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Increased circulating 
concentrations of mesencephalic 
astrocyte-derived neurotrophic 
factor in children with type 1 
diabetes
Emilia Galli1,2, Taina Härkönen3,4, Markus T. Sainio1, Mart Ustav5, Urve Toots5, Arto Urtti2, 
Marjo Yliperttula2, Maria Lindahl1, Mikael Knip3,4,6, Mart Saarma1,* & Päivi Lindholm1,*

Mesencephalic astrocyte-derived neurotrophic factor (MANF) was recently shown to be essential for 
the survival and proliferation of pancreatic β-cells in mice, where deletion of MANF resulted in diabetes. 
The current study aimed at determining whether the concentration of circulating MANF is associated 
with the clinical manifestation of human type 1 diabetes (T1D). MANF expression in T1D or MANF 
levels in serum have not been previously studied. We developed an enzyme-linked immunosorbent 
assay (ELISA) for MANF and measured serum MANF concentrations from 186 newly diagnosed children 
and adolescents and 20 adults with longer-term T1D alongside with age-matched controls. In healthy 
controls the mean serum MANF concentration was 7.0 ng/ml. High MANF concentrations were found 
in children 1–9 years of age close to the diagnosis of T1D. The increased MANF concentrations were not 
associated with diabetes-predictive autoantibodies and autoantibodies against MANF were extremely 
rare. Patients with conspicuously high MANF serum concentrations had lower C-peptide levels 
compared to patients with moderate MANF concentrations. Our data indicate that increased MANF 
concentrations in serum are associated with the clinical manifestation of T1D in children, but the exact 
mechanism behind the increase remains elusive.

Type 1 diabetes is an autoimmune disorder characterized by selective loss of insulin producing β​-cells in the 
pancreas1. The first signs of β​-cell autoimmunity and compromised β​-cell function can be observed months to 
years before the clinical disease presentation. Once a critical mass of functional β​-cells is destroyed, the occur-
rence of symptoms, caused by lack of insulin, is acute. Differently from T1D, type 2 diabetes (T2D) is a metabolic 
disorder related to obesity and characterized by insulin resistance i.e., decreased action of insulin in muscle, liver 
and adipose tissue, and failure of β​-cells to maintain sufficient insulin levels2. Interestingly, insulin secretion from 
adipocytes was recently reported suggesting a crosstalk between adipose tissue and pancreas in the regulation of 
energy metabolism in obesity and development of T2D3.

MANF (also known as arginine-rich, mutated in early stage tumors; ARMET)4 and the homologous cerebral 
dopamine neurotrophic factor (CDNF)5 form a novel protein family with neuroprotective activities in vivo6–9. A 
recent discovery has linked MANF to the development of insulin-dependent diabetes in mice10. Complete and 
pancreas-specific deletion of MANF caused severe diabetes characterized by postnatal reduction of β​-cell mass, 
due to their increased apoptosis and decreased proliferation, indicating that MANF is essential for the mainte-
nance of β​-cells. Importantly, MANF was able to specifically enhance the regeneration of adult mouse β​-cells 
in vivo, denoting that MANF has therapeutic potential for the treatment of T1D, which currently lacks disease 
modifying therapy.
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MANF is an endoplasmic reticulum (ER) stress responsive protein11 and involved in the maintenance of ER 
homeostasis, which is important especially for professional secretory cells. Pancreatic β​-cells, which express 
MANF abundantly10, are susceptible to ER stress due to high insulin production12. MANF expression is increased 
in β​-cells suffering from constant ER stress due to misfolded proinsulin11,13. On the other hand, ER stress related 
unfolded protein response (UPR) pathways are activated in the pancreatic islets of mice lacking MANF10. MANF 
improves cell viability under treatments causing ER stress in vitro14–16 and protects cortical neurons and cardiac 
myocytes against ischemia in vivo8,17, a known inducer of ER stress and UPR18. MANF is also a secreted pro-
tein14,19 and ER stress increases MANF secretion as shown in vitro in cell lines15,17,20 and in vivo in a mouse model 
of skeletal disease21.

MANF has recently been studied in relation to other human autoimmune diseases, namely rheumatoid 
arthritis and systemic lupus erythematosus, conditions also involving ER stress, where MANF expression was 
found increased in circulating leucocytes22,23. Furthermore, MANF is involved in the regulation of inflamma-
tion as recombinant MANF decreased the expression and secretion of cytokines under inflammatory conditions  
in vitro16,23.

Increasing data suggest that MANF is essential for the function and survival of β​-cells. Development of 
MANF-based therapies for diabetes requires detailed characterization of MANF expression and activity. The 
current study aimed at determining whether serum MANF is associated with newly diagnosed T1D in humans. 
MANF concentrations in human serum, in health or disease, have not been previously determined.

Results
Development of specific ELISA for quantification of human MANF.  A typical standard curve of the 
MANF ELISA is presented in Fig. 1a. Within the assay dynamic range of 62.5 to 2,000 pg/ml, MANF could be 
measured with acceptable accuracy and precision (Supplementary Table S1). Sensitivity of the assay was 45 pg/ml. 
Intra-assay and interassay precision values were within 4.4 to 11.5% Coefficient of Variation (CV) and 3.1 to 6.8% 
CV, respectively (Supplementary Table S2). The assay did not recognize recombinant human CDNF, or endoge-
nous mouse MANF and CDNF present in testis and heart lysates5,19 (Supplementary Table S3).

Heterophilic antibodies present in serum can interfere with immunological assays24. Interference by serum 
heterophilic antibodies was evaluated by a control ELISA, which was run exactly as the MANF ELISA except that 
the coating antibody was goat anti-human CDNF instead of goat anti-human MANF. The control ELISA did not 
detect either recombinant human CDNF or MANF at a concentration of 2,000 pg/ml but gave positive results for 
human sera (Fig. 1b). Human tissue lysates, which gave a signal on MANF ELISA, were negative on the control 
ELISA (data not shown). By using an antibody pair originating from the same host species as the antibodies used 
in MANF ELISA, we consider that the control ELISA revealed all background caused by heterophilic antibodies 
present in human serum.

Addition of a commercial heterophilic antibody blocker, Immunoglobulin Inhibiting Reagent (IIR; Sera Lab, 
West Sussex, U.K.), to the serum samples reduced the background optical density (OD) values measured on the 
control ELISA more than the OD values measured on the MANF ELISA. The IIR concentration of 500 mg/l was 
more efficient in reducing the background compared to the concentration of 100 mg/l (Fig. 1b), and was used in 
the analysis. Recovery of spiked MANF and dilutional linearity of the serum samples treated with IIR were within 
a range of 93.5 to 115.5% (Supplementary Table S4). Remaining background in 32 (91%) out of 35 samples tested 
was maximally 11.3% of the OD values measured by the MANF ELISA (Supplementary Table S5).

MANF stability in serum in vitro .  Serum samples analyzed in the present study were stored at −​80 °C 
and thawed before analysis. We tested the stability of MANF in human serum obtained from T1D patients or 
autoantibody-negative healthy controls after up to eight freeze-thaw cycles. Concentrations of endogenous 
MANF remained stable after repeated freeze-thaw cycles as detected by ELISA. After 8 freeze-thaw cycles 
99.6 ±​ 14.3% and 90.4 ±​ 1.6% of endogenous MANF was detected in T1D (n =​ 4) and autoantibody-negative sera 
(n =​ 4), respectively, compared to the samples with only 1 freeze-thaw cycle (Fig. 1c). Recovery of spiked MANF 
after 1 freeze-thaw cycle was 103.1 ±​ 8.5% and 81.7 ±​ 10.5% in T1D (n =​ 4) and autoantibody-negative sera 
(n =​ 4), respectively (Fig. 1d). The recovery was statistically significantly lower from the autoantibody-negative 
sera compared to that from the T1D sera (p =​ 0.02). Stability of spiked MANF after 8 freeze-thaw cycles was 
97.6 ±​ 10.4% and 105.2 ±​ 4.9% compared to MANF concentration in the samples with 1 freeze-thaw cycle in T1D 
(n =​ 4) and autoantibody-negative sera (n =​ 4), respectively (Fig. 1d).

Stratification of the study population.  The incidence of T1D shows classically a peak in puberty25, 
which is the time of hormonal and metabolic changes. At the diagnosis of T1D the lowest functional β​-cell mass, 
estimated by serum C-peptide levels, is seen in the youngest patients whereas older subjects have a better pre-
served β​-cell function at diagnosis26. Since the age at T1D onset affects the disease course we decided to stratify 
the study participants into three age groups based in the relation to puberty: prepubertal children age of 1–9 
years, older pubertal children and adolescents age of 10–17 years, and adults age of 25–52 years. The characteris-
tics of the study groups are presented in Table 1.

Average serum MANF concentration in the non-diabetic control population.  The average 
(median) concentration of circulating MANF in the healthy autoantibody-negative control population compris-
ing children, adolescents and adults (n =​ 113) was 7.0 ±​ 3.1 (6.6) ng/ml (range 1.4 to 21.8 ng/ml). The mean age in 
the control population was 14.6 ±​ 12.0 years (range 1 to 50.9 years). The average concentration of serum MANF 
did not differ statistically significantly between the three age groups of 1–9-year-olds, 10–17-year-olds, and 
25–52-year-olds among the autoantibody-negative study subjects (p =​ 0.22). Neither did we observe significant 
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differences in serum MANF concentrations between females and males in any of the three age groups studied 
(p =​ 0.48, p =​ 0.35, and p =​ 0.88, for 1–9, 10–17, and 25–52-year-olds, respectively).

Increased serum MANF concentrations in children at the onset of T1D.  MANF concentrations in 
serum samples derived from 1–9-year-old patients with recent onset T1D (n =​ 98, sample taken within 0–22 days 
from the clinical diagnosis) were analyzed along with two age-matched control groups, one comprising non-diabetic 
siblings testing positive for two to five of the diabetes-predictive autoantibodies analyzed (n =​ 48), and the other being 
autoantibody-negative (n =​ 48). The average (median) concentration of serum MANF in T1D, autoantibody-positive 
and autoantibody-negative group was 11.1 ±​ 7.5 (9.5), 7.5 ±​ 3.8 (6.1) and 7.2 ±​ 2.8 (7.0) ng/ml, respectively (Table 2; 
Fig. 2a). Patients with T1D had 3.9 ng/ml (54%) higher average serum MANF concentration compared to the 
autoantibody-negative control group (p <​ 0.001). The group of T1D patients differed statistically significantly also 
from the autoantibody-positive control group (p <​ 0.001). The autoantibody-positive and autoantibody-negative 
control groups were comparable to each other (p =​ 1.0). MANF concentration and the time from T1D diagno-
sis to sample collection correlated inversely in the group of 1–9-year-old patients (rs =​ −​0.35, p <​ 0.001, n =​ 98, 
Fig. 2d).

The average (median) serum MANF concentration in 10–17-year-old patients with recent onset T1D (sam-
ple taken 0–24 days from the diagnosis; n =​ 88) was 8.1 ±​ 4.1 (7.2) ng/ml, whereas in the autoantibody-positive 
(n =​ 44) and autoantibody-negative (n =​ 45) controls it was 6.8 ±​ 3.2 (6.0) ng/ml and 7.1 ±​ 3.7 (6.6) ng/ml, 
respectively (Table 2). The groups did not differ significantly from each other in terms of MANF concentration 
(p =​ 0.16; Fig. 2b).

Figure 1.  Optimization of the ELISA for measurement of MANF in human serum. (a) A typical standard 
curve of MANF ELISA on a log-log scale. (b) Analysis of assay interference by the control ELISA using samples 
with high (1–3) or low interference (4, 5). A background of 25%, 26%, 4%, 2% and 6% from the MANF ELISA 
readings remained for the samples 1–5, respectively, with the IIR concentration of 500 mg/l. (c) Stability of 
endogenous MANF in serum samples from type 1 diabetes patients (T1D) and autoantibody-negative controls 
(AAB−​) under repeated freeze-thaw cycles. The results are presented as % from the MANF concentration 
measured in the sample of one freeze-thaw cycle. (d) Stability of spiked MANF (á 500 pg/ml) in serum 
samples under repeated freeze-thaw cycles. The results are presented as % recovery of 500 pg/ml spike after 
the concentration of endogenous MANF, analyzed in a parallel sample, was subtracted. Columns represent 
the average +​ SD of recoveries in 4 serum samples. Statistical significance was analyzed by repeated measures 
ANOVA between repeated freeze-thaw cycles [2, 4, and 8 for (c), and 1, 2, 4, and 8 for (d)], and by independent 
samples t-test between the two groups in case of 1 freeze-thaw cycle in (d).
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In adult longer-term T1D patients (sample taken 3.8–40.3 years from the diagnosis, n =​ 20), and age matched 
autoantibody-positive (n =​ 20) and autoantibody-negative (n =​ 20) control subjects the average (median) concen-
tration of serum MANF was 6.5 ±​ 2.9 (6.3), 7.4 ±​ 4.2 (6.5) and 6.0 ±​ 2.7 (5.6) ng/ml, respectively (Table 2). The 
average concentration of serum MANF did not differ between the groups (p =​ 0.52; Fig. 2c).

Extremely high serum MANF concentrations in a subset of 1–9-year-old children with T1D.  
Within the group of 1–9-year-old children with T1D, the highest serum MANF concentration measured was 
40 ng/ml (Fig. 2a). We wanted to characterize more closely the serum samples with very high MANF concen-
trations obtained from T1D children. Based on MANF concentrations measured from serum samples of the 
1–9-year-old autoantibody-negative control subjects, we determined a 95% cut-off limit for serum MANF con-
centration. MANF serum concentration in 95% of the autoantibody-negative controls (n =​ 46/48) and also in 
95% of autoantibody-positive controls (n =​ 46/48) was equal or below to that of 13.5 ng/ml. In the case of T1D 
patients, 23.5% (n =​ 23/98) had higher MANF serum concentration than 13.5 ng/ml (Fig. 2a, vertical line). We 
observed that the samples with a MANF concentration of more than 13.5 ng/ml had been taken closer to the 

T1D AAB+ AAB−

Age 1–9 years

  n 98 48 48

  Males, n (%) 53 (54.1%) 24 (50.0%) 23 (47.9%)

  Age, years (mean ±​ SD) 6.0 ±​ 2.6 6.3 ±​2.4 6.2 ±​2.3

  Age, years (min-max) 1.1–9.9 0.9–9.6 1.0–9.7

  Duration of T1D, days (mean ±​ SD) 5.2 ±​3.5 — —

  Duration of T1D, days (min-max) 0–22 — —

Age 10–17 years

  n 88 44 45

  Males, n (%) 50 (56.8%) 27 (61.4%) 28 (62.2%)

  Age, years (mean ±​ SD) 13.2 ±​1.6 13.1 ±​1.8 13.1 ±​1.8

  Age, years (min-max) 10.0–16.8 10.2–17.0 10.0–16.9

  Duration of T1D, days (mean ±​ SD) 5.8 ±​5.2 — —

  Duration of T1D, days (min-max) 0–24 — —

Age 25–52 years

  n 20 20 20

  Males, n (%) 10 (50%) 10 (50%) 10 (50%)

  Age, years (mean ±​ SD) 38.3 ±​7.3 38.5 ±​7.9 38.3 ±​7.7

  Age, years (min-max) 27.3–52.0 25.2–52.5 25.4–50.9

  Duration of T1D, years (mean ±​ SD) 20.7 ±​12.0 — —

  Duration of T1D, years (min-max) 3.8–40.3

Table 1.   Study groups. T1D =​ Type 1 diabetes patients, AAB+​ =​ autoantibody-positive non-diabetic controls, 
AAB−​ =​ autoantibody-negative non-diabetic controls.

T1D AAB+ AAB−

Age 1–9 years

  n 98 48 48

  Mean ±​ SD 11.1 ±​7.5 7.5 ±​3.8 7.2 ±​2.8

  Median; 25%-75% 9.5; 6.2–12.9 6.1; 5.2–9.0 7.0; 5.4–8.3

  Min-Max 2.3–40.1 2.2–22.8 2.9–14.9

Age 10–17 years

  n 88 44 45

  Mean ±​ SD 8.1 ±​4.1 6.8 ±​3.2 7.1 ±​3.7

  Median; 25%-75% 7.2; 5.4–9.7 6.0; 4.2–8.7 6.6; 5.0–8.7

  Min-Max 2.7–19.6 2.3–14.5 1.4–21.8

Age 25–52 years

  n 20 20 20

  Mean ±​ SD 6.5 ±​2.9 7.4 ±​4.2 6.0 ±​2.7

  Median; 25%-75% 6.3; 4.3–7.2 6.5; 5.5–7.7 5.6; 3.9–8.0

  Min-Max 3.1–13.7 2.3–22.3 2.7–12.3

Table 2.   MANF serum concentrations (ng/ml) in the study groups. T1D =​ Type 1 diabetes patients, 
AAB+​ =​ autoantibody-positive non-diabetic controls, AAB−​ =​ autoantibody-negative non-diabetic controls.
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clinical diagnosis of T1D (3.3 ±​ 2.5 days; n =​ 23) compared to the samples with lower MANF levels (5.8 ±​ 3.6 
days, n =​ 75; p <​ 0.001). In addition, the patients with MANF concentration over 13.5 ng/ml were younger com-
pared to the patients with lower MANF concentration (5.0 ±​ 2.5 vs. 6.3 ±​ 2.5 years of age, p =​ 0.027).

Low C-peptide levels in children with high MANF concentration.  To study whether the increase 
in serum MANF concentrations observed in children with newly diagnosed T1D is related to the amount of 
remaining functional β​-cell mass, we analyzed serum C-peptide levels. C-peptide is secreted from the β​-cells 
together with insulin in an equimolar proportion and its levels are considered as a measure of functional β​-cell 
mass26. Average C-peptide concentrations in the study groups are presented in Table 3. There was no statistically 
significant difference between the average C-peptide levels of 1–9-year-old (n =​ 84) and 10–17-year-old (n =​ 79) 
T1D patients (p =​ 0.24). In adults with longer-term T1D (n =​ 20), C-peptide levels were significantly lower than 
in the 1–9-year-olds and the 10–17-year-olds (p <​ 0.001, for both).

In 1–9-year-old patients with T1D, C-peptide levels correlated inversely with MANF concentrations (rs =​ −​
0.37, p =​ 0.001, n =​ 84, Fig. 3a). Both MANF (rs =​ −​0.38, p <​ 0.001, n =​ 84, Supplementary Fig. S1) and C-peptide 
(rs =​ 0.36, p =​ 0.001, n =​ 84, Supplementary Fig. S2) correlated with the time (in days) from diagnosis to sam-
ple collection. Partial correlation, having time from diagnosis as the controlling factor for ranked MANF and 
C-peptide values, indicated that the correlation between MANF and C-peptide was not dependent on the time 
from diagnosis (r =​ −​0.28, p =​ 0.009). In contrast to the group of 1–9-year-old patients with T1D, C-peptide and 
MANF levels did not correlate in the group of 10–17-year-old patients (rs =​ −​0.006, p =​ 0.96, n =​ 79).

Children 1–9 years of age with high (>​13.5 ng/ml) serum MANF concentration had approximately 43% lower 
C-peptide levels compared to the samples with MANF concentration ≤​13.5 ng/ml (0.17 ±​ 0.11 nmol/l, n =​ 20, vs. 
0.30 ±​ 0.24 nmol/l, n =​ 64, p =​ 0.009, Fig. 3b).

Figure 2.  Increased MANF concentrations in children at the clinical manifestation of T1D. (a) Higher 
serum MANF concentrations in 1–9-year-old children with T1D (T1D, n =​ 98) compared to non-diabetic 
autoantibody-positive (AAB+​, n =​ 48) and autoantibody-negative (AAB−​, n =​ 48) controls. The red horizontal 
line indicates a cut-off limit for MANF (13.5 ng/ml), within which 95% of the controls fell. (b) MANF 
concentrations in 10–17-year-old T1D patients (n =​ 88) were comparable to the autoantibody-positive (n =​ 44) 
and autoantibody-negative (n =​ 45) controls. (c) MANF concentrations in 25–52-year-old adults with longer-
term T1D did not differ from the controls (n =​ 20, for all). (d) Inverse correlation of serum MANF with the time 
taken from diagnosis to sample collection in 1–9-year-old T1D patients (rs =​ −​0.35, p <​ 0.001 n =​ 98). Every 
black dot represents one sample and the horizontal lines indicate the mean ±​ SD. Statistical significance was 
analyzed by Kruskall-Wallis H test in (a–c) in adjunct with Tukey HSD post-hoc test in (a), and by Spearman’s 
rank correlation (d).
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No associations between MANF concentrations and the presence of T1D-predictive autoan-
tibodies.  We analyzed the association of serum MANF concentration in the 1–9-year-old children with the 
occurrence of the five most prevalent and best characterized autoantibodies predictive of T1D, namely islet cell 
autoantibodies (ICA), insulin autoantibodies (IAA), and autoantibodies to glutamic acid decarboxylase (GADA), 
islet antigen 2 (IA-2A), and zinc transporter 8 (ZnT8A). Children with T1D tested positive for one to five autoanti-
bodies, and autoantibody-positive subjects had two to five autoantibodies. We found no differences in the MANF 
serum concentration in relation to the presence of autoantibodies in patients with T1D (n =​ 51–95, depend-
ing on the autoantibody) or in non-diabetic autoantibody-positive children (n =​ 48; Supplementary Table S6).  

 Study group n C-peptide (nmol/l) MANF (ng/ml)

Age 1–9 years T1D 84 0.27 ±​ 0.22 11.2 ±​ 7.8

 AAB+​ 36 0.63 ±​ 0.32 7.5 ±​ 3.9

 AAB−​ 35 0.97 ±​ 0.61 6.9 ±​ 2.6

Age 10–17 years T1D 79 0.33 ±​ 0.31 7.7 ±​ 3.7

 AAB+​ 37 0.93 ±​ 0.49 6.7 ±​ 3.2

 AAB−​ 38 0.92 ±​ 0.44 7.0 ±​ 3.8

Age 25–52 years T1D 20 0.08 ±​ 0.15 6.5 ±​ 2.9

 AAB+​ 20 1.09 ±​ 0.62 7.4 ±​ 4.2

 AAB−​ 20 0.99 ±​ 0.43 6.0 ±​ 2.7

Table 3.   Serum C-peptide and MANF concentrations in the study groups. Data is presented as an 
average ±​ SD. T1D =​ Type 1 diabetes patients, AAB+​ =​ autoantibody-positive non-diabetic controls, 
AAB−​ =​ autoantibody-negative non-diabetic controls.

Figure 3.  Lower C-peptide levels with higher MANF concentration. (a) Inverse correlation of MANF and 
C-peptide concentrations in the sera of 1–9-year-old children with T1D (rs =​ −​0.37, p =​ 0.001, n =​ 84).  
(b) Average C-peptide concentration was statistically significantly lower in 1–9-year-old children with 
extremely high MANF concentration (>​13.5 ng/ml, n =​ 20) compared to the children with lower MANF 
concentration (≤​13.5 ng/ml, n =​ 64) at the onset of T1D. Statistical significance was analyzed by Spearman’s 
rank correlation (a) and by Mann-Whitney U test (b).



www.nature.com/scientificreports/

7Scientific Reports | 6:29058 | DOI: 10.1038/srep29058

Furthermore, the total number of autoantibodies was not associated with serum MANF concentration in children 
with newly diagnosed T1D. The subset of 1–9-year-old children with MANF concentration over 13.5 ng/ml did 
not differ from the group of children with MANF concentrations equal or below 13.5 ng/ml in terms of autoan-
tibody prevalence.

The occurrence of T1D-predictive antibodies was not associated with the average MANF concentration in 
the 10–17-year-old or 25–52-year-old T1D patients or autoantibody-positive controls (Supplementary Table S6).

Autoantibodies to MANF are not detected in the serum of patients with T1D.  Counts per min-
ute (cpm) values of MANF immune complexes in the serum from children and adolescents with T1D (n =​ 94), 
autoantibody-positive (n =​ 32) and autoantibody-negative controls (n =​ 91) were very low. There was only one 
sample from a patient with diabetes, which repeatedly gave responses above the background [5 standard devia-
tions (SDs) above the mean cpm value of autoantibody-negative controls; data not shown].

Cytokine levels in children with extremely high serum MANF concentrations.  Since MANF has 
been associated with regulation of cytokine expression, we set out to study whether high concentrations of serum 
MANF in 1–9-year-old children with T1D would be related to circulating cytokine levels. We analyzed the con-
centration of interleukin (IL)-1β​, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12 (p70), IL-13, interferon (IFN)-γ​ and tumor 
necrosis factor (TNF)-α​ in the serum samples from T1D patients. In the group of 1–9-year-old T1D patients 
with serum MANF concentration over 13.5 ng/ml (n =​ 11) the average levels of IL-1β​, IL-2, IL-4, IL-5, IL-10, 
IL-12 (p70), IL-13, and IFN-γ​ were 13-56% higher compared to the levels in the patients with lower MANF 
concentration (n =​ 39, Table 4). However, after Bonferroni correction none of the comparisons reached statistical 
significance.

Discussion
This is the first study to report that MANF is detectable in human serum. In healthy controls with average age of 
14.6 ±​ 12.0 years, the mean serum MANF concentration was 7.0 ng/ml. Serum MANF levels were independent of 
age and gender among the non-diabetic subjects.

As the lack of MANF in mice caused postnatal diabetes10, we expected that serum MANF concentrations are 
decreased in human T1D. In contrast, we found increased serum MANF concentrations in children at the clinical 
presentation of T1D.

Studies in mice suggest that MANF is involved in the maintenance of ER homeostasis in the β​-cells10,11. As the 
expression and secretion of MANF has been reported to increase under ER-stress, elevated serum MANF level 
at the onset of T1D may reflect ER stress in the remaining β​-cells, strained with increased demand for insulin 
production due to reduced β​-cell mass27 in a chronically hyperglycemic environment, an aspect further impairing 
insulin secretion and causing increasing ER-stress28. An important question is whether the increase in serum 
MANF, which was observed in the group of 1–9-year-old children but not in older children and adolescents, 

 Serum MANF (ng/ml) Cytokine (pg/ml) Difference (%) p-value

IL-1β​ ≤​13.5 2.2 ±​ 1.1

 >​13.5 2.7 ±​ 0.9 +​22.7 0.089

IL-2 ≤​13.5 14.6 ±​ 8.1

 >​13.5 19.4 ±​ 8.3 +​32.9 0.066

IL-4 ≤​13.5 4.8 ±​ 2.1

 >​13.5 6.0 ±​ 2.0 +​25.0 0.057

IL-5 ≤​13.5 13.6 ±​ 18.0

 >​13.5 15.3 ±​ 8.0 +​12.5 0.11

IL-6 ≤​13.5 112.5 ±​ 187.4

 >​13.5 55.4 ±​ 53.2 −​50.8 0.84

IL-10 ≤​13.5 21.5 ±​ 14.3

>​13.5 33.6 ±​ 23.0 +​56.3 0.015

IL-12 ≤​13.5 5.6 ±​ 2.7

>​13.5 7.1 ±​ 2.2 +​26.8 0.039

IL-13 ≤​13.5 3.6 ±​ 1.6

>​13.5 4.6 ±​ 1.5 +​27.8 0.045

INF-γ​ ≤​13.5 21.7 ±​ 11.1

>​13.5 29.2 ±​ 14.2 +​34.6 0.066

TNF-α​ ≤​13.5 2.8 ±​ 1.5

>​13.5 2.8 ±​ 0.9 0.0 0.32

Table 4.   Average (±SD) concentrations of circulating cytokines in 1–9-year-old T1D patients with 
extremely high (>13.5 ng/ml) and lower (≤13.5 ng/ml) MANF concentrations. The difference (%) in 
cytokine concentration between the two groups was calculated as compared to ≤​13.5 ng/ml group. The 
Bonferroni corrected p-value of the repeated Mann-Whitney U test is 0.005 (=​0.05/10). n =​ 39 for MANF  
≤​13.5 ng/ml, n =​ 11 for MANF >​13.5 ng/ml.
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is related to changes in the functional β​-cell mass at the disease onset. At the clinical presentation of T1D, the 
remaining functional β​-cell mass varies greatly from one patient to another, and is positively correlated with 
age29. However, in the current study the average C-peptide levels, an indirect measure of functional β​-cell mass, 
did not differ between the two age groups, suggesting that the circulating MANF levels are not directly related to 
functional β​-cell mass at the diagnosis of T1D.

A subset of 1–9-year-old children with newly diagnosed T1D had very high (>​13.5 ng/ml) serum MANF con-
centrations. The children were younger, they had lower C-peptide levels and their samples were collected closer 
to the clinical diagnosis of T1D compared to the children with lower (≤​13.5 ng/ml) MANF concentrations at the 
disease presentation. Further studies are needed to clarify, whether extremely high serum MANF concentration 
is associated with compromised β​-cell function at the manifestation of T1D in children.

It is possible that the increased MANF concentrations detected in the 1–9-year-old children with newly diag-
nosed T1D reflect metabolic decompensation prevailing at the time of diagnosis. However, there were no corre-
lations between blood pH and plasma glucose concentrations measured at diagnosis with MANF concentrations 
measured 0–22 days from the diagnosis of T1D. Unfortunately we had no data in these patients on glycosylated 
hemoglobin values at the diagnosis, reflecting the degree of hyperglycemia over the preceding 2–3 months.

Cytokine secretion from β​-cells and the infiltrating immune cells is well characterized in the progression to 
overt T1D30. Recombinant MANF has been demonstrated to decrease the expression and secretion of proinflam-
matory cytokines IL-1β​, IL-6 and TNFα​ in vitro16,23. However, in the analyzed serum samples none of the meas-
ured cytokines, including IL-1β​, IL-6 and TNFα​, differed statistically significantly between the groups of high  
(>​13.5 ng/ml) and lower (≤​13.5 ng/ml) serum MANF concentration.

The presence of circulating autoantibodies against β​-cell antigens are used as predictive markers for increased 
risk of disease development in non-diabetic individuals31,32. MANF serum concentrations were not related to the 
prevalence of autoantibodies in the patients with T1D or in the autoantibody-positive controls implying that the 
serum MANF concentration is not related to the autoimmune process in the patients or to the preclinical state 
of T1D, although compromised β​-cell function is present in a subset of non-diabetic individuals with autoanti-
bodies33. Furthermore, signs of autoimmunity against MANF were extremely rare in newly diagnosed patients, 
implying that MANF is not an important autoantigen in T1D.

MANF expression is widespread in mammalian tissues19, and whether the observed increase in serum MANF 
in fact is released from ER-stressed β​-cells, remains to be studied. However, the basal level of MANF detected in 
human serum is not likely to originate from β​-cells as MANF levels in the longer-term diabetic patients, where 
β​-cell mass is almost completely destroyed, are comparable to the non-diabetic controls.

Although MANF concentrations remained stable in serum samples after repeated freeze-thaw cycles, the 
recovery of spiked MANF after one freeze-thaw cycle was significantly lower in the serum of non-diabetic control 
subjects than in the serum of T1D patients. Thus, it is possible that the stability or detectability of MANF is dif-
ferent in the serum of T1D patients compared to the serum of controls, which, if verified, may give an insight into 
the mechanism behind the elevated MANF levels detected in children with newly diagnosed T1D.

It is becoming evident that inflammation and ER-stress mediated β​-cell failure are involved in the pathogene-
sis of both T1D and T2D34. Obesity was demonstrated to cause ER stress in adipose tissue leading to insulin resist-
ance and activation of inflammatory signaling35. Chronic elevation of blood glucose and free fatty acids creates ER 
stress also in β​-cells, leading to β​-cell dysfunction and death36. Interestingly, MANF-deficiency has recently been 
linked to T2D. Differently from the insulin-deficient phenotype of MANF knockout mice10, a homozygous muta-
tion in the MANF gene was reported in a human patient suffering from T2D and obesity37. Thus, it is of interest 
to study the association of MANF with insulin resistance and type 2 diabetes, as well.

The ability of MANF to specifically enhance the proliferation of adult mouse β​-cells10 suggests that it could be 
used as a therapeutic agent either in the preclinical stage or after the diagnosis of diabetes to promote the survival 
and proliferation of remaining β​-cells in humans. As a potential therapeutic protein for diabetes MANF needs 
further attention and investigation.

Materials and Methods
Study population.  All study subjects were derived from the Finnish Pediatric Diabetes Register and Sample 
Repository38. Parents or legal guardians of children under 18 years of age participating the study and all study 
subjects aged 18 years or above gave written informed consent. Children and adolescents aged 10–17 years gave 
in addition written assent. The study population (Table 1) included 186 children and adolescent with newly diag-
nosed T1D, and 92 autoantibody-positive and 93 autoantibody-negative controls. In addition, the study popula-
tion comprised 20 adult patients with longer-term T1D, 20 autoantibody-positive and 20 autoantibody-negative 
unaffected adults. All the controls were first-degree relatives to a patient affected by T1D. MANF autoantibodies 
were analyzed from the serum of 94 children with newly diagnosed T1D, 32 autoantibody-positive children, 
and 91 autoantibody-negative children. For the validation of ELISA, we used blood samples from the Finnish 
Red Cross (license 5/2013). The methods used in the present study were carried out in accordance with the 
Declaration of Helsinki. All experimental protocols were approved by the Ethics Committee of the Hospital 
District of Helsinki and Uusimaa.

Blood samples.  Blood samples were allowed to clot at room temperature (RT) for 10 min, centrifuged at 
1,000 g for 10 min and serum was aliquoted and stored at −​80 °C.

MANF ELISA.  MaxiSorp (Nunc, Fisher Scientific) 96-well plates were coated overnight at +​4 °C with goat 
anti-human MANF polyclonal antibody (AF3748, R&D Systems) at 1 μ​g/ml in 50 mmol/l carbonate coating 
buffer (35 mmol/l sodium bicarbonate, 15 mmol/l sodium carbonate; pH 9.6). The plate was washed once with 
phosphate buffered saline, 0.05% Tween 20 (PBST), and incubated with blocking buffer (PBST, 1% casein) at 
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RT for 2 h. After washing with PBST, standard samples of recombinant human MANF (P-101-100, Icosagen, 
Supplementary Methods) ranging from 62.5 to 2,000 pg/ml and serum samples diluted 1:20 in blocking 
buffer and pre-incubated on ice for 1 h with 500 mg/l IIR, were added to the plate in duplicate and incu-
bated overnight at +​4 °C in agitation (100 rpm). The detection antibody, horseradish peroxidase-conjugated 
mouse anti-human MANF monoclonal antibody (4E12, Icosagen, Supplementary Methods), was incubated 
on the plate at 1 μ​g/ml for 5 h in agitation at RT. Washing with PBST was repeated four times before and 
after the antibody incubation. Antibodies and samples were applied to the plate in 100 μ​l volume. For detec-
tion, 3,3’,5,5’-tetramethylbenzidine was used according to the manufacturer’s instructions (DuoSet ELISA 
Development System, R&D Systems). The absorbance was read using a plate reader (VICTOR3, Perkin Elmer) 
at 450 nm and 540 nm (for wavelength correction).

Validation of MANF ELISA.  The specificity, sensitivity, dynamic range, accuracy (% Relative Error,  
% RE =​ derived concentration/expected concentration x 100%) and precision (% Coefficient of Variation,  
% CV =​ SD/mean x 100%) of the assay were determined according to recommendations39. Specificity of the 
ELISA was tested with recombinant human CDNF (500 ng/ml; Icosagen) and mouse tissue lysates (1.4–2.0 mg/ml  
of protein). Sensitivity was determined as the mean absorbance value of ten zero samples added by three SDs and 
calculating resulting MANF concentration from the standard curve. The dynamic range was determined by the 
accuracy of the back-calculated concentration values for each standard curve point from six individual assays. 
A mean accuracy of ±​15% RE and precision of ≤​15% CV was considered acceptable. Intra-assay precision was 
determined by measuring three samples with varying MANF concentration in replicates of ten on different parts 
of a plate. Interassay precision was determined by running three different samples in duplicate on six independent 
assays on different days. Precision of ≤​20% CV was considered acceptable.

Detection and blocking of heterophilic antibodies.  The control ELISA, constructed for the evalu-
ation of possible interference by serum heterophilic antibodies, was run exactly as the MANF ELISA except 
that the coating antibody was goat anti-human CDNF (AF5097, R&D Systems). We decided to use IIR to 
block the heterophilic antibody-interference based on previous positive reports40,41. Activity of IIR was tested 
with diluted (1:20) serum samples at final concentrations of 100 mg/l and 500 mg/l. Linearity of dilution and 
recovery of spiked recombinant human MANF in serum was tested in the presence of 500 mg/l IIR. Recovery 
of spiked recombinant human MANF (250 and 500 pg/ml) was calculated after subtracting the endogenous 
MANF concentration from the results. For assessing linearity of dilution, recovery of endogenous MANF after 
serial dilutions (1:40; 1:80; 1:160) was calculated in relation to the 1:20 dilution. Recoveries of 80–120% were 
considered acceptable.

Stability of MANF in serum.  Stability of endogenous and spiked MANF in serum under repeated 
freeze-thaw cycles was tested in serum samples from T1D patients and autoantibody-negative controls (n =​ 4 for 
both). The sera were aliquoted, and parallel samples were spiked with recombinant human MANF (á 500 pg/ml).  
The sera were exposed to 1, 2, 4 or 8 freeze-thaw cycles before analysis on ELISA. Samples were thawed on ice 
and refrozen at −​80 °C. Endogenous MANF concentration in the sera from T1D patients was 5.8, 9.5, 12.1, and 
18.3 ng/ml, and in the sera from autoantibody-negative controls 4.1, 9.0, 11.2, and 14.8 ng/ml. Recovery of spiked 
MANF was analyzed by subtracting the endogenous MANF concentration analyzed in the parallel sample.

C-peptide levels.  Random serum C-peptide concentrations were measured by Cobas e 411 analyzer (Roche 
Diagnostics). We have previously shown that there is a strong correlation between random serum C-peptide 
levels and serum C-peptide concentrations measured 120 min after a standardized meal and the 24-h urinary 
C-peptide secretion42.

Radiobinding assays.  We analyzed five different diabetes-associated autoantibodies, i.e. ICA, IAA, autoan-
tibodies to GADA, IA-2A, and ZnT8A as described43. Antibodies against MANF were analyzed with a radiobi-
nding assay44. Human MANF complementary DNA (cDNA) in pCR3.1 vector was used to produce 35S-labeled 
MANF by in vitro translation using TNT Coupled Reticulocyte Lysate System (Promega). Briefly, 5 μ​l of serum 
was incubated at +​4 °C overnight with 10,000 cpm of labeled MANF diluted in 50 μ​l of TBST buffer [50 mmol/l 
Tris-HCl (pH 7.4), 150 mmol/l NaCl, 0.1% Tween-20]. Immune complexes were precipitated with Protein 
A-Sepharose. After washing, bound radioactivity was counted by a liquid scintillation counter (1450 MicroBeta 
Trilux, Perkin Elmer).

Cytokine levels.  IL-1β​, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12 (p70), IL-13, IFN-γ​ and TNF-α​ levels were ana-
lyzed from 1:4 diluted sera by Bio-Plex Precision Pro Human Cytokine Assay (Bio-Rad).

Statistical analysis.  Differences in the stability of MANF in serum after freeze-thaw cycles were analyzed 
by repeated measures ANOVA and independent samples t-test. Serum MANF, C-peptide and cytokine con-
centrations showed a non-normal distribution (Shapiro-Wilk test, p <​ 0.01) in the populations studied; thus 
non-parametric statistical tests were applied. Differences between two groups were analyzed with Mann-Whitney 
U test and between three or more groups with Kruskall-Wallis H test in adjunct with Tukey HSD post-hoc test 
of the rank-ordered data. Correlations were analyzed with the non-parametric Spearman’s test (rs). A p value  
<​0.05 was considered to indicate statistical significance. Unless otherwise indicated, all results are expressed as 
average ±​ SD (median). Statistical analyses were performed using Software Package for Social Science (SPSS) v. 
21.0 (Chicago, IL).
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