bars
represent the SDs of mTSNR across a group of subjects. Generally,

the low noisy simulation data (SD = 20–60) had comparable TSNR

with the real data, while the high noisy simulation data (SD = 80 and

100) had worse TSNR than the real data
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When k was too small, i.e., close to zero, the similarity

graph could be very dense with each voxel represented by

all other voxels. When k was too large, i.e., some constant

larger than one, the similarity graph would be too sparse to

be a connected graph with each voxel only represented by

one single voxel. Theoretically, there is a stable range for

this parameter (Wang and Xu 2013). To assess the appro-

priate sparsity parameters, two different k sequences were

tested on the simulated rs-fMRI datasets. First, each value

within the k sequence [0, 0.0001, 0.001, 0.01, 0.1, 1, 10]

was employed to evaluate the accuracy of MFC parcella-

tion (on the simulation data), which showed that k = 0.1 or

1 to be the most stable parameter. Next, the range [0.1, 1]

was sampled with linearly equal steps with 0.1. We dem-

onstrated that, when the k value was within the range

[0.1, 1], stable performance was achieved with very high

robustness to noise. After determining a stable parameter

range on simulated datasets, we only selected k = 0.1 for

real rs-fMRI datasets, but similar results were achieved

when other parameters within the stable range were used

(Fig. S6, see Supplementary Results 2 in Supplementary

materials for a detailed explanation).

Performance evaluation and group consistency

For the simulation data, the performance was evaluated

through a comparison with the ground truth, which defined

the vertical line y = 0 as the boundary (Zilles et al. 1996).

Unfortunately, we had no access to the ground truth for real

rs-fMRI data. In compensation, we evaluated the repro-

ducibility of the parcellation results within each dataset, the

consistency across multi-site datasets and the agreement

across different smoothing conditions. The parcellation

results were also compared with the cytoarchitectonic

mapping of subdivisions (cyto-maps) when they were

accessible. These indicators were all evaluated using the

normalized mutual information (NMI, Eq. 4) (Lancichi-

netti and Fortunato 2009; Danon et al. 2005), ranging from

0 to 1, with 1 indicating the same parcellation with only

differences in the sequence of labels, and 0 indicating

totally different parcellation.

NMI ¼ IðX; YÞ
minðHðXÞ;HðYÞÞ

¼
P

x

P

y Nxy log
Nxy�N
Nx�N�y

min
P

x Nx� log
Nx�
N
;
P

y N�y log
N�y
N

n o ð4Þ

where I(X; Y) is the mutual information between the dis-

tributions of parameters X and Y, while H(X) and H(Y) are

the entropies of the distributions for X and Y, respectively.

Here, we used the minimum of the two entropies to nor-

malize the mutual information. The NMI value could be

calculated using the Contingency Table (Vinh et al. 2010),

which records co-occurrence between any two clusters in

two different parcellation results.

To evaluate the consistency among different datasets,

the agreement between the MPMs of any two datasets was

calculated using NMI (Eq. 4). To calculate the reproduc-

ibility of parcellation on each dataset, the entire group was

randomly separated into two sub-groups, with one parcel-

lation result for each sub-group, and the consistency

between the two results was evaluated using NMI (Eq. 4).

The entire procedure was repeated 100 times and the mean

NMI value was calculated with higher values indicating

better reproducibility of results between different sub-

groups. As for the smoothing effects, the agreement of

individual parcellation on different spatially smoothed data

was evaluated using NMI (Eq. 4). The mean NMI value

across subjects was calculated with higher values indicat-

ing low sensitivity to smoothing conditions for rs-fMRI

data.

Results

Results on simulated rs-fMRI datasets

Our method was tested on the simulation data by evaluat-

ing two types of performance (Fig. 3), including the

accuracy of separating the predefined subunits and the

ability of restraining noise effects. During parcellation, two

different k sequences were tested: the first one ranged from

low sparsity (i.e., k = 0.0001) to high sparsity (i.e.,

k = 10) with logarithmic equal steps, and the second one

focused on a local range [0.1, 1] with linear equal steps. As

shown in Fig. 3, all parameters achieved high accuracy of

parcellation on the low noisy data (SD = 20–60), but with

a significant decrease on highly noisy data (SD = 80 and

100) which actually had worse TSNR than the real rs-fMRI

data (Fig. 2b). More specifically, the method achieved

unsatisfying performance in restraining noise when k was

too small (i.e., k\ 0.1), and failed in parcellation when k
was too large (i.e., k[ 1). However, a stable sparsity

parameter range, i.e., the interval [0.1, 1], could be iden-

tified which achieved high accuracy of parcellation and

high robustness to noise at the same time. Specifically,

good performance was achieved on different noisy datasets

with the mean NMIs[0.95 and SDs\0.1, when using each

value in the second k sequence (Fig. 3). Similar results

were also shown when the cluster number was smaller than

the ground truth, i.e., K = 2 and 3 (Fig. S3).

We also compared the performance with commonly

used similarity matrices, including cross-correlation (cc)

(Chang et al. 2013; Kim et al. 2010; Bzdok et al. 2013),

eta2 (Nelson et al. 2010; Kelly et al. 2012), spatially

constrained (sp-local) (Craddock et al. 2012) and Gaussian-
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kernel weighted on the local time-varying BOLD signals

(local) (Shen et al. 2010), and KNN graph built on the local

time-varying BOLD signals (KNN) (Shen et al. 2010). As

shown in Fig. 4, our method achieved the highest accuracy

in separating the four subunits on all datasets and showed

much higher robustness to noise (i.e., with lower reduction

in NMI values and lower SD as the noise level increased).

Besides, our method also achieved higher performance

when the predefined cluster number was smaller than the

ground truth, i.e., K = 2 and 3 (Fig. S4).

Parcellation results on real rs-fMRI datasets

Parcellation of MFC on real rs-fMRI data

Medial frontal cortex was partitioned into the putative

SMA and pre-SMA in both hemispheres with a slightly

oblique boundary close to y = 0, consistent with previous

studies (Nanetti et al. 2009; Zhang et al. 2012; Kim et al.

2010; Eickhoff et al. 2011). Highly consistent results were

achieved on three different datasets with little influence of

different spatially smoothing conditions. The following

results were mainly based on local time courses, but similar

conclusions were drawn when whole-brain connectivity

patterns were used as features (see Supplementary Results

1 in Supplementary materials for a detailed explanation).

The parcellation results were stable and consistent on

three different datasets (Fig. 5 a), with high reproducibility

on each dataset (NMI = 0.75, 0.81 and 0.84, respectively

for dataset 1, 2 and 3) and high consistency between the

MPMs of different datasets [NMI = 0.92 (for datasets 1 vs.

2), 0.69 (for datasets 1 vs. 3) and 0.71 (for datasets 2 vs.

3)]. Besides, the parcellation results also showed high

concentration on the probability maps (Fig. 5b) and

resulted in a high coverage fraction for the overlapping

areas (i.e., 94 %).

To evaluate the smoothing effects on brain parcellation,

we also partitioned MFC on four differently smoothed

datasets. As shown in Fig. 5c, highly consistent parcella-

tion results were achieved across differently smoothed

datasets, including high reproducibility of group parcella-

tion for each level of smoothness (NMI = 0.75, 0.81, 0.81

and 0.85, respectively for unsmoothed, FWHM = 4, 6 and

8 mm) and high consistency of individual parcellation

among differently smoothed datasets [NMI = 0.63

(between unsmoothed and FWHM [0), 0.70 (between

FWHM = 4 and FWHM [4) and 0.78 (between

FWHM = 6 and FWHM = 8)]. The results (illustrated in

Fig. 3 Performance of brain parcellation using sparse representation

on the simulated rs-fMRI datasets. The simulation data were

constructed to include four subunits within medial frontal cortex

(a) and the parcellation method was tested on it with two k sequences

(b, c). Our method achieved high accuracy of parcellation on the low

noisy data (SD = 20–60), but with a significant decrease on highly

noisy data (SD = 80 and 100). However, a stable sparsity parameter

range labeled with the red color could be identified which achieved

highly stable performance on all noisy datasets. Each column in

b corresponds to the accuracy of parcellation using parameters within

the sequence [0, 0.0001, 0.001, 0.01, 0.1, 1, 10] and each column in

c corresponds to using parameters within the sequence

[0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]. The mean NMI scores across

ten subjects was used to evaluate the accuracy of parcellation, with

different colors indicating different noisy datasets, i.e., SD

(noise) = 20, 30, 40, 50, 60, 80 and 100, and the error bars

representing the SD of NMI values
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Fig. 5c) thus demonstrated that different smoothing con-

ditions had little impact on the performance of our method.

Parcellation of the parietal operculum

The parietal operculum was parcellated into multiple sub-

regions on multi-site rs-fMRI datasets. Stable and consis-

tent parcellation results were achieved on the three

datasets. The parcellation results were well corresponding

to the cytoarchitecture subdivisions (Eickhoff et al. 2006a),

but an extra cluster for the head representation was sepa-

rated which was corresponding to the somatotopic orga-

nizations (Eickhoff et al. 2007). The following results were

based on local time courses, but similar patterns were also

presented when whole-brain connectivity patterns were

used (see Supplementary Results 1 in Supplementary

materials for a detailed explanation).

Five stable subregions were identified within the parietal

operculum (Fig. 6) (Table S1). High correspondence was

achieved as comparing with the cyto-maps (NMI = 0.75,

0.75 and 0.77, respectively for dataset 1, 2 and 3). We

renamed the clusters according to their correspondence

with the cytoarchitectonic subdivisions (Eickhoff et al.

2006a) and somatotopic organizations (Eickhoff et al.

2007). Specifically, cluster 1, named OP-head, was evenly

located at the lateral parts of areas OP1 and OP4, but was

corresponding to the head representation area within the

somatotopic organizations (Eickhoff et al. 2007). Cluster 2,

named OP1-body, was located at the medial part of area

OP1, and corresponding to the body representation area in

OP1 (Eickhoff et al. 2007). Cluster 5, named OP4, was

entirely located within area OP4 and covered most of its

territory. The two medial clusters were named as OP2 and

OP3, respectively, because they were mainly located

within areas OP2 and OP3.

Consistent patterns were presented on the three different

datasets (Fig. S5), with high reproducibility on each dataset

(NMI = 0.83, 0.85 and 0.85, respectively for dataset 1, 2

Fig. 4 Comparing the performance with common parcellation meth-

ods on simulation data. Five commonly used similarity matrices were

tested and compared with our method on different noisy datasets, i.e.,

SD (noise) = 20, 30, 40, 50, 60, 80 and 100. Our method achieved

higher performance than all common methods on highly noisy data

(SD = 80 and 100) and also showed higher robustness to noise.

a Accuracy of parcellation evaluated through a comparison with the

ground truth using normalized mutual information (NMI). b Sagittal

(x = -4) and axial (z = 50) slice views of the overlapping maps of

the parcellation results on the most noisy simulation dataset

(SD = 100). cc, cross-correlation; local, using local time-varying

BOLD signals; Sp-local, performing spatially constraints on the local

matrix; KNN, constructing a KNN graph on the local matrix; Our

method, performing sparse representation on local time-varying

BOLD signals
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and 3), and high consistency between different datasets

[NMI = 0.90 (for datasets 1 vs. 2), 0.88 (for datasets 1 vs.

3) and 0.87 (for datasets 2 vs. 3)] (Table S1). The parcel-

lation results shown in Fig. 6b were overlapped among the

three datasets after a threshold at 50 % on the probability

maps of each dataset, and resulted in a high coverage

fraction for the overlapping areas (i.e., 72 %).

Discussion

In this study, we proposed a sparse representation based

method for rs-fMRI-based brain parcellation. We first

determined the neighbors for each seed voxel by solving

the sparse representation equations and then constructed a

sparse similarity matrix based on the representation coef-

ficient matrix to cluster the seed region into separate

clusters. We validated the robustness of this approach to

brain parcellation, including the ability of restraining noise

on simulation data and the consistency of parcellation on

real rs-fMRI data. For the simulated rs-fMRI data, we

identified the stable sparsity parameter range for the

method and showed its consistent high performance on

different noisy datasets. For the real rs-fMRI data, stable

parcellation of MFC and OP was achieved on three dif-

ferent datasets with high reproducibility within each data-

set and high consistency across multiple datasets. The

parcellation of MFC was little influenced by different

spatial smoothing conditions. Furthermore, the consistent

parcellation of OP on multi-site datasets was well corre-

sponding to the cytoarchitectonic subdivisions and their

somatotopic organizations.

Robust brain parcellation using rs-fMRI data

Many parcellation procedures have been proposed for rs-

fMRI-based brain parcellation using different similarity

measures such as cross-correlation (cc) (Chang et al. 2013;

Kim et al. 2010), eta2 (Nelson et al. 2010; Kelly et al.

2012), spatially constrained (sp-local) (Craddock et al.

2012) and Gaussian-kernel weighted on the local time-

series matrix (local) (Shen et al. 2010), KNN graph built on

the local matrix (KNN) (Shen et al. 2010) and so on. But

such parcellation results may be susceptible to various

artifacts in rs-fMRI data. Sparse representation, on the

other hand, could guarantee a robust brain parcellation. On

noisy simulated datasets, sparse representation achieved

higher accuracy of parcellation and higher ability of

restraining noise effects (Fig. 4). The first three common

parcellation methods, including cc, eta2 and sp-local, were

quite sensitive to noise and might require high degree of

smoothness in real data (i.e., corresponding TSNR of

smoothing kernel FWHM = 6 and 8 mm in Fig. 2). Better

performance was achieved by the local and KNN methods,

but still not as good as our method, especially on highly

noisy datasets (i.e., SD = 80 and 100) (Fig. 4). On real rs-

fMRI data, sparse representation achieved stable individual

parcellation results and consistent group parcellation on

multi-site datasets. The probability maps of both MFC and

OP were highly centralized on all three datasets (Figs. 5b,

6b). And the parcellation of MFC was little influenced by

the degrees of spatial smoothing (Fig. 5c, f). In the

Fig. 5 Parcellation of MFC on multi-site rs-fMRI datasets. MFC was

partitioned into the putative SMA and pre-SMA using sparse

representation on both time-varying BOLD signals (a–c) and whole-

brain connectivity patterns (d–f). Consistent parcellation of MFC was

achieved on three different datasets and on different spatially

smoothed datasets. Additionally, similar results were generated when

the two different features were used. The MPMs were calculated on

each dataset separately, showing a high consistency with each other (a,
d). The probability maps of the two clusters were thresholded at 50 %

and displayed on the same image for each dataset (b, e). An ROI was

extracted for each cluster with a probability threshold at 50 % and

intersected among three datasets to calculate the overlapping maps.

Consistent parcellation of MFC was achieved under different

smoothing conditions (c, f), i.e., unsmoothed, FWHM = 4, 6 and

8 mm. All results were shown at the slice x = -4 (MNI coordinate),

and overlapped on the MNI152 standard brain
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meanwhile, the inter-subject variability was preserved

through the robust individual parcellation results we

achieved on each subject. The inter-subject variability has

been widely reported in both structure and function of the

human brain (Mueller et al. 2013; Rademacher et al. 2001;

Zilles and Amunts 2013). But most previous parcellation

studies neglected such variability during brain parcellation

by averaging the connectivity profiles (Deen et al. 2011;

Yeo et al. 2011) or similarity matrices across subjects

(Craddock et al. 2012). In this study, the individual vari-

ability of the brain parcellation was characterized by the

population probabilistic map on each dataset, which

counted the percentage among subjects who had the same

cluster labels at the specific voxels. For instance, within

MFC, large variance was shown at the boundary of SMA

and pre-SMA (Fig. 5b, d). Similar variance patterns of

parcellation also occurred in OP, especially at the borders

between OP1-body and OP4 (Fig. 6).

The robustness of the method was supported by the

following features. First, the similarity graph was con-

structed based on the representation coefficients rather than

commonly used correlation. It employs the multivariate

regression model to characterize the unique contribution of

each variable. In addition to the self-representation model,

an extra sparsity constraint on the representation coeffi-

cients is emphasized to identify the most relevant variables.

As a result, the most relevant variables in the data could be

extracted, which identify the nearest subspaces of each

point with minimum embedding dimensions (Elhamifar

and Vidal 2013; Wang and Xu 2013). In rs-fMRI data,

sparse representation presented an intrinsic local neigh-

boring effect due to the averaging effect of BOLD signals.

As an illustration (Fig. S1), the Pearson correlation and

sparse representation coefficients were calculated for each

voxel within MFC on a real rs-fMRI data. As shown in Fig.

S1a, most high correlation values (correlation[0.5) were

widely spatially distributed across the whole seed region.

Only a small portion of strong connections were captured

under strong spatial constraints (d\ 2), which might hurt

its ability in detecting individual modules. Similar con-

clusion was drawn on the simulation data, where the sp-

local method was quite sensitive to noise (Fig. 5). On the

other hand, the sparse representation coefficients presented

a clear local effect that most of the strong connections were

Fig. 6 Parcellation of the parietal operculum on multi-site rs-fMRI

datasets. Five subregions were identified using rs-fMRI-based brain

parcellation (CBP-fMRI). Their overlapping maps across the three

datasets were shown in b, after a threshold at 50 % on the probability

maps of each dataset. Similar patterns were shown using time-varying

BOLD signals and whole-brain connectivity patterns. Both of them

achieved high consistency across multiple datasets and well

correspondence to the cytoarchitectonic subdivisions (cyto-maps),

which encompassed four subregions OP1-OP4 (a) (Eickhoff et al.

2006a). All these results were rendered by projecting them onto the

MNI152 template with the temporal lobes removed to obtain a clear

view of the parietal operculum. c Axial slice views of both cyto-maps

and CBP-fMRI results displayed on the MNI152 standard brain
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located within a small distance (d\ 5). Thus, the sparse

representation possessed the local neighboring effects

without explicit spatial constraints.

Besides, the most relevant variables identified by the

representation coefficients support the robustness of the

method. These coefficients have been used to reduce noise

effects (Elhamifar and Vidal 2013; Elad and Aharon 2006)

and recover signals (Elad 2010) in image processing. For

rs-fMRI data, it has the potential of reducing noisy artifacts

in the BOLD signals. As an illustration (Fig. S2), the sparse

representation coefficients were employed to recover the

original pattern filled with noisy BOLD signals (i.e.,

SD = 100) in a simulation data. The pattern was mostly

recovered using sparse representation with lambda = 0.1

or 1 (Fig. S2b), which was coincided with the stable

sparsity parameter range identified in the simulation data

(Fig. 3).

Parcellation of the parietal operculum

The parietal operculum, which is commonly known as the

secondary somatosensory cortex (SII), is located ventrally

to the primary somatosensory cortex (SI) and extends into

the upper bank of the Sylvain fissure. It has been parti-

tioned into four subdivisions using cytoarchitectonic

mapping (Eickhoff et al. 2006a), where OP1–OP4 were,

respectively, corresponding to the human homologs of

primate areas SII and parietal ventral (PV) (Eickhoff et al.

2007; Eickhoff et al. 2008; Eickhoff et al. 2010), as well as

the parieto-insular vestibular cortex (PIVC) (Eickhoff et al.

2007; Zu Eulenburg et al. 2012) and the ventral somato-

sensory area (VS) (Eickhoff et al. 2007). Clear somatotopic

organizations of the four subdivisions have also been

revealed, which was also similar to the somatotopic orga-

nization of SII, PV, and VS in nonhuman primates (Eick-

hoff et al. 2007). Generally speaking, the face area was

located more laterally at the contiguous border between

OP1 and OP4, while the body area was located more

medially. However, it is still difficult to distinguish these

regions using task fMRI or PET because they usually co-

activate in a variety of tactile tasks (Keysers et al. 2010;

Burton et al. 2008).

In this study, robust parcellation of the parietal oper-

culum has been achieved using rs-fMRI data. Firstly,

similar patterns were achieved using local time-varying

BOLD signals and whole-brain connectivity patterns

(Fig. 6b). Secondly, the parcellation results were consistent

across multi-site datasets (Fig. 6b and Fig. S5), with high

reproducibility within each dataset and high consistency

across different datasets (Table S1). Thirdly, high corre-

spondence was found as comparing with the cyto-maps

(see ‘‘Results’’). Five functional distinguished subregions

has been identified, with four of them well corresponding

to the cyto-maps in spatial arrangements. Specifically,

cluster OP1-body was located at the medial part of area

OP1, corresponding to the body representation area in OP1

(Eickhoff et al. 2007); cluster OP4 was entirely located

within area OP4; the two medial clusters were mainly

located within areas OP2 and OP3, respectively, but also

extended into the lateral areas. The additional cluster

named OP-head was evenly located at the lateral parts of

areas OP1 and OP4, but it was corresponding to the head

representation area in the somatotopic organization (Eick-

hoff et al. 2007).

Our parcellation results were also consistent with pre-

vious functional studies (Keysers et al. 2010; Zu Eulenburg

et al. 2013; Burton et al. 2008; Eickhoff et al. 2007).

Firstly, we successfully distinguished the lateral subregions

(OP1 and OP4) and the medial subregions (OP2 and OP3).

Areas OP1 and OP4 formed the secondary somatosensory

cortex; area OP2 could be the candidate for the human

vestibular cortex (Zu Eulenburg et al. 2012; Eickhoff et al.

2006b); area OP3 joined the posterior insula may serve as

the primary cortex for pain (Garcia-Larrea 2012). Sec-

ondly, we clearly separated areas OP1 and OP4. Area OP1

was more like a somatosensory integrator for multimodal

stimuli and activated in a wide range of somatosensory

tasks (Mazzola et al. 2012), while area OP4 may play a role

in sensory-motor integration processes with dense con-

nection to the premotor cortex (Eickhoff et al. 2010).

Significantly different anatomical connectivity patterns and

co-activation patterns have been reported (Eickhoff et al.

2010). The RSFC patterns also showed significant differ-

ences between clusters OP1-body and OP4 (Fig. S7).

Thirdly, the additional separation of cluster OP-head from

clusters OP1-body and OP4 was well corresponding to the

somatotopic organization of the human parietal operculum

(Eickhoff et al. 2007). MEG studies also showed a lateral

to medial transition of representations between tongue,

hand and foot (Sakamoto et al. 2008). The RSFC patterns

also showed that area OP-head showed higher positive

connections with the face area in the primary somatosen-

sory cortex, while OP1-body showed stronger connections

with the hand and trunk areas in the primary somatosensory

cortex (Fig. S6). Besides, the RSFC maps showed that OP-

head had more similar connectivity patterns with OP1-

body than OP4, which indicate the functional borders of

areas OP1 and OP4 being shifted from the cytoarchitec-

tonic borders laterally.

Conclusion

In the current study, we presented a robust brain parcel-

lation method using rs-fMRI data, which could achieve

stable individual parcellation results with high robustness
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to noise. It provided an efficient approach to construct a

sparse similarity matrix through solving sparse represen-

tation equations and generated stable individual parcella-

tion with the aid of spectral clustering. Using the proposed

method, similar results were generated using local time-

varying BOLD signals and whole-brain connectivity pat-

terns. Moreover, the method outperformed commonly used

methods with higher robustness to noise on all simulated

rs-fMRI datasets. Highly consistent parcellations were

achieved on multi-site real rs-fMRI datasets, along with

little influence from different smoothing conditions.

Therefore, this parcellation framework using sparse rep-

resentation presented an efficient approach to robust brain

parcellation using resting-state fMRI.

Acknowledgments This work was partially supported by the

National Key Basic Research and Development Program (973) (Grant

No. 2011CB707801), the Strategic Priority Research Program of the

Chinese Academy of Sciences (Grant No. XDB02030300), and the

Natural Science Foundation of China (Grant No. 91132301). SBE was

supported by the Deutsche Forschungsgemeinschaft (DFG, EI 816/4-

1 and LA 3071/3-1), the National Institute of Mental Health (R01-

MH074457) and the EU (Human Brain Project). The authors have

declared no conflict of interest.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.

References

Birn RM, Smith MA, Jones TB, Bandettini PA (2008) The respiration

response function: the temporal dynamics of fMRI signal

fluctuations related to changes in respiration. Neuroimage

40(2):644–654. doi:10.1016/j.neuroimage.2007.11.059

Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional

connectivity in the motor cortex of resting human brain using

echo-planar MRI. Magn Reson Med 34(4):537–541

Biswal BB, Mennes M, Zuo XN, Gohel S, Kelly C, Smith SM,

Beckmann CF, Adelstein JS, Buckner RL, Colcombe S,

Dogonowski AM, Ernst M, Fair D, Hampson M, Hoptman MJ,

Hyde JS, Kiviniemi VJ, Kotter R, Li SJ, Lin CP, Lowe MJ,

Mackay C, Madden DJ, Madsen KH, Margulies DS, Mayberg

HS, McMahon K, Monk CS, Mostofsky SH, Nagel BJ, Pekar JJ,

Peltier SJ, Petersen SE, Riedl V, Rombouts SA, Rypma B,

Schlaggar BL, Schmidt S, Seidler RD, Siegle GJ, Sorg C, Teng

GJ, Veijola J, Villringer A, Walter M, Wang L, Weng XC,

Whitfield-Gabrieli S, Williamson P, Windischberger C, Zang

YF, Zhang HY, Castellanos FX, Milham MP (2010) Toward

discovery science of human brain function. Proc Natl Acad Sci

USA 107(10):4734–4739. doi:10.1073/pnas.0911855107

Buckner RL, Krienen FM, Yeo BT (2013) Opportunities and

limitations of intrinsic functional connectivity MRI. Nat Neuro-

sci 16(7):832–837. doi:10.1038/nn.3423

Burton H, Sinclair RJ, Wingert JR, Dierker DL (2008) Multiple

parietal operculum subdivisions in humans: tactile activation

maps. Somatosens Motor Res 25(3):149–162. doi:10.1080/

08990220802249275

Bzdok D, Langner R, Schilbach L, Jakobs O, Roski C, Caspers S,

Laird AR, Fox PT, Zilles K, Eickhoff SB (2013) Characteriza-

tion of the temporo-parietal junction by combining data-driven

parcellation, complementary connectivity analyses, and func-

tional decoding. Neuroimage 81:381–392. doi:10.1016/j.neuro

image.2013.05.046

Chang LJ, Yarkoni T, Khaw MW, Sanfey AG (2013) Decoding the

role of the insula in human cognition: functional parcellation and

large-scale reverse inference. Cereb Cortex 23(3):739–749.

doi:10.1093/cercor/bhs065

Cieslik EC, Zilles K, Caspers S, Roski C, Kellermann TS, Jakobs O,

Langner R, Laird AR, Fox PT, Eickhoff SB (2013) Is there

‘‘one’’ DLPFC in cognitive action control? Evidence for

heterogeneity from co-activation-based parcellation. Cereb Cor-

tex 23(11):2677–2689. doi:10.1093/cercor/bhs256

Craddock RC, James GA, Holtzheimer PE 3rd, Hu XP, Mayberg HS

(2012) A whole brain fMRI atlas generated via spatially

constrained spectral clustering. Hum Brain Mapp

33(8):1914–1928. doi:10.1002/hbm.21333

Crippa A, Cerliani L, Nanetti L, Roerdink JB (2011) Heuristics for

connectivity-based brain parcellation of SMA/pre-SMA through

force-directed graph layout. Neuroimage 54(3):2176–2184.

doi:10.1016/j.neuroimage.2010.09.075

Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ,

Smith SM, Beckmann CF (2006) Consistent resting-state

networks across healthy subjects. Proc Natl Acad Sci USA

103(37):13848–13853. doi:10.1073/pnas.0601417103

Danon L, Diaz-Guilera A, Duch J, Arenas A (2005) Comparing

community structure identification. J Stat Mech Theory Exp.

doi:10.1088/1742-5468/2005/09/P09008

Deen B, Pitskel NB, Pelphrey KA (2011) Three systems of insular

functional connectivity identified with cluster analysis. Cereb

Cortex 21(7):1498–1506. doi:10.1093/cercor/bhq186

Donoho DL, Tsaig Y (2008) Fast solution of l1-norm minimization

problems when the solution may be sparse. IEEE Trans Inf

Theory 54(11):4789–4812

Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts

K, Zilles K (2005) A new SPM toolbox for combining

probabilistic cytoarchitectonic maps and functional imaging

data. Neuroimage 25(4):1325–1335. doi:10.1016/j.neuroimage.

2004.12.034

Eickhoff SB, Schleicher A, Zilles K, Amunts K (2006a) The human

parietal operculum. I. Cytoarchitectonic mapping of subdivi-

sions. Cereb Cortex 16(2):254–267. doi:10.1093/cercor/bhi105

Eickhoff SB, Weiss PH, Amunts K, Fink GR, Zilles K (2006b)

Identifying human parieto-insular vestibular cortex using fMRI

and cytoarchitectonic mapping. Hum Brain Mapp

27(7):611–621. doi:10.1002/hbm.20205

Eickhoff SB, Grefkes C, Zilles K, Fink GR (2007) The somatotopic

organization of cytoarchitectonic areas on the human parietal

operculum. Cereb Cortex 17(8):1800–1811. doi:10.1093/cercor/

bhl090

Eickhoff SB, Grefkes C, Fink GR, Zilles K (2008) Functional

lateralization of face, hand, and trunk representation in anatom-

ically defined human somatosensory areas. Cereb Cortex

18(12):2820–2830. doi:10.1093/cercor/bhn039

Eickhoff SB, Jbabdi S, Caspers S, Laird AR, Fox PT, Zilles K,

Behrens TE (2010) Anatomical and functional connectivity of

cytoarchitectonic areas within the human parietal operculum.

J Neurosci 30(18):6409–6421. doi:10.1523/JNEUROSCI.5664-

09.2010

Eickhoff SB, Bzdok D, Laird AR, Roski C, Caspers S, Zilles K, Fox

PT (2011) Co-activation patterns distinguish cortical modules,

their connectivity and functional differentiation. Neuroimage

57(3):938–949. doi:10.1016/j.neuroimage.2011.05.021

Brain Struct Funct (2015) 220:3565–3579 3577

123

http://dx.doi.org/10.1016/j.neuroimage.2007.11.059
http://dx.doi.org/10.1073/pnas.0911855107
http://dx.doi.org/10.1038/nn.3423
http://dx.doi.org/10.1080/08990220802249275
http://dx.doi.org/10.1080/08990220802249275
http://dx.doi.org/10.1016/j.neuroimage.2013.05.046
http://dx.doi.org/10.1016/j.neuroimage.2013.05.046
http://dx.doi.org/10.1093/cercor/bhs065
http://dx.doi.org/10.1093/cercor/bhs256
http://dx.doi.org/10.1002/hbm.21333
http://dx.doi.org/10.1016/j.neuroimage.2010.09.075
http://dx.doi.org/10.1073/pnas.0601417103
http://dx.doi.org/10.1088/1742-5468/2005/09/P09008
http://dx.doi.org/10.1093/cercor/bhq186
http://dx.doi.org/10.1016/j.neuroimage.2004.12.034
http://dx.doi.org/10.1016/j.neuroimage.2004.12.034
http://dx.doi.org/10.1093/cercor/bhi105
http://dx.doi.org/10.1002/hbm.20205
http://dx.doi.org/10.1093/cercor/bhl090
http://dx.doi.org/10.1093/cercor/bhl090
http://dx.doi.org/10.1093/cercor/bhn039
http://dx.doi.org/10.1523/JNEUROSCI.5664-09.2010
http://dx.doi.org/10.1523/JNEUROSCI.5664-09.2010
http://dx.doi.org/10.1016/j.neuroimage.2011.05.021


Elad M (2010) Sparse and redundant representations: from theory to

applications in signal and image processing. Springer, New York

Elad M, Aharon M (2006) Image denoising via sparse and redundant

representations over learned dictionaries. IEEE Trans Image

Process 15(12):3736–3745

Elhamifar E, Vidal R (2009) Sparse subspace clustering. In: IEEE

conference on computer vision and pattern recognition, 2009.

CVPR 2009, pp 2790–2797

Elhamifar E, Vidal R (2013) Sparse subspace clustering: algorithm,

theory, and applications. IEEE Trans Pattern Anal Mach Intell

35(11):2765–2781. doi:10.1109/TPAMI.2013.57

Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain

activity observed with functional magnetic resonance imaging.

Nat Rev Neurosci 8(9):700–711. doi:10.1038/nrn2201

Garcia-Larrea L (2012) The posterior insular-opercular region and the

search of a primary cortex for pain. Neurophysiol Clin

42(5):299–313. doi:10.1016/j.neucli.2012.06.001

Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional

connectivity in the resting brain: a network analysis of the

default mode hypothesis. Proc Natl Acad Sci USA

100(1):253–258. doi:10.1073/pnas.0135058100

Jakobs O, Langner R, Caspers S, Roski C, Cieslik EC, Zilles K, Laird

AR, Fox PT, Eickhoff SB (2012) Across-study and within-

subject functional connectivity of a right temporo-parietal

junction subregion involved in stimulus-context integration.

Neuroimage 60(4):2389–2398. doi:10.1016/j.neuroimage.2012.

02.037

Jenkinson M, Smith S (2001) A global optimisation method for robust

affine registration of brain images. Med Image Anal

5(2):143–156

Johansen-Berg H, Behrens TE, Robson MD, Drobnjak I, Rushworth

MF, Brady JM, Smith SM, Higham DJ, Matthews PM (2004)

Changes in connectivity profiles define functionally distinct

regions in human medial frontal cortex. Proc Natl Acad Sci USA

101(36):13335–13340. doi:10.1073/pnas.0403743101

Kellermann TS, Caspers S, Fox PT, Zilles K, Roski C, Laird AR,

Turetsky BI, Eickhoff SB (2013) Task- and resting-state

functional connectivity of brain regions related to affection and

susceptible to concurrent cognitive demand. Neuroimage

72:69–82. doi:10.1016/j.neuroimage.2013.01.046

Kelly C, Toro R, Di Martino A, Cox CL, Bellec P, Castellanos FX,

Milham MP (2012) A convergent functional architecture of the

insula emerges across imaging modalities. Neuroimage

61(4):1129–1142. doi:10.1016/j.neuroimage.2012.03.021

Keysers C, Kaas JH, Gazzola V (2010) Somatosensation in social

perception. Nat Rev Neurosci 11(6):417–428. doi:10.1038/

nrn2833

Kim JH, Lee JM, Jo HJ, Kim SH, Lee JH, Kim ST, Seo SW, Cox RW,

Na DL, Kim SI, Saad ZS (2010) Defining functional SMA and

pre-SMA subregions in human MFC using resting state fMRI:

functional connectivity-based parcellation method. Neuroimage

49(3):2375–2386. doi:10.1016/j.neuroimage.2009.10.016

Klein JC, Behrens TE, Robson MD, Mackay CE, Higham DJ,

Johansen-Berg H (2007) Connectivity-based parcellation of

human cortex using diffusion MRI: establishing reproducibility,

validity and observer independence in BA 44/45 and SMA/pre-

SMA. Neuroimage 34(1):204–211. doi:10.1016/j.neuroimage.

2006.08.022

Lancichinetti A, Fortunato S (2009) Community detection algorithms:

a comparative analysis. Phys Rev E: Stat, Nonlin, Soft Matter

Phys 80(5 Pt 2):056117

Mairal J, Elad M, Sapiro G (2008) Sparse representation for color

image restoration. IEEE Trans Image Process 17(1):53–69

Mazzola L, Faillenot I, Barral FG, Mauguiere F, Peyron R (2012)

Spatial segregation of somato-sensory and pain activations in the

human operculo-insular cortex. Neuroimage 60(1):409–418.

doi:10.1016/j.neuroimage.2011.12.072

Mueller S, Wang D, Fox MD, Yeo BT, Sepulcre J, Sabuncu MR,

Shafee R, Lu J, Liu H (2013) Individual variability in functional

connectivity architecture of the human brain. Neuron

77(3):586–595. doi:10.1016/j.neuron.2012.12.028

Murphy K, Bodurka J, Bandettini PA (2007) How long to scan? The

relationship between fMRI temporal signal to noise ratio and

necessary scan duration. Neuroimage 34(2):565–574. doi:10.

1016/j.neuroimage.2006.09.032

Nadler B, Galun M (2006) Fundamental limitations of spectral

clustering. In: Advances in neural information processing

systems, pp 1017–1024

Nanetti L, Cerliani L, Gazzola V, Renken R, Keysers C (2009) Group

analyses of connectivity-based cortical parcellation using

repeated k-means clustering. Neuroimage 47(4):1666–1677.

doi:10.1016/j.neuroimage.2009.06.014

Nelson SM, Cohen AL, Power JD, Wig GS, Miezin FM, Wheeler

ME, Velanova K, Donaldson DI, Phillips JS, Schlaggar BL,

Petersen SE (2010) A parcellation scheme for human left lateral

parietal cortex. Neuron 67(1):156–170. doi:10.1016/j.neuron.

2010.05.025

Ng AY, Jordan MI, Weiss Y (2002) On spectral clustering: analysis

and an algorithm. Adv Neural Inf Process Syst 2:849–856

Patriat R, Molloy EK, Meier TB, Kirk GR, Nair VA, Meyerand ME,

Prabhakaran V, Birn RM (2013) The effect of resting condition

on resting-state fMRI reliability and consistency: a comparison

between resting with eyes open, closed, and fixated. Neuroimage

78:463–473. doi:10.1016/j.neuroimage.2013.04.013

Picard N, Strick PL (1996) Motor areas of the medial wall: a review
of their location and functional activation. Cereb Cortex

6(3):342–353

Rademacher J, Burgel U, Geyer S, Schormann T, Schleicher A,

Freund HJ, Zilles K (2001) Variability and asymmetry in the

human precentral motor system. A cytoarchitectonic and myel-

oarchitectonic brain mapping study. Brain 124(Pt 11):2232–2258

Rottschy C, Caspers S, Roski C, Reetz K, Dogan I, Schulz JB, Zilles

K, Laird AR, Fox PT, Eickhoff SB (2013) Differentiated parietal

connectivity of frontal regions for ‘‘what’’ and ‘‘where’’ memory.

Brain Struct Funct 218(6):1551–1567. doi:10.1007/s00429-012-

0476-4

Ryali S, Chen T, Supekar K, Menon V (2013) A parcellation

scheme based on von Mises–Fisher distributions and Markov

random fields for segmenting brain regions using resting-state

fMRI. Neuroimage 65:83–96. doi:10.1016/j.neuroimage.2012.

09.067

Sakamoto K, Nakata H, Kakigi R (2008) Somatotopic representation

of the tongue in human secondary somatosensory cortex. Clin

Neurophysiol 119(9):2125–2134. doi:10.1016/j.clinph.2008.05.

003

Satterthwaite TD, Elliott MA, Gerraty RT, Ruparel K, Loughead J,

Calkins ME, Eickhoff SB, Hakonarson H, Gur RC, Gur RE,

Wolf DH (2013) An improved framework for confound regres-

sion and filtering for control of motion artifact in the prepro-

cessing of resting-state functional connectivity data. Neuroimage

64:240–256. doi:10.1016/j.neuroimage.2012.08.052

Shen X, Papademetris X, Constable RT (2010) Graph-theory based

parcellation of functional subunits in the brain from resting-state

fMRI data. Neuroimage 50(3):1027–1035. doi:10.1016/j.neuro

image.2009.12.119

Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE

Trans Pattern Anal Mach Intell 22(8):888–905

Song M, Jiang T (2012) A review of functional magnetic resonance

imaging for Brainnetome. Neurosci Bull 28(4):389–398. doi:10.

1007/s12264-012-1244-4

3578 Brain Struct Funct (2015) 220:3565–3579

123

http://dx.doi.org/10.1109/TPAMI.2013.57
http://dx.doi.org/10.1038/nrn2201
http://dx.doi.org/10.1016/j.neucli.2012.06.001
http://dx.doi.org/10.1073/pnas.0135058100
http://dx.doi.org/10.1016/j.neuroimage.2012.02.037
http://dx.doi.org/10.1016/j.neuroimage.2012.02.037
http://dx.doi.org/10.1073/pnas.0403743101
http://dx.doi.org/10.1016/j.neuroimage.2013.01.046
http://dx.doi.org/10.1016/j.neuroimage.2012.03.021
http://dx.doi.org/10.1038/nrn2833
http://dx.doi.org/10.1038/nrn2833
http://dx.doi.org/10.1016/j.neuroimage.2009.10.016
http://dx.doi.org/10.1016/j.neuroimage.2006.08.022
http://dx.doi.org/10.1016/j.neuroimage.2006.08.022
http://dx.doi.org/10.1016/j.neuroimage.2011.12.072
http://dx.doi.org/10.1016/j.neuron.2012.12.028
http://dx.doi.org/10.1016/j.neuroimage.2006.09.032
http://dx.doi.org/10.1016/j.neuroimage.2006.09.032
http://dx.doi.org/10.1016/j.neuroimage.2009.06.014
http://dx.doi.org/10.1016/j.neuron.2010.05.025
http://dx.doi.org/10.1016/j.neuron.2010.05.025
http://dx.doi.org/10.1016/j.neuroimage.2013.04.013
http://dx.doi.org/10.1007/s00429-012-0476-4
http://dx.doi.org/10.1007/s00429-012-0476-4
http://dx.doi.org/10.1016/j.neuroimage.2012.09.067
http://dx.doi.org/10.1016/j.neuroimage.2012.09.067
http://dx.doi.org/10.1016/j.clinph.2008.05.003
http://dx.doi.org/10.1016/j.clinph.2008.05.003
http://dx.doi.org/10.1016/j.neuroimage.2012.08.052
http://dx.doi.org/10.1016/j.neuroimage.2009.12.119
http://dx.doi.org/10.1016/j.neuroimage.2009.12.119
http://dx.doi.org/10.1007/s12264-012-1244-4
http://dx.doi.org/10.1007/s12264-012-1244-4


Su L, Wang L, Chen F, Shen H, Li B, Hu D (2012) Sparse

representation of brain aging: extracting covariance patterns

from structural MRI. PLoS ONE 7(5):e36147. doi:10.1371/

journal.pone.0036147

Tomasi D, Volkow ND (2012) Resting functional connectivity of

language networks: characterization and reproducibility. Mol

Psychiatry 17(8):841–854. doi:10.1038/mp.2011.177

Van Dijk KR, Hedden T, Venkataraman A, Evans KC, Lazar SW,

Buckner RL (2010) Intrinsic functional connectivity as a tool for

human connectomics: theory, properties, and optimization.

J Neurophysiol 103(1):297–321. doi:10.1152/jn.00783.2009

Van Dijk KR, Sabuncu MR, Buckner RL (2012) The influence of

head motion on intrinsic functional connectivity MRI. Neuro-

image 59(1):431–438. doi:10.1016/j.neuroimage.2011.07.044

Vidal R (2011) Subspace clustering. Sig Process Mag IEEE

28(2):52–68

Vinh NX, Epps J, Bailey J (2010) Information theoretic measures for

clusterings comparison: variants, properties, normalization and

correction for chance. J Mach Learn Res 11:2837–2854

von Luxburg U (2007) A tutorial on spectral clustering. Stat Comput

17(4):395–416. doi:10.1007/s11222-007-9033-z

Wang Y-X, Xu H (2013) Noisy sparse subspace clustering. In:

Proceedings of the 30th international conference on machine

learning, pp 89–97

Wee CY, Yap PT, Zhang D, Wang L, Shen D (2014) Group-

constrained sparse fMRI connectivity modeling for mild cogni-

tive impairment identification. Brain Struct Funct

219(2):641–656. doi:10.1007/s00429-013-0524-8

Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face

recognition via sparse representation. IEEE Trans Pattern Anal

Mach Intell 31(2):210–227. doi:10.1109/Tpami.2008.79

Wright J, Ma Y, Mairal J, Sapiro G, Huang TS, Yan S (2010) Sparse

representation for computer vision and pattern recognition. Proc

IEEE 98(6):1031–1044

Yang AY, Sastry SS, Ganesh A, Ma Y (2010) Fast ‘1-minimization

algorithms and an application in robust face recognition: a

review. In: 17th IEEE international conference on image

processing (ICIP), 2010, pp 1849–1852

Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D,

Hollinshead M, Roffman JL, Smoller JW, Zollei L, Polimeni

JR, Fischl B, Liu H, Buckner RL (2011) The organization of the

human cerebral cortex estimated by intrinsic functional connec-

tivity. J Neurophysiol 106(3):1125–1165. doi:10.1152/jn.00338.

2011

Zhang S, Ide JS, Li CS (2012) Resting-state functional connectivity of

the medial superior frontal cortex. Cereb Cortex 22(1):99–111.

doi:10.1093/cercor/bhr088

Zilles K, Amunts K (2013) Individual variability is not noise. Trends

Cogn Sci 17(4):153–155. doi:10.1016/j.tics.2013.02.003

Zilles K, Schlaug G, Geyer S, Luppino G, Matelli M, Qu M,

Schleicher A, Schormann T (1996) Anatomy and transmitter

receptors of the supplementary motor areas in the human and

nonhuman primate brain. Adv Neurol 70:29–43

Zu Eulenburg P, Caspers S, Roski C, Eickhoff SB (2012) Meta-

analytical definition and functional connectivity of the human

vestibular cortex. Neuroimage 60(1):162–169. doi:10.1016/j.

neuroimage.2011.12.032

Zu Eulenburg P, Baumgartner U, Treede RD, Dieterich M (2013)

Interoceptive and multimodal functions of the operculo-insular

cortex: tactile, nociceptive and vestibular representations. Neu-

roimage 83:75–86. doi:10.1016/j.neuroimage.2013.06.057

Brain Struct Funct (2015) 220:3565–3579 3579

123

http://dx.doi.org/10.1371/journal.pone.0036147
http://dx.doi.org/10.1371/journal.pone.0036147
http://dx.doi.org/10.1038/mp.2011.177
http://dx.doi.org/10.1152/jn.00783.2009
http://dx.doi.org/10.1016/j.neuroimage.2011.07.044
http://dx.doi.org/10.1007/s11222-007-9033-z
http://dx.doi.org/10.1007/s00429-013-0524-8
http://dx.doi.org/10.1109/Tpami.2008.79
http://dx.doi.org/10.1152/jn.00338.2011
http://dx.doi.org/10.1152/jn.00338.2011
http://dx.doi.org/10.1093/cercor/bhr088
http://dx.doi.org/10.1016/j.tics.2013.02.003
http://dx.doi.org/10.1016/j.neuroimage.2011.12.032
http://dx.doi.org/10.1016/j.neuroimage.2011.12.032
http://dx.doi.org/10.1016/j.neuroimage.2013.06.057

	Robust brain parcellation using sparse representation on resting-state fMRI
	Abstract
	Introduction
	Materials and methods
	Brain parcellation using sparse representation
	Sparse representation
	Spectral clustering
	Seed regions
	Data acquisition and preprocessing
	Simulated rs-fMRI datasets
	Sparsity parameter selection
	Performance evaluation and group consistency

	Results
	Results on simulated rs-fMRI datasets
	Parcellation results on real rs-fMRI datasets
	Parcellation of MFC on real rs-fMRI data
	Parcellation of the parietal operculum


	Discussion
	Robust brain parcellation using rs-fMRI data
	Parcellation of the parietal operculum

	Conclusion
	Acknowledgments
	References




