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Abstract
As recombination events are not uniformly distributed along the human genome, the estima-

tion of fine-scale recombination maps, e.g. HapMap Project, has been one of the major

research endeavors over the last couple of years. For simulation studies, these estimates

provide realistic reference scenarios to design future study and to develop novel methodol-

ogy. To achieve a feasible framework for the estimation of such recombination maps, existing

methodology uses sample probabilities for a two-locus model with recombination, with recent

advances allowing for computationally fast implementations. In this work, we extend the

existing theoretical framework for the recombination rate estimation to the presence of popu-

lation substructure. We show under which assumptions the existing methodology can still be

applied. We illustrate our extension of the methodology by an extensive simulation study.

Introduction
The discovery that recombination events in human genome are not uniformly distributed, but
concentrated in specific genomic regions, which are typically referred to as recombination hot-
spots [1], was one of the driving forces behind the HapMap Project [2]. The characterization
and understanding of the local linkage disequilibrium structure between genetic variants is fun-
damental for the discovery of disease susceptibility loci (DSLs). The peak recombination rate
within recombination hotspots can be multiple times higher than the recombination rate out-
side such genomic areas [3]. To create recombination hotspots in simulated data, commonly
used software tools based on coalescent simulations, e.g. cosi, incorporate recombination rates
that vary along the chromosome [4]. Such software tools, in order to generate realistic data,
require an accurate fine-scale recombination rate map as input parameter. McVean et al. devel-
oped the LDhat software which estimates the recombination rate along the genome according
to a assumed step-wise constant model [5]. The approach is computationally fast and can be
applied at a genome-wide level. In 2007, Auton andMcVean extended this approach and incor-
porated recombination hotspots into the assumed form of the recombination rate-model [6].
Both approaches are based on the so-called composite-likelihood approximation [7] that
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calculates the data likelihood as the product of pairwise two-locus probabilities. In order to
obtain these sample probabilities, an Importance Sampling (IS) scheme by Fearnhead and Don-
nelly [8] was applied which requires exhaustive lookup tables of probabilities for a wide range of
recombination rates. These methods were used to estimate the recombination rate for the Hap-
Map samples CEU, YRI and ASN [2] (resp. later the 1000Genomes [9] samples), separately. As
explained in [10], the overall genetic map of recombination rates was produced by comparison
of the total map lengths to that estimated by the pedigree method in [11] and averaging these
maps. In 2009, Jenkins and Song proposed approaches to calculate the sample probability for a
given configuration with an analytic asymptotic formula of order two in the reciprocal recombi-
nation rate. Their approach was initially intended for an infinite-allele model [12] and later
extended to a finite-allele model [13]. In particular, they showed how to transform the symmet-
ric diallelic mutation model in Fearnhead and Donnelly [8] resp. LDhat to a so-called Parent-
Independent-Mutation (PIM) model and were therefore able to present a different approach to
calculate the required two-locus probabilities for LDhat. The key aspect they showed was that
the calculations were independent from the specific value of the recombination rate. Thus, they
were able to evaluate the sample probability instantly for every recombination rate. This sub-
stantially reduces the computational burden. In addition, for large recombination rate values,
Monte Carlo based methods as the IS scheme by Fearnhead and Donnelly are less efficient,
since the number of recombination events increases and the sampled genealogies become very
complicated, whereas the asymptotic sampling formula by Jenkins and Song becomes very pre-
cise for large values. In 2012, Jenkins and Song derived an arbitrary order asymptotic expansion
for the finite-allele model, using the generator of the correspondingWright-Fisher diffusion
[14]. Together with the application of Pade approximations, this provided a way to evaluate
two-locus probabilities efficiently for a wide range of recombination rates. The mentioned diffu-
sion generator used in [14] describes the diffusion limit of the Markov Chain explained in [15].
In this communication, we extend this underlying Markov Chain model to the presence of pop-
ulation substructure with a finite number of subpopulations. Under the assumption of strong
migration between the subpopulations, we derive the corresponding diffusion limit of a specific
weighted mean of subpopulation frequencies. The key result of our work is, that differences
between subpopulation frequencies disappear and the diffusion limit has the form as in the pan-
mictic case with rescaled effective population size. This implies the possibility to combine sub-
population samples and evaluate the corresponding sample probability with the existing
methodology without any additional computation effort. The advantage for the estimation of
recombination rates lies in the increased sample size and the more realistic underlying model.

Methods
We start with a summary of the results in [13]. We denote the sample, i.e. the genetic data at
locus A and B for n study subjects, by s. The parameter ρ = 4Ne r is the population-scaled
recombination rate. The parameters θA and θB refer to the mutation rates at locus A and B. Let
rA be the number of possible alleles at the first locus A and rB be the number of possible alleles
at the other locus B. Denote the different alleles by A1, . . ., ArA and B1, . . ., BrB. For notational
convenience, we introduce [k]: = {1, . . ., k}. First, we summarize the work in [14] to emphasize
the differences to our model later. Write the sample configuration s for a single population by

s ¼ ða;b; cÞ
with

c ¼ ðcijÞi2½rA �;j2½rB �;
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where cij gives the number of gametes with allele Ai at locus A and Bj at locus B. Similar,

a ¼ ða1; � � � ; arAÞ;

where ai gives the number of gametes with allele Ai at locus A and unspecified allele at locus B.

b is defined analogously. Further, write a ¼
XrA
i¼1

ai, b ¼
XrB
j¼1

bj, c ¼
XrA
i¼1

XrB
j¼1

cij and n = a + b + c.

This notation is also used in [13]. Jenkins and Song utilize the fact that, under a stationary dis-
tribution, the expectation of a suitable function, which is applied to the generator (described in
[14]), is equal to zero. If q(s; ρ) describes the sample probability with reference to ρ, they
derived that the sample probabilities can be calculated from the following linear system

½nðn� 1Þ þ yAðaþ cÞ þ yBðbþ cÞ þ rc�qðða;b; cÞ; rÞ ¼XrA
i¼1

aiðai � 1þ 2ci�Þqðða� ei;b; cÞ; rÞ þ
XrB
j¼1

bjðbj � 1þ 2c�jÞqðða;b� ej; cÞ; rÞ

þ
XrA
i¼1

XrB
j¼1

½cijðcij � 1Þqðða;b; c� eijÞ; rÞ þ 2aibjqðða� ei;b� ej; cþ eijÞ; rÞ�

þyA

XrA
i¼1

XrB
j¼1

cij
XrA
k¼1

PA
kiqðða;b; c� eij þ ekjÞ; rÞ þ ai

XrA
k¼1

PA
kiqðða� ei þ ek;b; cÞ; rÞ

" #

þyB
XrB
j¼1

XrA
i¼1

cij
XrB
l¼1

PB
lj qðða;b; c� eij þ eilÞ; rÞ þ bj

XrB
l¼1

PB
lj qðða;b� ej þ el; cÞ; rÞ

" #

þr
XrA
i¼1

XrB
j¼1

cijqððaþ ei;bþ ej; c� eijÞ; rÞ;

ð1Þ

with boundary conditions

qððei; 0; 0Þ; rÞ ¼ pA
i and qðð0; ej; 0Þ; rÞ ¼ pB

j for all i 2 ½rA�; j 2 ½rB�;

where πA and πB denote the stationary distributions of the mutation models for locus A and B.
Since this linear system has to be solved for every recombination rate ρ separately and grows
rapidly in n, they propose an asymptotic expansion in 1

r

qðs; rÞ ¼ q0ðsÞ þ
q1ðsÞ
r

þ q2ðsÞ
r2

þ � � � :

Now, the corresponding recursions are solved only once for a fixed mutation model and the
sample probabilities, with reference to several recombination rates, can be evaluated by plug-
ging in the recombination parameter ρ. The estimation procedures in [5] and [6] are based on
two-locus probabilities from the model in [8] with respect to some mutation parameter θFD,
recombination rate ρ and a symmetric diallelic mutation model

PFD ¼
0 1

1 0

 !
:
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As shown in [13], both models are in line if we set rA = rB = 2, θ = 2θFD and

P ¼
1
2

1
2

1
2

1
2

0
@

1
A:

As explained in the introduction, the generator in [14] corresponds to the diffusion limit of
the discrete Markov Chain in [15]. In the next section, we introduce the population substruc-
tured extension of this discrete Markov Chain, derive the diffusion limit of weighted mean fre-
quencies and show that we can utilize the same idea as in [14] to improve the recombination
rate estimation framework.

Model setting
As explained, we consider a two-locus model. As in [14], let rA be the number of possible alleles
at the first locus A and rB be the number of possible alleles at the other locus B. The generations
are supposed to be non-overlapping and the population is monoecious. We suppose the under-
lying model for the discrete Wright-Fisher model as it is described in [15], which leads to a dif-
fusion approximation, corresponding to the generator in [14]. But in addition, we assume that

the population is subdivided into Γ<1 subpopulations. Denote by q
0
a, α = 1, . . ., Γ, the frac-

tions of the corresponding subpopulation sizes and let N be the overall population size. Thus,

0 < q
0
a < 1 and

XG
a¼1

q
0
a ¼ 1. Set Na ¼ q

0
aN for α = 1, . . ., Γ. We model the migration procedure

as in the discrete model in [16]. In this context, letmαβ denote the probability that an individ-
ual in subpopulation α was in subpopulation β one generation before. These probabilities are
given by the backward migration matrixM. The following diagram summarizes the lifecycle of
the model (compare with [16]).

Adult!reproduction Zygote!recombination
Adult!migration

Adult

ðNa; ðPaijÞijÞa ð1; ðPaijÞijÞa ð1; ðP�
aijÞijÞa ð1; ðP��

aijÞijÞa
!mutation

Adult!regulation
Adult

ð1; ðP���
aij ÞijÞa ð1; ðP0

aijÞijÞa
The Markov Chain ZN, which describes the relative frequencies (Pαij)α, i, j, is completely

defined in S1 Appendix. Pαij denotes the relative frequency of type Ai Bj in subpopulation α
in the model ZN, we suppress the dependency on N for convenience. Note that the subpopu-
lation sizes are assumed to be effectively infinite except shorlty before and after population
regulation [16].

Parameter assumptions
In order to obtain a diffusion limit, we make the following assumptions on the model
parameters.

Biological parameters. We use the well established assumptions on the parameter scaling
for the biological mechanisms. These conditions depend on the effective population size (sec-
tion 3.7 in [17]). The effective population size for our model is derived below. We write

uN
ki ¼ uN

AP
A
ki > 0; for all i; k 2 ½rA�; i 6¼ k; ð2Þ
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and

vNjl ¼ uN
B P

B
jl > 0; for all j; l 2 ½rB�; j 6¼ l; ð3Þ

where uA and uB are the mutation rates per individual per generation and PA as well as PB are
the transition matrices for mutation for location A resp. B with PA

ii > 0 and PB
jj > 0 as in [14].

See Eq (A.1) and (A.2) in S1 Appendix for the definition of the mutation model. For conve-
nience, we omit technical conditions of the truncation N, since we are only interested in the dif-
fusion limit resp. large N. We assume

lim
N!1

4Neu
N
A ¼ yA

resp.

lim
N!1

4Neu
N
B ¼ yB:

For the recombination fractions in Eq (A.3) resp. (A.4) in S1 Appendix, we suppose

lim
N!1

4NerN ¼ r < 1: ð4Þ

Migration. The backward migration matrixM is assumed to be a stochastic matrix, which
is irreducible and aperiodic. Migration is independent of time and Ne (see below) resp. N. This
is the strong migration assumption. Denote the stationary distribution ofM by ξ. This means
that migration dominates all other evolutionary forces. This assumption was used in several
papers. We adopted it from [16]. Additionally, this suggestion was analyzed in [18], in other
papers of [19–21] and [22–24].

Diffusion approximation
The next step is to analyze the diffusion limit of the Markov Chain ZN. As in [15] and [16], this
is essentially an application of the diffusion approximation Theorem in [25] in S1 Appendix,
which is also stated as Theorem (A.3). We describe by simple calculation that the Theorem is
still applicable for our extended Markov Chain S1 Appendix. Important for the derivation of
the diffusion limit is the connection between N and Ne, the effective population size. Nagylaki
observed and described this connection in the setting of a subdivided population with strong
migration in a one-locus model in [16]. He stated

Ne ¼ dN;

where

d ¼
X
a

x2

a=q
0
a

" #�1

ð5Þ

Therefore, Ne � N and in particular Ne is equal to N if and only if
P
a
q
0
amab ¼ qb. This sce-

nario is called conservative migration. These results are still valid in our two-locus scenario.
Analogous to [16], we define

XN :¼ FNððPaijÞaijÞ ¼ ðPijÞði;jÞ2J ¼: P; ð6Þ

Recombination Rate Estimation under Population Substructure
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where Pij ¼
P
a
xaPaij and

YN :¼ CNððPaijÞaijÞ ¼ ðdaijÞa;ði;jÞ2J ¼: d; ð7Þ

where dαij = Pαij − Pij. In addition,

J :¼ fði; jÞ : i 2 f1; � � � ; rAg; j 2 f1; � � � ; rBg; ði; jÞ 6¼ ðrA; rBÞg: ð8Þ

The idea is to set the two timescales in Theorem (A.3) to εN = 2Ne and δN = 1. Recombina-
tion and mutation work on the slow timescale εN, but the strong migration assumption implies
that migration works on the fast timescale δN. Then, it follows that the scaled X

N([2Ne•]) con-
verges to a diffusion process X with explicitly known generator (A.17). The process YN

describes the derivation of the frequencies within the subpopulations from the weighted mean
frequencies. The result is, that YN([2Ne t]]) converges to 0, for every t> 0. The interpretation is
that, since migration works faster than the biological mechanisms, the differences in relative
frequencies within the subpopulations disappear and approach the mean frequencies. In S1
Appendix, it is shown that the process XN[2Ne•] converges weakly to a process X with state
space (A.16), which is associated to the generator (A.17) resp. (A.23) with state space (A.22).
This generator has the same form as the generator which was used in [14]. The difference lies
in the scaled effective population size. This observation is in agreement with the one-locus
results in [16]. The assumptions about the mutation model (Eqs (2) and (3)) imply an impor-
tant fact about the discrete Markov Chains.

Lemma 1: The Markov chain ZN has a unique stationary distribution μN.
Proof See S1D Appendix.
Another important observation is that there exists a unique stationary distribution μ for the

diffusion process X.
Lemma 2: The diffusion process X has a unique stationary distribution μ.
Proof This is a consequence of the restriction of the results in [26] to a finite number of pos-

sible alleles.

Sample configurations
As described in the introduction, the main interest lies in the efficient evaluation of approxi-
mate sample probabilities. Therefore, we need to extend the definition of the latter object to
incorporate our scenario. A sample configuration for a subdivided population is defined by

s ¼ ðs1; � � � ; sGÞ;
where

sa ¼ ðaa;ba; caÞ for a 2 ½G�:
Here, we have

ca ¼ ðcaijÞi2½rA �;j2½rB�;

where cαij gives the number of gametes in subpopulation α with allele Ai at locus A and Bj at
locus B. Similar,

aa ¼ ðaa1; � � � ; aarAÞ;

where aαi gives the number of gametes in subpopulation α with allele Ai at locus A and unspeci-
fied allele at locus B. bα is defined analogously. This is the straightforward extension of the defi-
nition in [14].

Recombination Rate Estimation under Population Substructure
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Sample probabilities
Recall the stationary distributions μN of the discrete model and define

PGððPaijÞaij; sÞ ¼
YG
a¼1

PððPaijÞij; saÞ

with

PððPaijÞij; saÞ ¼
Y
i

Paai
ai�

 ! Y
j

P
baj
a�j

 ! Y
i;j

P
caij
aij

 !
; a 2 ½G�;

where Pai� ¼
XrB
j¼1

Paij and Pα•j analogously. The probability of a sample configuration for the

model can be expressed as

mN PGððPaijÞaij; sÞ
� �

:

If we have Γ = 1, this is in line with the approach in [14]. Based on the observations above,
we can derive that we can approximate these sample probabilities by combined samples for the
diffusion limit. More precise:

Lemma 3:

lim
N!1

mN PGððPaijÞaij; sÞ
� �

¼ m PððxijÞij;[asaÞ
� �

;

where [α sα is the combined sample for one population with ai ¼
XG
a¼1

aai, bj ¼
XG
a¼1

baj and cij ¼
XG
a¼1

caij for all i, j.

Proof. See S1E Appendix.
μ is the stationary distribution of the diffusion process X and (xij)ij in the state space Kc

(A.22). We do not distinguish in the notation between these objects in different characteriza-
tions, since they can be identified with each other.

Main result. Thus, our main result is that we can combine the samples over all subpopula-
tions and evaluate the corresponding sample probability for the diffusion process, which is
stated above. The advantage is that the computational effort is still the same as in the panmictic
case. The only adjustment is done by the rescaling of the effective population size. To clarify
this connection, note that the generator for a single population in [14], has the same form and
depends on the recombination rate ρ and mutation rates θA resp. θB. As mentioned above, Jen-
kins and Song evaluated the expression for the sample probability, given biological parameters,
with a sophisticated recursion technique, which was derived by the fact that

mðLPÞ ¼ 0:

Here denotes L the associated generator of the diffusion process. For our scenario, we are
dealing with a rescaled effective population size, conditioned on the migration model, by the
factor δ in Eq (5) and can apply the same technique.

Recombination Rate Estimation under Population Substructure
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Results/Simulation study
In order to give a better impression about the results, we present an empirical example for the
theory. We consider a model with two subpopulations. A realistic choice for N is about

N = 10,000, according to [4]. The fractions of subpopulation sizes are denoted by q
0
1 and q

0
2. We

choose the backward migration matrix to be equal to

M ¼
0:9 0:1

0:2 0:8

 !
:

Note that this matrix satisfies the migration assumptions and implies x ¼ 2
3
; 1
3

� �
. We con-

sider a diallelic model for both loci, i.e.

rA ¼ 2; rB ¼ 2;

and assume that the mutation rates are the same for loci A and loci B. Furthermore, we choose

PA ¼ PB ¼
0:5 0:5

0:5 0:5

 !
;

as in [14]. As it is used in [14] (as explained in the Methods section, this corresponds to the
mutation model used in LDhat), reasonable parameter values for θ are θA = θB = θ 2 [0.001,
0.01] and ρ = 50. To test our results, we simulate the discrete model ZN of the relative frequen-
cies in both subpopulations with arbitrary initial distributions according to Eqs (A.4), (A.5),
(A.6) and (A.7) in S1 Appendix. For this, we compute the corresponding mutation and recom-
bination rates u0 and r0 satisfying

y ¼ 4Neu0

and

r ¼ 4Ner0:

for θ = 0.01, ρ = 50 and Ne = 10,000, to get realistic parameter values for the Markov Chain. To
obtain an estimate of the sample probability under the stationary distribution, we run the
model with respect to u0 and r0 over 10

12 generations and estimate the corresponding quantity
for some example configurations every 105 generations. We do this for two different scenarios

of subpopulation sizes. The first choice is (q1, q2) = ξ and the second ðq1; q2Þ ¼ 1
5
; 4
5

� �
. In the

first case, the condition for conservative migration is satisfied, δ1 = 1. Therefore, the theory pre-
dicts that the effects of the subdivision disappear. In the second scenario, we compute

d2 ¼
2

3

� �2

1

5

þ
1

3

� �2

4

5

0
BBB@

1
CCCA
�1

� 1

2:3611
:

Based on these observations, we compare the empirical results for the discrete model with
the results from the diffusion approximation. As explained, we have to take care about the cor-
responding scaled mutation and recombination rates. In the first case, this implies θ = 0.01 and
ρ = 50, since δ1 = 1, and in the second case θ� 0.004235 and ρ� 21.17. The sample probabili-
ties for the diffusion approximation can either be obtained by the software package asf [13] or
can be calculated by solving the linear system Eq (1). Solving the linear system gives us the
exact value for the sample probabilities, the software asf only calculates a second order approxi-
mation. We implement a solver for the linear system, similar to the goldings recursion program

Recombination Rate Estimation under Population Substructure
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from Richard R. Hudson [7], and use these results (the results are consistent with the the sam-
ple probabilities from asf). The comparison of the values is given in the Tables 1 and 2. We
only consider sample configurations with full gamete information, e.g. a1 = a2 = b1 = b2 = 0. As
we can see in the Tables 1 and 2, the observations are in line with the theoretical predictions.

Discussion
In their work, Jenkins and Song derived an approximate sampling formula of arbitrary order
from the generator of the Wright-Fisher diffusion [14]. Relying on first results in [13] and the
detailed study of accuracy in [14], we restate that the application of the approximate sampling
formula has huge advantages in relation to the computational demanding Monte Carlo based
methods, especially for large values of ρ. These theoretical results can be applied to make the
existing recombination rate estimation procedures as implemented in LDhat and rhomap
more efficient. In this communication, we go one step further and extend the underlying dis-
crete Wright-Fisher model to the scenario in which the sample population consists of distinct
subpopulations. We describe the required assumptions for the biological parameters and the
migration model, in order to derive the corresponding diffusion limit of the weighted mean fre-
quencies. The strong migration assumption implies that the form of the generator for the diffu-
sion limit is the same as in the panmictic case. Under our mutation and recombination model,
we can show the existence and uniqueness of stationary distributions for the discrete Markov
Chains and the diffusion process. We describe the connection between these stationary distri-
butions, which is essentially the motivation for the approach to compute approximate sample
probabilities. An empirical example shows that our theoretical derivations are valid. The con-
clusion is that the probability of a sample containing subsamples from each subpopulation can

Table 1. Comparison of estimated and expected probabilities for the scenario (q1, q2) = (ξ1, ξ2).

sample configuration discrete combined sample diffusion

((0, 0, 1, 0), (0, 0, 0, 1)) 0.00123218 (0, 0, 1, 1) 0.00123137

((0, 0, 1, 1), (0, 0, 1, 0)) 0.000615191 (0, 0, 2, 1) 0.00061418

((1, 0, 2, 0), (1, 0, 2, 0)) 6.1255e-05 (2, 0, 4, 0) 6.1262e-05

((4, 0, 0, 0), (2, 0, 0, 0)) 0.245318 (6, 0, 0, 0) 0.244383

((3, 0, 0, 0), (2, 1, 0, 0)) 0.000243998 (5, 1, 0, 0) 0.000244123

((1, 1, 0, 0), (0, 0, 0, 1)) 1.46358e-06 (1, 1, 0, 1) 1.50463e-06

6 different example sample configurations. The discrete value corresponds to the estimated probability from the discrete model, the diffusion value to

exact solution of the linear system.

doi:10.1371/journal.pone.0145152.t001

Table 2. Comparison of estimated and expected probabilities for the scenario ðq1; q2Þ ¼ 1
5
; 4
5

� �
.

sample configuration discrete combined sample diffusion

((0, 0, 1, 0), (0, 0, 0, 1)) 0.000522292 (0, 0, 1, 1) 0.000525972

((0, 0, 1, 1), (0, 0, 1, 0)) 0.000260697 (0, 0, 2, 1) 0.00026271

((1, 0, 2, 0), (1, 0, 2, 0)) 2.62979e-05 (2, 0, 4, 0) 2.62440e-05

((4, 0, 0, 0), (2, 0, 0, 0)) 0.248091 (6, 0, 0, 0) 0.247599

((3, 0, 0, 0), (2, 1, 0, 0)) 0.000104652 (5, 1, 0, 0) 0.000104806

((1, 1, 0, 0), (0, 0, 0, 1)) 2.60423e-07 (1, 1, 0, 1) 2.67692e-07

Description: See Table 1.

doi:10.1371/journal.pone.0145152.t002

Recombination Rate Estimation under Population Substructure

PLOS ONE | DOI:10.1371/journal.pone.0145152 December 30, 2015 9 / 11



be calculated as the probability of the combined sample with the original approach of [14]. The
difference lies in the rescaled effective population size. The advantage is that one can handle
2-loci data for multiple subpopulations without any additional computational burden.

We believe that the suggested extension can help to achieve a more realistic setting for the
recombination rate estimation and increased efficiency due to larger sample sizes.

Supporting Information
S1 Appendix. Theoretical derivations and description. In this file, we describe the underlying
Markov Chain, the theoretical tools behind the diffusion limit and the proofs of Lemma 1 and
3.
(PDF)
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