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Recent advances in wireless data transmission technology have the potential to
revolutionize clinical neuroscience. Today sensing-capable electrical stimulators, known
as “bidirectional devices”, are used to acquire chronic brain activity from humans
in natural environments. However, with wireless transmission come potential failures
in data transmission, and not all available devices correctly account for missing
data or provide precise timing for when data losses occur. Our inability to precisely
reconstruct time-domain neural signals makes it difficult to apply subsequent neural
signal processing techniques and analyses. Here, our goal was to accurately reconstruct
time-domain neural signals impacted by data loss during wireless transmission. Towards
this end, we developed a method termed Periodic Estimation of Lost Packets (PELP).
PELP leverages the highly periodic nature of stimulation artifacts to precisely determine
when data losses occur. Using simulated stimulation waveforms added to human
EEG data, we show that PELP is robust to a range of stimulation waveforms and
noise characteristics. Then, we applied PELP to local field potential (LFP) recordings
collected using an implantable, bidirectional DBS platform operating at various telemetry
bandwidths. By effectively accounting for the timing of missing data, PELP enables the
analysis of neural time series data collected via wireless transmission—a prerequisite
for better understanding the brain-behavior relationships underlying neurological and
psychiatric disorders.

Keywords: PELP, DBS (deep brain stimulation), packet loss, LFP (local field potential), EEG

INTRODUCTION

Targeted electrical stimulation of the brain and spinal cord has proven to be highly effective
for treatment of movement disorders, mental illness, and pain (Lozano et al., 2019). However,
the neural correlates of these disorders remain poorly understood. To better investigate the
electrophysiological basis of these disorders and the impact of stimulation, several device
manufacturers have designed ‘‘bidirectional’’ implants capable of concurrently stimulating and
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sensing from the nervous system (Stanslaski et al., 2012, 2018;
Sun and Morrell, 2014; Skarpaas et al., 2019; Goyal et al., 2021).
One decision point in the design of these devices is when and how
to offload data. Some devices, including the Medtronic PC+S
(Stanslaski et al., 2012) and NeuroPace RNS (Sun and Morrell,
2014) store data onboard the implanted hardware that can be
transferred to an external computer after data collection. Other
devices, including theMedtronic Summit RC+S (Stanslaski et al.,
2018), the Medtronic Percept PC (Goyal et al., 2021), and the
CereplexW (Yin et al., 2014; Simeral et al., 2021) enable real-time
streaming of neural data to external devices meters away. These
devices can be used to collect chronic neural recordings in natural
environments, enabling the identification and development of
personalized biomarkers and therapies (Wozny et al., 2017;
Kremen et al., 2018; Gilron et al., 2021; Provenza et al., 2021).

During wireless transmission, neural data samples are
grouped into formatted units called ‘‘packets’’ (Bazaka and
Jacob, 2012). Packets typically contain a series of subsequent
samples of a particular length as well as timing information
and other relevant metadata. When transmitted, it is possible
for packets to fail to reach the receiver, resulting in lost
packets. The timing information contained in each packet
should hypothetically enable time-domain signal reconstruction.
However, the metadata contained in each packet may be inexact
due to hardware, network, and software delays and inaccuracies
(Levesque and Tipper, 2016), resulting in uncertainty in the
number and timing of missing data samples (Figure 1).

Herein we will use the Medtronic Summit RC+S as an
example. In this case, a combination of inexact packet sizes and
inaccurate timing variables make it difficult to exactly account
for the number of lost samples (Sellers et al., 2021). Particularly
in less controlled environments where the patient, telemeter, or
receiver may frequently move, recordings are especially prone
to packet loss (Mazzenga et al., 2002; Tsimbalo et al., 2015;
Gilron et al., 2021). Lower sampling rates, and thus lower
bandwidth needs, generally reduce the number of dropped
packets and increase transmission ranges, however, it is still
typical for as much as 5% of the data to be lost even with
such adjustments. Significant work from Sellers et al. (2021)
has been devoted to ensuring neural timeseries data can be
accurately analyzed and aligned in the presence of packet losses.
This work was designed to ensure packet timing for long-term
neural recordings (>1 h) on the order of 50 ms. For short
timescale effects such as individual trials in behavioral tasks,
alignment errors on the order of 50 ms lead to the introduction
of timing inaccuracies, artifacts during filtering, and reduced
ability to identify meaningful neural signals, driving the need for
more precise data reconstruction (Dastin-van Rijn et al., 2021b;
Figure 1).

Here, we develop Periodic Estimation of Lost Packets (PELP)
to exactly estimate packet losses in neural data collected from
bidirectional, implanted devices during neurostimulation. PELP
is a data-driven procedure that leverages the highly periodic
and predictable nature of stimulation to accurately account for
the number of samples missing due to each dropped packet.
We show that PELP is robust across a range of amplitude
ratios between stimulation and signal, pulse to pulse variations

in stimulation amplitude, drift in stimulation frequency, and
uncertainties in loss size estimates. Lastly, we successfully apply
PELP to data recorded using the Summit RC+S from a human
participant performing a behavioral task both in the clinic and at
home to exactly estimate every occurrence of packet loss. PELP
enables accurate reconstruction of the timing of missing data
and facilitates analyses of neural time series data collected using
bidirectional, implanted devices.

MATERIALS AND METHODS

Periodic Estimation of Lost Packets (PELP)
Periodic Estimation of Lost Packets (PELP) is a method for
estimating the exact number of samples missing due to a
packet loss for recordings where stimulation is present. Before
PELP can be applied to a recording, the locations of packet
losses and their estimated sizes must first be determined. As
an exemplar device, we focus our methodological development
on the wireless data transmission from the Medtronic Summit
RC+S; however, the methodology is generally applicable. For
recordings using the Medtronic Summit RC+S, each packet
has three integer timing variables of note for this purpose:
‘‘dataTypeSequence’’ indicating the packet number that rolls over
every 256 packets, ‘‘systemTick’’ time of the last sample in a
packet with 0.1 ms resolution that rolls over every 6.5536 s,
and ‘‘timestamp’’ with 1 s resolution and no rollover (Sellers
et al., 2021). The ‘‘dataTypeSequence’’ is necessary for identifying
packets, ‘‘systemTick’’ is used for highly accurate timing over
short timescales and sub-second resolution, and ‘‘timestamp’’
is used for highly accurate timing over long timescales and
second resolution. While these specific variables are unique
to the Medtronic Summit RC+S, their specific functionalities
are common to wireless transmission protocols. A packet loss
has occurred when the dataTypeSequence between subsequent
packets skips an index or the timestamps are inconsistent with
the systemTick data. For sampling rate Fs and m rollovers, the
number of samples lost N can be estimated according to the
following equation:

N = (((S2 − S1) mod 65536)+ 65536×m) × 10−4 − n

where S1 and S2 are the system ticks of the packets preceding and
following the loss respectively and is the number of samples in
the packet after the loss. For loss segments greater than 6 s, the
resolution of a systemTick is no longer acceptably accurate due
to timing drift between the systemTick and timestamp. In these
cases, the timing will need to be reset using a coarser metric such
as the Unix (PacketGenTime) timestamp (±50 ms vs. ±3 ms)
corresponding to the time when the packet was received or
generated. These estimates are not sufficiently accurate to ensure
the exact reconstruction of the timing between received packets
down to sample resolution. PELP leverages the presence of
regular stimulation in both the received and missing data to
ensure exact estimates of data losses. An illustration of the
differences between timing methods is shown in Figure 2A.

Before applying PELP, we divide the time series into a set of
consecutive ‘‘runs’’, where each run is composed of contiguous
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FIGURE 1 | Illustration of packet loss. Neural timeseries data recorded from a chronic implant can be chronically streamed to an external receiver by grouping
continuous data into discrete chunks called packets. During transmission, it is possible for packets to fail to reach the receiver leading to regions of missing data
known as packet losses. In some systems, it is possible for the timing information contained in each packet to be inaccurate leading to timing offsets in neural
signals of interests, artifacts during analyses, and difficulties extracting biologically relevant signals.

packets, and consecutive runs are separated by packet losses.
The recording in run r is a sequence of nr (time, value) pairs
((tk,r,yk,r):k = 1,...,nr) where tk,r is the time relative to the start of
run r and yk,r is the recorded LFP amplitude at that time. Let δ be
the period of stimulation, which we assume is constant across the
entire recording. For regular stimulation, the stimulation artifact
can be modeled as the δ-periodic function:

fβ(t) = β1 +

m∑
j = 1

β2j sin
(
2π jt
δ

)
+

m∑
j = 1

β2j+1 cos
(
2π jt
δ

)
for appropriate choice of the number of harmonics (m) and the
parameter vector (βj: j = 1,...,2m + 1) (Dastin-van Rijn et al.,
2021a). Within a single run, β can be estimated via least-squares
using the harmonic regression model yk,r = fβ (tk,r) + εk,r with
homoscedastic noise εk,r . Across multiple runs, however, the
regression model will only be a good fit for appropriate choice of
the packet loss sizes, a fact that we can leverage to estimate these
loss sizes from data. Let 1r denote the duration of the packet
loss between runs r and r + 1. We estimate 1r by choosing the
one that gives the best least-squares fit to the harmonic regression
model using the combined data from runs r and r + 1, i.e.,

1̂r =
argmin min
1∈�r β

[ nr∑
k = 1

(
yk,r − fβ(tk,r)

)2
+

nr+1∑
k = 1

(
yk,r+1 − fβ

(
tnr ,r +1+ tk,r+ 1

))2]

where�r is a (small) finite set of candidate loss sizes, in our case,
the set of loss sizes corresponding to a positive integer number
of samples, centered around the initial loss size estimate, and
spanning the uncertainty in the estimate (the range of samples we
expect the true loss size to fall in). The minimization over β can
be done exactly for each1 ∈�r using least-squares, and then the

optimal 1 can be selected. It is important that �r is based on an
accurate initial estimate without too much uncertainty because
candidate loss sizes that differ by an integer multiple of the period
δ cannot be distinguished. Themethod is illustrated in Figure 2B.

PELP requires knowledge of the stimulation period (δ) and an
appropriate choice of the number of harmonics (m) used by the
harmonic regression model. Although δ is known in principle,
slight inaccuracies in device system clocks make it important
in practice to use data-driven methods to estimate δ. Before
using PELP, we estimate δ from combined data across all runs
using the multiple-channel period estimation method described
in detail in Dastin-van Rijn et al. (2021a) and Provenza et al.
(2021) where we treat each run as a separate channel, where we
use at most the first 104 samples from each run, and where we use
only the first two stages of the stagewise search for δ before the
final optimization. We similarly choose in a preprocessing step
using Akaike Information Criterion (AIC; Akaike, 1974) for the
harmonic regression model (with Gaussian errors) applied to the
single longest run.

Participant
The research was approved by the Food and Drug
Administration and conducted in accordance with the principles
embodied in the Declaration of Helsinki and in accordance
with local statutory requirements. The participant gave informed
consent and the data presented were collected in accordance with
recommendations of the federal human subjects’ regulations
and under protocol H-44941/H-49125 approved by the Baylor
College of Medicine Institutional Review Board. EEG data
were recorded both with and without stimulation when the
participant visited the clinic for DBS programming. LFP
data were recorded both in the clinic and when the patient
was at home. Electrodes were implanted bilaterally in the
VC/VS according to standard stereotactic procedures using
computed tomography for target determination. The location
of electrode placement was made entirely on clinical grounds.
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FIGURE 2 | Illustration of packet loss correction and PELP. (A) The relative timing of the samples contained in received packets can be uncertain. Adjusting timing
solely with PacketGenTime leads to many inaccurate overlaps, systemTicks will accumulate error over long recordings, the approach from Sellers et al. (2021)
ensures consistency within runs but offsets at losses, while PELP can ensure exact reconstruction. (B) PELP begins by grouping contiguous packets (blue, first row)
into continuous runs (blue, second row) where each run is separated from adjacent runs by losses (dashed-red). Loss sizes are estimated but uncertain. The
stimulation period is analytically determined using all the data. For each pair of subsequent runs, the root mean squared error (RMSE) between a stimulation model
and the samples in the two runs is computed for a range of loss sizes centered around the estimate (indicated by E = for each size). A new stimulation model is fit for
each loss estimate. The loss size that minimizes the RMSE is selected as the true loss size.

Bilateral 150.6 Hz stimulation with a pulse width of 90 µs
and amplitudes of 4 mA for the left side and 4.5 mA for the
right side was used for all recordings where stimulation was
turned on.

EEG and LFP Recording Procedures
Continuous electroencephalography (EEG) was recorded using
a 64-channel ActiCap BrainVision system (Brain Vision,
Morrisville, NC, USA). A common mode sense electrode was
located at FCz. The EEG was band-pass filtered online between
0.1 and 1,000 Hz and digitized at 5 kHz. The EEG was
downsampled offline to 1,000 Hz with an anti-aliasing filter
prior to analysis. The continuous LFP was recorded using the
Medtronic Summit RC+S (Medtronic, Minneapolis, MN, USA)
via wireless data streaming from implanted electrodes to the
device running the task. Each DBS probe (Model 3387, one per
hemisphere) contains four electrode contacts two of which were
used per side to conduct bipolar recordings. LFP recordings
were sampled at 1 kHz in the clinic and 250 Hz at home
to minimize data losses. Signal processing and analysis were
performed in MATLAB (Mathworks, Natick, MA, USA) using
in-house code.

Stimulation Simulation Procedure
To simulate stimulation in our recordings, we modeled DBS
artifacts as a sum of sinusoidal harmonics of the stimulation
frequency (Sun et al., 2014). The effect of stimulation was
simulated by adding the artifact component regressed from
recordings on a different day where stimulation was turned on

to data without stimulation. A high-pass filter at 1 Hz with
a gaussian window was first applied to achieve approximately
40 dB attenuation in the stopband before the period of
stimulation (δ) was identified using the period estimation
component of PARRM (Dastin-van Rijn et al., 2021a). A sum of
sinusoids fβ (t) with m harmonics of the period and coefficients
β was then fit to the data using linear regression. The stimulation
amplitude for each cycle was sampled from a normal distribution
with mean A1 and standard deviation V. The mean stimulation
amplitude was set relative to the root mean squared amplitude
of the stimulation off data (A) according to a ratio (R) and
the original root mean squared amplitude of the fit (A0). To
model potential inaccuracies in period estimation, the period of
the stimulation model was slightly offset by a drift factor (d)
measured in percent drift per 1,000 cycles from the period used
during PELP. The effects of these three parameters are illustrated
in Figure 3.

Computational Experiments
We conducted three sets of experiments to simulate the accuracy
of loss estimation while varying different parameters in the
stimulation model. For each set, Monte Carlo analyses were
used to simulate many experiments by randomly sampling
subsets of 50 sample ‘‘packets’’ to remove from a 66 s
recording. These simulations were applied while varying one of
the following—amplitude ratio, amplitude variability, or drift
as a function of the loss uncertainty. For each simulation,
the uncertainty (for computing loss size with PELP) ranged
from 0 to 50 samples in one sample increments while the
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FIGURE 3 | Illustration of simulation components. (A) The root mean squared amplitude (Ao) of the stimulation model is set relative to that of the neural signal of
interest (A) according to a target ratio R. (B) The amplitude of each stimulation pulse is varied on a cycle-wise basis where the amplitude of each pulse is sampled
from a normal distribution with mean Ao and standard deviation V. (C) Inaccuracies in period estimation, drifting sampling rate, and frequency variability are modeled
by adding a drift factor d to the stimulation period in the model.

dependent parameters ranged from 0 to 4 in increments of
0.1 for the amplitude ratio, 0%–10% in increments of 1%
for the amplitude variability, and 0%–0.6% in increments
of 0.015% per 1,000 cycles for the drift. PELP was applied
to each simulation to determine the proportion of losses it
was able to estimate correctly depending on the stimulation
parameters. This approach is like that of Boudewyn et al.
and is informative because it uses a combination of real
EEG data analogous to LFP (so that the noise properties are
realistic) and artificially induced losses (so the actual truth
is known) across a range of modeled stimulation waveforms
(Boudewyn et al., 2018).

RESULTS

Stimulation Model Fit
We first sought to estimate the frequency of stimulation to
construct a model for time series data alignment. Figure 4A
shows the stimulation model compared to the raw EEG samples
overlapped by computing the modulus of each timepoint with
the model’s period of stimulation. The period of stimulation was
found to be 6.64000 samples. Four sinusoidal harmonics were
used for the fit based on model selection via AIC. Raw samples
are well consolidated about the artifact waveform with a residual
standard deviation of 5.90 µV similar to the standard deviation
of the stimulation off data (4.55 µV).

Loss Simulations
After building the model of stimulation times, we then ran a
set of simulations to provide bounds on the expected recovery
and overall loss after using the PELP method for data alignment.
The histograms in Figure 4 illustrate features of the Monte Carlo
simulation of 100 loss experiments. The average length of a
missing data gap was 63 samples with a median of 50 samples
(one loss; Figure 4B). Runs of continuous samples between
losses ranged from 50 to 2,200 samples with an average length
of 251 samples (Figure 4C). The max run length in each
simulation ranged from 950 to 2,200 samples with an average
length of 1,342 samples corresponding to roughly 202 cycles of
the 150.6 Hz simulated stimulation frequency (Figure 4D).

Loss Estimation Experiments
We then explored the impact of model parameters on the
loss of sensing data using PELP. Figure 5 shows the Monte
Carlo simulated loss experiments measuring the accuracy of
PELP estimates as a function of the stimulation amplitude ratio,
amplitude variability, and estimate uncertainty. Both heat maps
show discrete transitions in accuracy at uncertainties of 3, 6,
11, and 21 samples. This occurs because estimate differences at
these multiples are more closely overlapping than others for the
specific stimulation period of 6.64 samples. The magnitude of
estimation errors also increased at these transitions with most
errors corresponding to 1, 3, 6, 11, or 21 samples of offset
depending on the uncertainty. For constant uncertainty, accuracy
increased smoothly for increasing amplitude ratio and decreasing
amplitude variability. Changes in drift, in the range tested, had
no effect on accuracy. Keeping amplitude ratio or amplitude
variability constant while varying uncertainty had little effect
on accuracy with exception of the effects at multiples of three
samples. Changes in uncertainty for constant drift had no effect
on accuracy. Accuracy was near 100% for amplitude ratios above
0.2 for uncertainties less than three samples, amplitude ratios
above 0.5 for uncertainties less than nine samples, and amplitude
ratios above three for uncertainties greater than nine samples.
Accuracy was near 100% for amplitude variabilities below 2% for
uncertainties less than nine samples. For uncertainties larger than
nine, amplitude variability had to be near zero to maintain 100%
estimate accuracy. Across all values for the drift experiment,
accuracy was near 100%.

PELP With Medtronic Summit RC+S
Recordings
We then applied the PELP methodology of offline data
realignment to brain recordings collected from participants of an
ongoing clinical study to demonstrate real world performance.
Figure 6 shows LFP data from a behavioral task containing
packet losses recorded using the Medtronic Summit RC+S in
the clinic and at home after the estimation of losses using PELP.
Data recorded in the clinic sampled at 1,000 Hz contained
15 losses with a median size of 200 samples (Figures 6A,B).
Data recorded at home sampled at 250 Hz contained 121 losses
with a median size of 17 samples (Figures 6C,D). When
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FIGURE 4 | Features of simulation. (A) Stimulation model fit to EEG data. Raw data are shown in gray and the model is shown in blue. (B) Histogram of missing
data gap lengths for all experiments. (C) Histogram of continuous run lengths for all experiments. (D) Histogram of longest continuous runs in each experiment.

FIGURE 5 | Accuracy of loss estimation as a function of amplitude ratio, amplitude variability, and uncertainty. The accuracy of loss estimation was computed for
100 simulated trials with 20% of the packets removed. More accurate parameter combinations are indicated by darker values in the colormap. Amplitude ratios (A)
ranged from 0 to 4, amplitude variability (B) ranged from 0% to 10%, and uncertainty ranged from 0 to 50 samples.

overlapped on the timescale of the period of stimulation, all
samples from both conditions were well consolidated about
the stimulation waveform with no observable evidence of
significant period drift indicating that losses were accurately
accounted for. In contrast to PELP, if the original loss size

estimates (Supplementary Figure 1A) or the method from
Sellers et al. (2021; Supplementary Figure 1B) are used for
loss size estimation, the samples are not consolidated about the
stimulation waveform indicating that losses are not accurately
accounted for.
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FIGURE 6 | Application of PELP to data from the Medtronic Summit RC+S. PELP was applied to RC+S data containing losses sampled at 1,000 Hz (A,B) and
250 Hz (C,D). Each continuous run is indicated by a distinct shade in the colormap (A–C). For both conditions, samples from all runs were overlapped on the
timescale of the period of stimulation (B–D). Samples were well consolidated in the stimulation model for both conditions indicating accurate estimation of loss sizes.

DISCUSSION

Streaming of intracranial electrophysiology data in ecologically
valid environments is essential for biomarker discovery in
a variety of neurological disorders. Bidirectional implanted
devices have enabled the acquisition of such datasets, however,
data losses during wireless streaming hinder accurate analyses
of neural signals. To address these challenges, we have
developed PELP to exactly estimate and account for data
losses from implanted recordings where stimulation is on.
We show using simulations of data losses that PELP can
accurately estimate missing samples over a variety of stimulation
conditions. Lastly, we successfully applied PELP to reconstruct
the timing of data recorded using the Medtronic Summit
RC+S using various telemetry settings amenable for both
stationary and ambulatory streaming in the laboratory and in
natural environments.

PELP is applicable for precise packet alignment for the
Summit RC+S and may be applicable to other stimulating
devices capable of wireless data streaming with similar
acquisition protocols. Our stimulation model accurately
accounts for the range of amplitude and variability parameters
that could be expected for other implanted devices. In recordings
where sensing and stimulation occur on nearby contacts,
stimulation amplitude can exceed the underlying neural signal
by a factor of 10 (Allen et al., 2010). For recordings where sensing
and stimulation occur far apart or the stimulation harmonics
fall within the transition band of an online low-pass filter, the
amplitude ratio will be closer to 1. Our recordings using the
Summit RC+S had amplitude ratios of 27 and 1.2 and estimate
accuracy was consistent with predictions from the simulation
(as determined from visual inspection of the consolidated
stimulation artifact). Pulse to pulse amplitude variability for
the Summit RC+S is well within the range of values where
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PELP was most accurate. Fluctuations in the battery or the
surrounding medium could influence amplitude on longer
timescales. While only the run nearest to the loss was used
for estimation, drift within the run itself would not be well
accounted for. Exceptionally long runs or runs where the drift
was identified could be divided to improve estimation accuracy.
Similar considerations would also be effective if stimulation
frequency drift or errors in period estimation occur.

In the case of clinical devices, it is necessary to work within
the confines of the hardware available with little ability to
inject external sources of information. In research contexts,
where experimental design and data acquisition are more
flexible, data losses are handled by utilizing timing systems
with greater accuracy and minimal rollover or the injection of
reference signals into the recording system that ensure timing
is unambiguous. Neither of these solutions is feasible for a fully
implanted, closed-source, clinical system necessitating a solution
like PELP.

Since PELP requires stimulation artifacts to be present to
model the signal during data losses, the method is not applicable
for recordings where stimulation is off or significantly attenuated
by online filters. In such circumstances, less accurate methods
utilizing packet timingmetadatamust be used for loss estimation.
In theory, stimulation could be applied below therapeutic
amplitudes and still be used for reconstruction using PELP.
However, such modifications would only be reasonable if the
inevitable stimulation artifacts did not obscure neural signals
of interest. Additionally, the version of PELP described in this
manuscript would not be applicable for data streamed during
time-varying stimulation (closed-loop DBS). PELP could still be
applied if the exact stimulation period and parameters are known
for the data neighboring each loss allowing for accurate loss
estimation despite changing parameters.

While PELP is highly effective for correcting inaccuracies in
loss sizes, the best practice for future devices would certainly
be to avoid collecting ambiguous datasets via synchronization
approaches with consistently accurate clocks and constant packet
sizes. We intend PELP to be used as a post hoc remediation step
for existing datasets where such proactive measures cannot be
made. With the Summit RC+S alone, there are several published
studies where PELP could be useful for post hoc data cleaning
(Kremen et al., 2018; O’Day et al., 2020; Petrucci et al., 2020;
Gilron et al., 2021; Gregg et al., 2021; Johnson et al., 2021;
Provenza et al., 2021). PELP improves over existing solutions
(Sellers et al., 2021) for analyses requiring highly accurate
timing for small loss sizes, thereby reducing timing offsets,
delocalization, and attenuation (Dastin-van Rijn et al., 2021b). In
these circumstances, PELP enables near perfect timing and could
enable biomarker exploration and task-locked analyses for these
studies.
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