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Abstract

Astrocytoma is the most common glioma, accounting for half of all primary brain and spinal cord tumors. Late detection
and the aggressive nature of high-grade astrocytomas contribute to high mortality rates. Though many studies identify
candidate biomarkers using high-throughput transcriptomic profiling to stratify grades and subtypes, few have resulted in
clinically actionable results. This shortcoming can be attributed, in part, to pronounced lab effects that reduce signature
robustness and varied individual gene expression among patients with the same tumor. We addressed these issues by
uniformly preprocessing publicly available transcriptomic data, comprising 306 tumor samples from three astrocytoma
grades (Grade 2, 3, and 4) and 30 non-tumor samples (normal brain as control tissues). Utilizing Differential Rank
Conservation (DIRAC), a network-based classification approach, we examined the global and individual patterns of network
regulation across tumor grades. Additionally, we applied gene-based approaches to identify genes whose expression
changed consistently with increasing tumor grade and evaluated their robustness across multiple studies using statistical
sampling. Applying DIRAC, we observed a global trend of greater network dysregulation with increasing tumor
aggressiveness. Individual networks displaying greater differences in regulation between adjacent grades play well-known
roles in calcium/PKC, EGF, and transcription signaling. Interestingly, many of the 90 individual genes found to monotonically
increase or decrease with astrocytoma grade are implicated in cancer-affected processes such as calcium signaling,
mitochondrial metabolism, and apoptosis. The fact that specific genes monotonically increase or decrease with increasing
astrocytoma grade may reflect shared oncogenic mechanisms among phenotypically similar tumors. This work presents
statistically significant results that enable better characterization of different human astrocytoma grades and hopefully can
contribute towards improvements in diagnosis and therapy choices. Our results also identify a number of testable
hypotheses relating to astrocytoma etiology that may prove helpful in developing much-needed biomarkers for earlier
disease detection.
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Introduction

Primary brain tumors comprise less than 2% of all human

cancers but have strikingly high mortality rates. Glioma, the most

prevalent primary brain tumor, accounts for ,42% of all adult

brain tumors [1]. The most common gliomas, in turn, are

astrocytomas, believed to originate from astrocytes [2,3]. Astro-

cytomas are classified from Grade 1 (least aggressive) to Grade 4

(most aggressive) based on the World Health Organization (WHO)

grading system [4].

We present an analysis of the different grades of astrocytoma

(excluding pilocytic astrocytoma, with normal brain tissues taken

as control) to identify both distinct and common molecular states

across grades. We have employed a combination of gene- and

network-based approaches (Figure 1) to investigate the genetic

and biological mechanisms implicated in observed phenotypic

differences. Grade 1 tumors (pilocytic astrocytomas) represent

distinct pathological and biological entities compared with other

tumors [5] and thus were not included in this study. As such, we

will henceforth consider only Grades 2 through 4. Grade 2 (G2)

and Grade 3 (G3) tend to progress to higher grades with

recurrence. Grade 4 tumors (glioblastoma multiforme or GBM)

commonly present as primary tumors (pGBM), with no prior history

of occurrence at a lower grade. Secondary GBM (sGBM), on the

other hand, has recurred in a patient previously diagnosed and

treated for a lower grade [6]. Specific avenues of progression,

where astrocytoma manifests in G2 tumors that undergo

transformation to the more aggressive G3 or GBM tumors, have

been seen in both genetically engineered mouse models [7], as well

as in humans [6]. Our study included only GBMs with clear

subtype designations (primary or secondary) and investigated

differences between GBMs and lower grades as well as between

these subtypes.

Many studies have aimed to classify or stratify astrocytomas

using genomic, transcriptomic, and integrated approaches with

varying success. Subtypes of GBMs with common molecular

characteristics (i.e., as opposed to clinical presentation) have
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been identified [8]. While there is continued hope that

identification of these subtypes will lead to clinically distinct

treatments, to date, no such treatments have emerged.

Identification of these subtypes has, however, aided in our

understanding in several of the molecular drivers of astrocyto-

ma. One recent report identified IDH mutation in Grades 2

and 3 astrocytomas as an indicator of better clinical outcome–

addressing a pertinent challenge, as these lower-grade astrocy-

tomas can have widely variable outcomes [9].

While genomic studies have been able to identify several

common and informative mutations, transcriptomic studies have

not proven as robust. Differentially expressed genes and molecular

signatures have been identified in previous microarray experi-

ments, in an attempt to address clinical needs [10–15]. Unfortu-

nately, as most of these studies were statistically underpowered,

these signatures failed on independent validation sets, thus

rendering them ineffectual [16]. Lab effects can obfuscate signal

from noise in phenotypically similar tumors, if sampled from

different studies [17]. This can be overcome through use of

multiple datasets when properly normalized–also minimizing the

inherent biological noise [18]. Our present study adopted such a

uniform approach to process raw expression data from multiple

labs with one standard adjustment method, thereby increasing

sample-to-sample correlation and decreasing heterogeneity across

the data collected in different studies (Figure 1A).

Another strategy to mitigate biological noise is to analyze

molecular profiles from individual genes or proteins in the context

of biological network behaviors–such a strategy also helps to link

changes in gene expression to phenotype. Studying network

behavior is especially relevant in cancer research, as cancer stages

and progression are marked by changes in network-level processes

[19].

We previously developed a method called Differential Rank

Conservation (DIRAC) [20], which measures the variation in

network ranking (i.e., the relative ordering of genes from highest to

lowest expression within a pre-defined network) among samples

of the same phenotype and between samples of different

phenotypes (Figure 1C). This enables evaluation of changes in

gene expression at a network level based on relative expression

between each of the network components, making the method

independent of any normalization that does not affect rank (e.g.,

normalizing to total RNA, quantile normalization, etc.);

additionally, the results do not depend on the other genes in

the transcriptome, meaning that it can be applied when only

the genes in the selected network are measured. We first

examined broad patterns of network regulation across all

astrocytoma grades using DIRAC and observed a trend of

greater network dysregulation by increased sample-to-sample

variation of gene ordering within networks with increasing

astrocytoma grade. We also identified the most differentially

regulated networks between different grades (i.e., heterogeneous

in one grade but significantly less so in another).

This tendency of increased transcriptomic heterogeneity at

both the global- and individual-network level for more

aggressive astrocytomas led us to explore potential underlying

patterns of expression among individual genes. We thus identified

genes that either monotonically increased or decreased in

parallel with increasing astrocytoma grade (Figure 1B); fur-

Figure 1. Overview of approach. A)We minimized experimental variation due to lab effects by performing uniform pre-processing. B) Genes that
either monotonically increased or decreased in parallel with increasing astrocytoma grade were identified. C) Molecular signatures that can
accurately distinguish between different grades were established using Differential Rank Conservation (DIRAC). We also examined broad patterns of
network regulation across all astrocytoma grades.
doi:10.1371/journal.pone.0076694.g001
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thermore, we observed numerous associations between these

genes and functional categories implicated in cancer including

calcium signaling, mitochondrial metabolism, and apoptosis.

Given the significant genomic heterogeneity found in cancer,

that specific genes are monotonically changing in expression

with much more prevalence than would be expected by chance

may be reflective of shared oncogenic mechanisms among

phenotypically similar tumors.

Amidst the heterogeneous expression of higher grades of

astrocytoma, we identified networks that exhibit consistent changes

between phenotypes, establishing molecular signatures that can

potentially offer mechanistic explanations for differences between

grades. DIRAC provides an informative metric for network-based

classification that may be more capable of extracting sufficient

signal from noise than gene-based approaches. While it was

difficult to reliably distinguish sGBMs from lower grades, as

expected, we identified more robust signatures separating pGBMs

from other grades (Figure 1C). Investigating these networks in

greater depth provides a starting point for characterizing

underlying mechanisms for aggression in astrocytomas.

Methods

Collection and Integration of Transcriptomic Data
Raw microarray CEL files from previous studies were compiled

from the NCBI Gene Expression Omnibus (GEO). We used data

collected from the most abundant source platform currently,

Affymetrix HG-U133A or its complimentary version, HG-U133-

Plus 2.0 GeneChips (Affymetrix, Santa Clara, CA). Table 1 lists

the GEO accession number, year of publication, and the number

and grades of samples reported in each original study.

A ‘‘consensus pre-processing’’ method was applied to the CEL

files to normalize differences introduced by non-uniform studies

and sample preparation procedures. This method is described in

greater detail in [18] and was used in that study to demonstrate

that classifiers performed better on novel datasets when trained on

multiple, integrated, pre-processed datasets. Briefly, common

probe sets (22,277) shared by the two platforms (U133A and

U133-Plus 2.0) were identified according to Affymetrix descrip-

tions, and GeneChip RMA (GC-RMA) normalization was applied

to raw expression data for these probes across all microarray

samples [21]. GC-RMA was implemented in the Matlab

Bioinformatics Toolbox with the threshold for presence defined

based on prior studies from Affymetrix [22]. Probes having 0%

present calls for any phenotype were removed. Following these

criteria, 15,827 probes were kept for further analysis.

When converting the probe intensity matrix to a gene

expression matrix, probes that mapped to multiple genes were

eliminated to remove ambiguity. For multiple probes correspond-

ing to the same gene, the maximum intensity was used. Finally, all

absolute intensity values were replaced by their relative ranks

within each array.

Computation of Rank Conservation Indices in DIRAC
For all network analyses performed with DIRAC, expression

levels of genes were grouped into 248 human signaling

networks, defined according to the BioCarta gene sets collection

in the Molecular Signatures Database (MSigDB) [23]. For each

selected network, we used DIRAC to compute the expected

ordering of network genes (rank template) for each phenotype,

and we subsequently measured how closely each sample’s

network ordering matched the phenotype-specific template (rank

matching score). The rank conservation index, calculated by

averaging rank matching scores across samples in a phenotype,

indicates how consistently each network is ordered within a

Table 1. Summary of microarray expression datasets included in the study.

Platform
Authors of Study (year, GSE
accession) Number of patients in each class

Normal Grade 2 Grade 3 pGBM sGBM

U133A Freije et al (2006, GSE 4412) [12] 0 0 8 34 12

Phillips et al (2006, GSE 4271) [13] 0 0 21 55 0

Wong et al (2008, GSE12907) [14] 4a 0 0 0 0

Rich et al (2005, GSE 13041) [62] 0 0 0 31 0

Lee et al (2008, GSE 13041) [63] 0 0 0 15 13

Barrow et al (2008, GSE 13041) [63] 0 0 0 28 3

Mcdonald et al (2005, GSE 3185) 0 3 0 0 0

Total U133A 4 3 29 163 28

U133-Plus 2.0 Sun et al (2006, GSE 4290) [15] 23b 7 19 0 0

Liu et al (2010, GSE 19728) 1c 5 5 0 0

Lee et al (2008, GSE 13041) [63] 0 0 0 11 16

Turkheimer et al (2006, GSE 2817) [64] 0 6 0 0 0

Chow et al (2010, GSE 22927) [65] 0 6 0 0 0

Grzmil et al (2011, GSE15824) [66] 2 4 4 0 0

Total U133-Plus 2.0 26 28 28 11 44

Total 30 31 57 174 44

aIncludes one normal fetal brain RNA, one normal cerebellum RNA, and two normal tissues surgically removed tissue adjacent to resected tumor tissue and RNA
extracted.
bBrain samples of epilepsy patients.
cPooled normal brain tissue.
doi:10.1371/journal.pone.0076694.t001
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population. Averaging the rank conservation indices over all

networks for a phenotype provided a single value estimating the

relative heterogeneity or dysregulation of networks for that

phenotype.

Identification of Most Differentially Regulated Networks
Across Grades
The difference in rank conservation indices between two

phenotypes (e.g., normal vs. cancer or lower grade vs. higher

grade) was calculated for each network. Networks were ranked

based on the magnitude of the difference. To establish statistical

significance, the original phenotype labels were permuted and

randomly assigned to samples, and the absolute difference in rank

conservation indices was calculated for all networks in each

phenotype. These steps were repeated for 1,000 permutations to

generate a null distribution of rank conservation differences, and

the significance level for each difference was measured as the

probability of observing the same fraction or higher at random.

Identification of Monotonically Changing Genes
We selected differentially expressed genes (DEGs) for each

adjacent pair of astrocytoma grades, (control vs. G2, G2 vs. G3,

etc.) based on the Wilcoxon rank-sum test (P,0.05 after

Bonferroni correction). In the intersection of these DEG sets,

genes with monotonically increasing ranks were defined as

increasing genes, and monotonically decreasing ranks as decreasing

genes.

In order to test the robustness of these monotonically changing

genes, we randomly selected 80% of all samples in each

phenotype, and with this subset of samples, we tracked whether

genes were similarly increasing or decreasing across grades as they

were with the full set of samples. We repeated this selection process

1,000 times and recorded how often the identified genes appear

with the same pattern. Genes that appeared at least 500 times in

1,000 permutation tests were considered as high-confidence genes

and used for subsequent analysis.

In order to test the significance of the directionality of genes, the

original phenotype labels were permuted and randomly assigned

to samples, and the number of monotonically changing genes in

each permutation was calculated for both the increasing and

decreasing case. The procedure was repeated for 1,000 times and

a null distribution for the gradation of genes was established. A P-

value for the directionality/trend of the genes was assigned based

on the probability of observing the same number of genes at

random.

Classification of Disease Phenotypes with DIRAC
In addition to conservation of network ordering within a

phenotype (measured by the rank conservation index), DIRAC

can also be used to identify networks ordered differently (variably

expressed) between two phenotypes. Rank matching scores were

calculated for each class, and predicted class labels were assigned

based on similarity of each patient’s individual profile to either of

the two templates. Apparent accuracy for classification with these

predicted class labels was then calculated for all networks [20]. A

null distribution of network classification rates was generated by

randomly permuting phenotype labels 1,000 times, and the

significance level was measured as the probability of observing

classification rates. To address the issue of multiple-hypothesis

testing, the corresponding false discovery rate (FDR) was

calculated for each significance level, representing the fraction of

expected false positives at any defined cutoff [20]. We used leave-

one-out cross validation to estimate the error rate of DIRAC-

based classification for each pair of phenotypes.

Results and Discussion

Consensus Pre-processing Reduces Noise and Increases
Homogeneity Across Microarray Datasets
Appropriate computational pre-processing is an important step

in combined analyses of multi-site data to reduce technical

variability between different studies. Consensus pre-processing,

which normalizes raw expression data from multiple studies in a

uniform manner, has been shown to reduce lab effects; such lab

effects are known to obfuscate biological signal when combining

datasets from multiple labs [18]. Molecular signatures obtained

after this step of processing have better prediction accuracy and

lower variance than those from individual datasets. For example,

average accuracy obtained training on four GBM datasets was

considerably higher than training on individual GBM datasets

[18]. We applied consensus pre-processing to the raw expression

data for 336 patients collected from multiple independent studies.

This greatly reduced sources of variation across studies, as

measured by an increase in average sample-to-sample correlation

from 81% to 91% (Figure S1). Reducing noise in the data

enabled a more robust identification of variability across

phenotypes.

Global Dysregulation of Networks Across Astrocytoma
Grades Coincides with Aggressiveness
We first investigated global differences in network-level expres-

sion between astrocytoma grades by applying DIRAC to measure

the rank conservation index of relative stability or consistency

within each network ordering across a population [20]. If the

orderings of genes within a specific network are mostly similar

among different patients (i.e., highly conserved), the network is

considered consistent within a phenotype. In the opposite case, more

dissimilarity among patients is observed, and the network is

considered heterogeneous or dysregulated. Extending this concept,

averaging rank conservation indices over all networks provides a

coarse measure of global regulation in different phenotypes.

We found that networks in normal brains are on average more

highly conserved (0.957) than networks in advanced astrocytoma

grades (G2, 0.937; G3, 0.930; and GBM (including both pGBM

and sGBM), 0.915; P,0.001 for ordering of phenotypes, based on

one-way ANOVA) (Figure 2A&2B). In addition, global network

rank conservation is significantly different between all pairs of

phenotypes (P,0.05, multiple pair-wise t-tests). This trend

demonstrates that more aggressive phenotypes have greater overall

variation in network ordering among different samples. Increased

genetic and cellular heterogeneity is a commonly recognized

characteristic of highly malignant astrocytomas [24,25]. GBM, the

most malignant grade, is characterized by extensive heterogeneity

as reflected in the moniker ‘‘multiforme’’, which derives from early

histopathologic descriptions of a single tumor’s highly varied

morphologic features and connotes cellular heterogeneity [26].

Here, we show in a quantitative manner that transcriptomic

heterogeneity, observed at the population scale, is generally correlated

with increasingly aggressive phenotypes.

Differentially Regulated Networks between Disease
States Correlate with Gliomagenesis and Development
Certain networks appear consistent in one phenotype but show

drastically more sample-to-sample heterogeneity in another

phenotype. Identifying the most differentially regulated networks

Aggressiveness and Heterogeneity of Astrocytomas
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can inform us about cellular processes and mechanisms most

affected or perturbed from one disease state to another. We thus

identified the most differentially regulated networks between

normal samples and each astrocytoma grade as well as between

different disease states (Table S1). For example, we identified 12

out of 248 networks that had a significant difference in

conservation when comparing normal to G2 patients (P,0.01

for each comparison, based on a binomial distribution; see

Methods); 10 out of these 12 networks showed increased

dysregulation in G2. Similarly, when comparing G2 to G3 and

G3 to primary or secondary GBM, a strong majority of

significantly dysregulated networks exhibited greater heterogeneity

in the more malignant phenotype (Figure 2) (P,0.01 for each

comparison, based on a binomial distribution). These quantitative

results further support the idea that networks become increasingly

dysregulated with increased malignancy.

Dysregulated networks in G2 vs. normal are heavily

involved in intracellular calcium signaling, PKC signaling,

and immune activities. Among the 12 significantly differen-

tially regulated networks (P,0.01) between G2 and normal brain,

5 networks (PLCD, PLCE, AKAP13, CCR5, and ION) are

known to regulate protein kinase C (PKC) signaling and increase

calcium release into the cell (Figure 2C). Calcium signaling is a

key player in neuronal transmission, microglia activation, and

motility. Calcium signaling is especially crucial for transformed

glioma cells to expand in the early stages of tumor development by

sheer motility, as glioma cells cannot spread through the

bloodstream [27]. Similarly, hyperactive PKC signaling is among

the most distinguishing features of malignant brain tumors. PKC

signaling stimulates both MAPK/ERK and PI3K/AKT path-

ways; it also supports degradation of extracellular matrices and

allows for invasion of glioma cells [19].

Three networks, ACETAMINOPHEN, SLRP, and PEPI,
mediating immune system responses, also showed increased

dysregulation in G2 patients (Figure 2C). The ACETAMINO-
PHEN network was named after the commonly used drug

Acetaminophen to reduce pain, targeting the cyclooxygenase

enzymes. This network is also involved in inducing expansion of

myeloid-derived suppressor cells (MDSC), which suppress T-cell

responses to tumor growth [28]. Increased instability of this

Figure 2. Network-level expression heterogeneity across tumor grades. A) Global trend of network regulation level decreases with
increeasing grade. The vertical axis represents examined networks, while the horizontal axis represents five phenotypes. Colors represent rank
conservation indices for each network. Light colors indicate high consistency of network ranking in a phenotype and the dark colors indicate large
heterogeneity of networks. Networks in sGBM and pGBM tumors become much more heterogeneous compared to the normal cases. B) One-way
ANOVA comparing the mean rank conservation values of different phenotypes. C) A list of most deregulated networks between adjacent tumor
grades and their major biological functions. The ‘‘.’’ and ‘‘,’’ indicate the magnitude of network regulation. For instance, AKAP13 has a larger rank
conservation index in normal samples and thus is more regulated in normal compared to G2 patients.
doi:10.1371/journal.pone.0076694.g002
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network may contribute to gliomagenesis by supporting develop-

ment of MDSCs and their accumulation in the tumor microen-

vironment [29]. The SLRP network consists of 5 small leucine-

rich proteoglycans (SLRPs), which are ligands of the Toll-like

receptors responsible for regulating innate inflammatory responses

[30].

In contrast to the ACETAMINOPHEN and SLRP networks,

PEPI showed significantly more consistent expression ordering in

the cancer population (0.877 in normal and 0.945 in G2 patients,

P=0.006). This network activates neutrophils and generates the

wound cleaning response–and is likely indicative of the normal

physiological response to most tumors. In the early stage of

forming malignant glioma cells, it is possible that some immune-

related networks like PEPI act to prevent tumor cell migration

and invasion through a more consistent expression program, while

the dysregulation of other networks like SLRP and ACETAMIN-
OPHEN contributes to the immunosuppressive environment in

the tumor.

Dysregulated networks in G3 vs. G2 induce EGFR/ErbB

signaling and telomerase activation. Comparing network

states in high-grade G3 to low-grade G2, all 5 networks with a

significant change in consistency of gene ordering showed greater

heterogeneity in the more aggressive cancer grade (Figure 2C).
ERBB4 and NOTCH networks are part of the larger EGFR/

ErbB signaling pathway. The key components in this pathway

consist of four members of ErbB family of proteins (Erb1-4), which

tend to form heterodimers and bind several cognate growth factors

(e.g., EGF, TGF), activating downstream transcription factors

(e.g., JUN, FOS) to regulate multiple cellular responses including

proliferation and apoptosis [31]. This pathway has demonstrated

substantial biological and transcriptional consequences such as

activating downstream PI3K/AKT, PKC, and MAPK/ERK

pathways. Up to 40% of GBMs display deletions in EGFR

rendering it constitutively active, while others overexpress it

through amplification or up-regulation of expression [32].

The NOTCH network interacts closely with EGFR to facilitate

tumor angiogenesis. Our observation that NOTCH shows greater

variability in expression ordering at the higher grade–from 0.908

(in G2 tumors) to 0.856 (in G3 tumors)–supports the hypothesis

that it plays different roles in tumorigenesis of low-grade

astrocytomas and high-grade gliomas. That is, while inactive

NOTCH functions as a tumor suppressor in low-grade G2

tumors, it is activated and may act as an oncogene in high-grade

astrocytomas, especially primary GBM [33].

The TERT network, responsible for telomerase activation, also

showed greater dysregulation in G3 compared to G2. Telomerase

activation and subsequent telomere maintenance are generally

associated with the malignant transformation of normal cells to

cancer cells [34]. The increased transcriptomic heterogeneity and

network ordering inconsistency in higher-grade astrocytomas

further supports the known fact of telomerase dysregulation in

malignant cancer phenotypes [35].

Dysregulated networks in GBM vs. G3 represent

perturbed and aberrant activities in PKC, calcium, EGFR,

immune system, and metabolic signaling. We compared

network conservation values between G3 and primary GBM and

between G3 and secondary GBM separately, and obtained 38 and

16 differentially regulated networks, respectively. 13 networks

appeared as significant in both comparisons (P,0.01). GBM

displays all the pathological features in the lower grades such as

altered regulation in transcription and metabolism, calcium, and

EGFR signaling (Figure 2C).

The PLCD, PLC, TRKA, and HBX networks all regulate

release of intracellular calcium and function in similar ways as

PLCE and PKC, identified in the lower grades. Notably, HBX
includes 4 genes (GRB2, HRAS, SHC1, SOS1) that are part of the

PI3K/AKT pathway–known to be hyperactivated in GBMs,

resulting in uncontrolled cell growth, survival, proliferation,

angiogenesis, and migration [36].

As expected, there are a number of networks involved in the

complex EGFR regulatory pathway as in the other grades. The

CBL network contains the ubiquitin ligase Cbl, which degrades

EGFR and thus down-regulates EGFR signaling [31,37]; the

ERBB3 network likewise contains functionally similar compo-

nents and plays a similar role in EGFR signaling. TERC, another
network in this list, behaves like TERT to control telomerase

regulation.

Interestingly, two networks (LDL and S1P) with critical roles in

cholesterol metabolism also displayed significant dysregulation in

GBM. LDL transports cholesterol, which is needed for cell

membrane repair and synthesis, whereas S1P controls transcrip-

tional regulation of cholesterol metabolism in response to

cholesterol levels in the cell [38]. In addition, S1P connects to

the earlier mentioned EGFR pathway through two sterol-

regulatory element-binding proteins (SREBF1 and SREBF2) that

are activated by PI3K. The interplay between S1P, SREB

proteins, and EGFR regulates the expression of fatty acid synthase,

which synthesizes fatty acids and plays a key role in cancer

pathogenesis [39]. It has been reported that EGFR mutations

(EGFRVIII) and PI3K promote tumor growth and survival

through SREBP-1 dependent lipogenesis [40].

Dysregulated network distinguishing pGBM from sGBM

is related to IDH mutation. In comparing the two subtypes of

GBM, primary to secondary GBM, it is interesting to note that the

conservation value of S1P also decreased significantly from 0.812

in pGBM to 0.769 in sGBM (P=0.005). The SREBF1 gene in this

network regulates and activates the IDH1 gene [41]. IDH

mutations are commonly observed in lower-grade and secondary

GBMs but rarely in primary GBMs [42]. Thus, this network links

IDH mutation to lipid homeostasis. Increased network dysregu-

lation of S1P in sGBM offers quantitative support that IDH

signaling is altered in this subset of GBMs.

Monotonically Increasing and Decreasing Genes in
Astrocytoma Progression
Amidst the increased dysregulation of gene networks with

increasing astrocytoma grade, we sought to identify instances

where specific molecular changes–in this case, changes in

expression of individual genes–occur in a unidirectional manner.

We reasoned that such instances could provide insight into the

oncogenic mechanisms or events that contribute to the pathology

and/or transcriptomic heterogeneity found in astrocytoma. We

therefore looked for genes whose expression level monotonically

changed concomitant with increasing grade.

31 and 6 genes were found to decrease or increase their

respective expression from normal to G2, G3, and GBM

(Figure 3, Table S2). In evaluating DEGs between G3 and

GBM, only genes differentially expressed in both pGBM and

sGBM compared to G3 were included (see Methods). We also

tested for the statistical significance of the directionality of the

genes (P,0.001, see Methods). The fact that specific genes

change consistently with increasing astrocytoma grade may reflect

shared oncogenic mechanisms among phenotypically similar

tumors. Interestingly, similar to the differentially regulated

networks, several of these genes identified are also associated with

key processes such as calcium signaling and metabolism and/or

are located in the endoplasmic reticulum (ER) or mitochondria.

The commonalities shared by gene-based and network-based

Aggressiveness and Heterogeneity of Astrocytomas
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analysis may represent potential connections between genetic

heterogeneity at the tumor level and expression heterogeneity at

the population level.

The significance of calcium signaling and metabolic genes may

relate to how cells respond to additional metabolic requirements

needed for tumor cell division and cell cycle progression with

increased aggressiveness. At the same time, cells that ultimately

constitute the tumor mass have been selected for their ability to

avoid apoptosis while facilitating increased metabolic flux. As such,

we see genes implicated in regulation of apoptosis. We discuss in

detail below how representative genes are involved in the above-

mentioned functional categories and how they interact to bring

about changes reflective of astrocytoma pathology. A summary of

the genes and their respective functions is shown in Figure 4.
Genes implicated in calcium signaling and/or

apoptosis. Among the monotonically changing genes,

TMEM66, STRN3, CANX, and CPEB3 are known to affect

calcium and apoptotic signaling; all of them, with the exception of

CANX, showed decreased expression with increasing tumor

grade.

TMEM66, also known as SARAF, is localized to the ER lumen

and affects calcium storage [43]. Following calcium release from

the ER, calcium stores are replenished through calcium release

activated channels (CRAC) to re-enter the ER lumen [44].

Decreased SARAF, as we observed in our study, would potentially

lead to an inability to close the CRAC channels and disrupt

calcium homeostasis in aggressive gliomas.

Striatin, calmodulin binding protein 3 (STRN3) is another

monotonically decreasing gene and participates in apoptosis and

calcium release. It is found to be both cytosolic and membrane-

bound and is expressed primarily in the brain and muscle [45].

STRN3 binds with calmodulin in the presence of calcium [46]. It

reacts with protein phosphatase 2a (PP2a), which, along with the

promyelocytic leukemia (PML) protein, stimulates IP3R-mediated

Ca2+ release from the ER. PML modulates calcium-mediated

apoptotic stimuli through binding with PP2a and IP3R [47].

Decreased expression of STRN3 in aggressive gliomas likely

reflects altered apoptotic calcium signaling mechanisms in these

tumors.

Cytoplasmic polyadenylation element binding protein 3

(CPEB3) is a nucleocytoplasmic shuttling RNA-binding protein.

It is involved in both calcium signaling and EGFR degradation.

CPEB3 inhibits EGFR expression by preventing the translation of

STAT5B, a regulator of EGFR transcription [48]. As a

monotonically decreasing gene, lower expression of CPEB3 would

similarly lead to an increase in EGFR. Notably, CPEB3 is located

on chr10q 23.32, very close to the locus of PTEN (chr10q 23.31).

Loss of this region is known to occur in several cancers [49], and it

is conceivable that loss of CPEB3 contributes to altered EGFR

signaling along with PTEN loss.

In contrast to the above three genes, calnexin (CANX) was

found to increase at the mRNA level with increased astrocytoma

grade. CANX is an ER chaperone protein that binds with free

calcium ions. It is a critical component of the mitochondria

associated membrane (MAM), with over 80% of it located in the

MAM, along with the aforementioned STRN3-associated protein

PP2A. CANX regulates the activity of sarcoplasmic/endoplasmic

reticulum calcium ATPase (SERCA) by acting as a calcium buffer

in the MAM [50]. Depending on its palmitoylation status, CANX

shuttles between the ER and MAM [51].

Genes implicated in metabolism and mitochondria. A

few monotonically changing genes identified have metabolic

functions. Proteins encoded by these genes sit closely to each

other in the mitochondria, which is responsible for essential

cellular processes such as energy production, storage of calcium

ions, and cell death. In recent years, there has been increased

Figure 3. Genes showing consistent differential expression
with progression. Colors on the heatmap represent relative
expression values of genes in different phenotypes. The vertical axis
lists the differentially expressed genes and the horizontal axis lists the
phenotypes. All expression values are normalized as the percentage of
maximum expression value for the gene across all phenotypes. For the
up-regulated genes in panel A) the maximum expression is either sGBM
or pGBM, so we see all genes have brightest color in these two
phenotypes; similarly the down-regulated genes in panel B) decrease
their expression systematically from normal to GBM, and the intensity
level also increases with grade.
doi:10.1371/journal.pone.0076694.g003

Figure 4. Functional categories among monotonically chang-
ing genes.
doi:10.1371/journal.pone.0076694.g004
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reports of the role of mitochondria in calcium signaling [52],

which helps to connect mitochondrial metabolic genes with

calcium signaling. Metabolic regulation of calcium in mitochon-

dria is mediated through the effects of dehydrogenases. Calcium

ions activate matrix dehydrogenases, increase available NADH

and electrons for the respiratory chain, and eventually accelerate

ATP production [53].

NDUFB8 and NDUFB1 are two monotonically decreasing

genes that encode subunits of respiratory chain NADH dehydro-

genase complex I. Decreased expression of these proteins causes

respiratory chain dysfunction, reducing the driving force for

calcium transfer and available electrons in the respiratory chain,

and thereby decreasing ATP production. This observation may

reflect a reduction of mitochondrial ATP synthesis via oxidative

phosphorylation–contributing to the Warburg Effect; as the tumor

grows to more aggressive stages, the metabolism of proliferating

tumor cells is adapted to a proliferation mechanism rather than

efficient ATP production [54]. Interestingly, the NDUFB8 gene is

also found very close to PTEN (locus of NDUF8: chr10q 24.31

and PTEN, chr10q 23.31).

ACSL4 (acyl-CoA synthetase), a monotonically decreasing gene,

converts fatty acids to fatty esters and plays an important role in

lipid metabolism. Similar to CANX, ACSL4 is also found in

MAM, which is a critical metabolic hub in lipid metabolism [55].

Though normally recognized as a metabolic gene, ACSL4

regulates synaptic vesicles along axons. Knockout of ACSL4 in

embryonic stem cells was shown to significantly reduce neuronal

differentiation [56]. A de-differentiated neuronal state in higher-

grade tumors resembles how neural stem cells display higher

potential for proliferation and angiogenesis [57].

Other mitochondrial genes involved in metabolism include

ornithine aminotransferase (OAT), a monotonically decreasing

gene that converts arginine and ornithine into neurotransmitters

glutamate and GABA. GABA receptors and glutamate transport-

ers have been reported to be down-regulated in brain tumors [58].

Another mitochondrial gene identified is N-myristoyltransferase 2

(NMT2) which plays a role in protein myristoylation, proliferation,

and apoptosis [59].

DIRAC-based Classification Identifies Accurate Network
Signatures for Distinguishing Grades
The high degree of transcriptomic heterogeneity observed in

increasingly aggressive astrocytoma tumors creates substantial

variance when searching for robust molecular signatures between

grades. Still, identifying such signatures is critical to elucidating

mechanistic differences between more and less aggressive tumors.

Network-based approaches such as DIRAC are advantageous for

extracting signal from noise, as the patterns of functional groups

might be less within the same phenotype than those of individual genes.

Furthermore, DIRAC quantifies the relationships between genes,

and operates on these pair-wise expression patterns within

networks, thereby reducing the impact of noisy changes in single

gene expression. Using DIRAC, we compared each of the four

phenotypes to all other phenotypes (e.g., normal brain against G2,

G3, GBM; G2 against G3 and GBM; etc.) (Figure 5).
We were able to clearly separate normal brain tissues from G2,

G3, and primary GBM. Furthermore, these tumors could be

distinguished from each other with good accuracies (.80%,

except 78% in the case of G3 and pGBM). In separating

secondary GBM from other grades, however, classification signals

are not as strong (average accuracy of pGBM and sGBM vs. all

other phenotypes are 86% and 77%, respectively). This difference

in classification performance very likely reflects the fact that

secondary GBMs are derived from lower grades and therefore

share more common genomic and transcriptomic characteristics in

their expression profiles compared to primary GBMs, which

develop spontaneously and display more pronounced phenotypic

differences from other grades.

It was also difficult to separate primary and secondary GBMs

(accuracy 69%) based on their transcriptomes, even though they

are known to develop from separate genetic pathways [60]. They

are indistinguishable by histology, as both share the same

histological grade [61]. Both subtypes share a number of genomic

and transcriptomic similarities such as LOH on chromosome 10q

and deregulation of the PI3K/ATK pathway [60]. Another reason

for the relatively low accuracy is possibly due to the signal present

from other subtypes such as proneural (PN), mesenchymal, or

proliferative subtypes (the latter two collectively known as non-PN)

within GBMs, which appear to be more distinct than the

transcriptomic differences we observe between primary and

secondary GBM. In terms of survival, the PN subtype is reported

to be less aggressive than other subtypes [13]. In support of this

hypothesis, we applied DIRAC on a subset of GBM with known

PN/non-PN designations, and separated the proneural subtype

from the rest with an accuracy of 78%. This accuracy being higher

than for the separation of pGBM and sGBM suggests that

molecular subclasses in glioblastomas may look more different

than traditional pGBM/sGBM classes, especially in the context of

network behavior; hence DIRAC detected the stronger classifica-

tion signals more easily. The best 10 network-based classifiers

selected by DIRAC to separate tumor samples from normal brains

are listed in Table 2. In each pair-wise comparison, we included

different metrics (sensitivity, specificity, and accuracy) and group

size information to demonstrate the ability of DIRAC to

distinguish different grades of brain tumors (Table S3).

Conclusions

We report here a systems approach to investigate molecular

changes underlying astrocytoma pathology. Leveraging a large

cohort of publicly available gene expression datasets, we have

conducted the first meta-analysis that examines together the

transcriptomes of three astrocytoma grades along with corre-

sponding normal samples. We have combined individual gene-

and network-based approaches to identify meaningful patterns of

expression within and between different grades. The trend we

Figure 5. Classification accuracy with BioCarta database
networks. This heatmap displays leave-one-out cross-validation
accuracies of DIRAC-based classifications on each phenotype vs. all
other phenotypes. DIRAC could distinguish more distant grades like
normal vs. GBMs; it is especially hard to separate G3 or pGBM from
sGBM.
doi:10.1371/journal.pone.0076694.g005
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observed of greater network dysregulation with higher grade

represents a quantified measure of increasing inter-patient

transcriptomic heterogeneity in more aggressive astrocytomas.

We also identified genes that exhibit monotonically increasing or

decreasing expression with increased grade–these genes are

potentially reflective of shared oncogenic mechanisms among

phenotypically similar tumors. Notably, monotonically increasing

or decreasing changes in gene expression, parallel to increasing

network dysregulation, presents a putative bridge between the

known genetic heterogeneity of astrocytomas and expression

heterogeneity at the population level, as analyzed in this meta-

study.

Additionally, we identified networks distinguishing different

astrocytoma grades from normal as well as network markers

separating between glioma grades. This work presents significant

results that enable better characterization of different human

astrocytoma grades, and hopefully will lead to improvements in

diagnosis and therapy choices.

Supporting Information

Figure S1 Pearson-correlation matrix before and after
consensus pre-processing. The heatmaps display correlation

coefficients among all samples included in this study. The axes

represent sample numbers. In the left figure, the purple

borderlines of each box delineate different phenotypes, which

coincide with the sample batches. Samples from the same

laboratories or studies showed higher homogeneity than other

samples. On the other hand, in the right figure, laboratory effects

are much less obvious; tumor samples across different studies or

phenotypes all look highly correlated with average correlation

coefficient increased from 0.81 to 0.91.

(TIF)

Table S1 Most differentially deregulated networks
between different phenotypes.
(CSV)

Table S2 The chromosome locus and the putative
functions of monotonically changing genes.
(CSV)

Table S3 Sensitivity, specificity, and accuracy using
DIRAC to classify different grades of astrocytoma.
(CSV)
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Table 2. Top networks selected by DIRAC to classify tumor grades vs. normal brains (P-value ,0.0001).

BioCarta Network Apparent Accuracy BioCarta Network Apparent Accuracy

PTDINS 0.918 MCALPAIN 0.966

EGF 0.918 PTDINS 0.945

FAS 0.918 ERK 0.940

TNFR1 0.918 G2 0.932

RACCYCD 0.902 G1 0.932

CBL 0.902 EGF 0.932

PDGF 0.902 CELLCYCLE 0.925

IL1R 0.902 PROTEASOME 0.924

ACTINY 0.902 RACCYCD 0.924

HIVNEF 0.902 AT1R 0.916

BioCarta Network Apparent Accuracy BioCarta Network Apparent Accuracy

CELL2CELL 0.932 HIVNEF 0.955

P38MAPK 0.921 STRESS 0.944

G2 0.913 CHEMICAL 0.940

G1 0.911 DEATH 0.937

ERK 0.910 MCALPAIN 0.929

MPR 0.910 P38MAPK 0.926

PROTEASOME 0.908 G2 0.924

VEGF 0.905 IL2RB 0.924

CELLCYCLE 0.905 MPR 0.924

HIVNEF 0.904 CELLCYCLE 0.921

Top 10 networks for G2 vs. N (top left), G3 vs. N (top right), sGBM vs. N (bottom left), and pGBM vs. N (bottom right).
doi:10.1371/journal.pone.0076694.t002
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