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Hypertension remains one of the largest human health
problems, because hypertensive patients carry increased
risk for ischemic heart disease, stroke, atherosclerosis, and
renal failure. The renin-angiotensin system (RAS) has been
intensively investigated for more than 100 years because it
is a powerful regulator of blood pressure, and the antihy-
pertensive benefits of RAS inhibitors are very clear. Despite
a wealth of clinical and basic studies, the precise mecha-
nisms by which the RAS regulates blood pressure remains
incomplete. In this chapter, we review data demonstrating
the existence and function of intrinsic tissue RAS, with a
primary focus on the brain.

Introduction

Since the hypertension-causing substance in renal extract
was identified as renin in 1898, many thousands of studies
(nearly 40,000 listed in PubMed) have been performed to
gain an understanding of the complex mechanisms caus-
ing renin-dependent hypertension. The final pressor sub-
stance of the RAS, angiotensin II (Ang II), previously called
angiotonin and hypertensin, is the product of the enzy-
matic processing of angiotensinogen (AGT), first by renin
to form angiotensin I (Ang 1) and then by angiotensin-con-
verting enzyme (ACE). Major known physiologic effects of
Ang II are mediated by its binding to specific high-affinity
receptors (angiotensin II type 1 [AT1] and type 2 [AT2]),
discriminated by their antagonists. Classically, the juxta-
glomerular (JG) cells in the afferent arterioles of the kidney
synthesize, store, and release renin into the systemic circu-
lation, where it cleaves AGT primarily produced and
released from liver. Physiologically active Ang Il is enzy-
matically transformed from Ang I by ACE located within

endothelial cells in many tissues, particularly in high con-
centrations within type II pneumocytes of the lung. There-
fore, conventional thinking dictates that circulating Ang II
acts as an endocrine hormone, and there is overwhelming
evidence that this is, indeed, true. However, in addition to
the classic systemic or endocrine RAS, a growing number of
tissues, including brain, blood vessels, heart, kidney, pan-
creas, and placenta, express all components of the renin-
angiotensin system (RAS) necessary both for the synthesis
(renin, ACE, AGT) and action (AT1 and AT2 receptors) of
Ang 1I. The ability of these tissues to produce Ang Il and
the specific role of locally generated Ang II has only been
proven in a small number of tissues, in particular, the kid-
ney [1,2]. Whereas the concept for an independently func-
tioning intrinsic RAS in the brain has substantial
experimental support from the pressor, dipsogenic, and
sympathoexcitatory actions of exogenously administered
Ang 11, and the inhibition of those effects by angiotensin-
receptor blockers (ARBs), the brain RAS remains controver-
sial because the level of the rate-limiting component of the
system, renin, is at very low and difficult-to-detect levels.
Nevertheless, new concepts regarding the brain RAS con-
tinue to emerge, some of which will be elaborated herein.

The Brain Renin-Angiotensin System:
Expression of Renin-Angiotensin

System Components

Pharmacologic studies in animals clearly demonstrate an
important role for brain Ang II in the regulation of blood
pressure and water homeostasis. Direct injection of Ang II
in the brain activates a number of angiotensinergic path-
ways, resulting in an elevation in blood pressure, aug-
mented drinking behavior, increased sympathetic outflow,
augmented vasopressin release, and an attenuation of the
baroreflex, effects attenuated by centrally administered
ARBs [3]. Other studies have identified the specific nuclei
in the brain, including the ventrolateral medulla (VLM),
nucleus tractus solitarii (NTS), paraventricular nucleus
(PVN), and subfornical organ (SFO), among others, which
play critical roles in mediating the responses elicited by
Ang II [4]. Ang Il is detectable at nerve terminals in many
of these regions containing AT1 receptors and controlling



136

Hypertension: Kidney, Sodium, and the Renin-Angiotensin System

cardiovascular function. To advocate the presence of a tis-
sue RAS in the brain, defined by a system with de novo
production then action of Ang II, we must first consider the
location of RAS gene expression.

When one considers this question, it becomes obvious
why the brain becomes the prototypical model for a tissue
RAS. The presence of the blood brain barrier (BBB) makes
it unlikely that RAS components identified and measured
in the brain are derived from the systemic circulation. Early
on, it became clear that the distribution of renin in brain
tissue does not correlate with its vascularity; the electro-
phoretic pattern of renin in the brain is different from that
of renin derived from plasma; systemically administrated
or produced Ang II cannot enter into areas of the brain
inside the BBB that have been shown to contain Ang II; and
Ang Il in the cerebrospinal fluid (CSF) likely arises from its
de novo production in the brain [5,6]. There is now sub-
stantial evidence from studies of normal or transgenic ani-
mals documenting the expression of all components of the
RAS within the brain. First, AGT is abundantly expressed in
glial cells throughout the brain, a finding observed by
many investigators [7,8]. More controversial is the finding
that AGT is also expressed in certain neurons located in
important nuclei controlling cardiovascular function [8].
Although the relative importance of glial and neuronal
AGT remains undefined, neuronal AGT becomes impor-
tant again in the discussions that follow. The expression of
AT1 receptors has also been clearly documented on neu-
rons in many of the cardiovascular control regions alluded
to earlier [9], and the regional distribution of ACE has
been described [10]. Much less certain, however, has been
the presence and localization of renin, in particular its cell
specificity. Renin was reported to be located in the pineal
gland, pituitary, choroid plexus, hypothalamus, cerebel-
lum, and amygdale, and elsewhere, but in lower concentra-
tions [3]. At the cellular level, evidence for both glial-
specific and neuron-specific expression has recently been
obtained [11,12,13¢]. Provided a neuronal source of renin
and a glial source of AGT, one hypothesizes a “classic”
pathway for the production of Ang II in the extracellular
space derived from secreted AGT and renin, followed by
the binding to AT1 receptors on neighboring neurons.
However, our recent studies demonstrating co-localization
of renin and AGT in some neurons, coupled with the iden-
tification of a novel form of nonsecreted renin, supports a
new concept regarding intracellular synthesis of Ang Il and
the action of Ang II as an intracrine [13e,14].

New Concepts on the Brain

Renin-Angiotensin System
Alternatives to renin and angiotensin II

It is known that alternative renin-independent Ang II-gener-
ating mechanisms exist. For example, enzymes with serine
proteinase activity, such as trypsin, tonin, elastase, cathepsin
G, kallikrein, chymase, and chemostatin-sensitive angio-

tensin II-generating enzyme, can all generate Ang II from
Ang I or directly from AGT in vitro. Recent studies indicate
that tonin is present in the brain; and intracerebrovascular
(ICV) injection of tonin causes a transient increase of blood
pressure, water, and salt intake that can be partially blocked
by losartan [15]. One of the fascinating details of this study is
the cell-specific localization of tonin to astrocytes, the same
cells that produce AGT. It is, therefore, possible that an alter-
native Ang II-generating cascade may play an important role
in regulating blood pressure. It is important to recognize,
however, that transgenic mice that overexpress human AGT
in the brain are not hypertensive unless human renin is also
present, suggesting that excess substrate on its own does not
appear to activate a non-renin-dependent pathway in the
brain [16,17].

In addition to a non-renin pathway, some investigators
have suggested the possible involvement of alternative
angiotensin peptides, including Ang III (Ang [2-8]), Ang IV
(Ang [3-8]), and Ang [1-7] within the brain as important
regulators of blood pressure [18]. Aminopeptidase A (APA)
was identified in the brain and can produce Ang III from
Ang 11 [19e¢,20]. Both Ang Il and Ang III are equally
potent pressor substances when injected directly into the
brain, and the pressor effect of Ang Il was abolished by pre-
treatment with an inhibitor of APA, suggesting that conver-
sion of Ang II to Ang III may be required [20]. The Ang III-
mediated increase in blood pressure appears to be medi-
ated by the AT1 receptor, as its response can be blocked by
losartan. Further evidence supporting the concept for the
function of alternative angiotensin peptides is derived
from studies in which the Ang IV peptide was specifically
overexpressed in the brain of transgenic mice. These mice
exhibited an elevation of blood pressure that was resistant
to the effect of ACE inhibitor but abolished by an ARB [21].

The importance of brain Ang [1-7] as a counterbalance to
the effects of Ang II has also been the subject of considerable
experimentation and controversy [18]. There is no doubt that
the importance of Ang [1-7] will continue to be evaluated,
especially given the recent identification of a second ACE,
called ACE2, which can generate Ang [1-7] [22¢], and the
reported identification of an Ang [1-7] receptor [23¢]. ACE2
expression has been reported in the brain among many other
tissues [24]. That ACE2 has been reported as the receptor for
the severe acute respiratory syndrome (SARS) coronavirus is
a new and exciting concept potentially linking the RAS path-
way to infectious disease [25].

Divergent functions for angiotensin receptors

in brain

Classically, angiotensin receptors can be divided into two
pharmacologic classes, AT1 and AT2, with AT1 implicated
in mediating most of the known actions of the brain RAS.
In rodents, two highly homologous AT1 receptor isoforms
have been identified. Functionally, studies of AT1A- and
AT1B-deficient mice suggest that the pressor actions of Ang
II are mediated by AT1A, whereas the dipsogenic actions
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are mediated by AT1B, suggesting some functionally diver-
gent physiologic functions of the two receptors [26ee]. At
the cellular and regional level, both isoforms are similarly
expressed, and expression of the AT1A isoform, but not the
AT1B isoform, appears responsive to salt, dehydration, and
other pathophysiologic stimuli [27-29]. Whether the dif-
ferences in physiologic responsiveness to stimuli account
for the functional differences observed in knockout mice
remains undefined.

Although much effort has been focused on the AT1
receptor, there is a growing appreciation that other angio-
tensin receptors also play important physiologic roles. The
identification of an Ang [1-7] receptor, discussed earlier, is
but one example. Considerable recent effort has also gone
into establishing a better understanding of the function of
the AT2 receptor initially described from analysis of knock-
out mice as affecting behavior and lowering blood pressure
[30,31]. AT2 is now generally thought to counterbalance
effects of the AT1 receptor and may mediate some of the
beneficial effects of AT1 blockade [32]. In the brain, the
relationship between AT1 and AT2 may be more compli-
cated, acting antagonistically toward blood pressure but
synergistically in regulating water intake [33]. Binding sites
for Ang IV to a so-called AT4 receptor have been reported
in brain and were reported to play a role in learning and
memory [34]. Contrary to the hypothesis for a specific Ang
IV/AT4 receptor are data reporting that the pressor effects
of chronic Ang IV production in the brain of transgenic
mice were reversed by losartan and that in vitro, Ang IV can
activate AT1 receptor pathways leading to calcium mobili-
zation [21]. Finally, although not a receptor in the classic
sense, a receptor for renin and prorenin that increases the
catalytic efficiency of the angiotensinogen to Ang I conver-
sion and activates extracellular signal-regulated kinases
(ERKs), was recently identified [35ee]. High levels of this
“receptor” have been reported in the brain. Therefore, it
becomes tempting to speculate that the presence of the
receptor in the brain may increase the catalytic processing
of AGT in an environment where renin limits amounts by
effectively concentrating or co-localizing the proteins at the
cell surface.

Intracellular production of angiotensin II

During the past few years, there has been a growing recog-
nition that in addition to a classic extracellular pathway for
Ang 11 synthesis, there may be an intracellular pathway as
well. Re [36] has championed the idea that the RAS acts as
an intracrine, that is, has the potential for being found in
the extracellular space, but also in the intracellular space
not occupied by organelles of the secretory or decretory
pathway. Evidence supporting such an intracellular path-
way in the brain includes the classic findings of Yang, Lind,
et al. [8,37] identifying the presence of angiotensin pep-
tides in neuronal somata and vesicles, and our results iden-
tifying AGT messenger RNA (mRNA) in the same neurons
that immunostain with antisera against Ang II. To formally

rule out internalization of extracellularly generated angio-
tensin peptide requires direct evidence for the intracellular
production of angiotensin-generating enzymes. Perhaps
the single most important finding sustaining this hypothe-
sis, therefore, was the recent identification of a novel alter-
native form of renin mRNA in brain [38,39e,40e]. This
form of renin mRNA is derived from an alternative tran-
scriptional start site lacking the classic first exon. Transla-
tion of this mRNA is predicted to initiate at an ATG codon
in exon 2, resulting in the production of a form of renin
lacking the secretory peptide and the first third of the pro-
segment. In vitro studies reveal this renin does not enter
the endoplasmic reticulum membrane, yet is enzymatically
active [39e]. These exciting results are particularly interest-
ing when coupled with work from our laboratory reporting
the presence of cells in the brain that can synthesize both
renin and AGT [13e]. Altogether, these studies provide a
strong impetus to hypothesize that Ang II present in neu-
rons is derived from the processing of AGT by an intracel-
lular, nonsecreted form of renin in the somata, followed by
anterograde transport of the peptide toward axon termi-
nals, where it may be released as a neurotransmitter. That
Ang II can facilitate neurotransmission is supported by
numerous studies [41]. Experiments are currently in
progress to determine if the alternative form of renin
mRNA is localized in neurons, co-localizes with AGT, and
correlates with the production and localization of intracel-
lular Ang II. From a functional perspective, unpublished
studies from our laboratory indicate that intracellular
renin can cleave AGT, producing Ang II and increasing sys-
temic arterial pressure (Lavoie and Sigmund, Unpublished
data). As a final point, the recent identification of AGT in
the nucleus of cultured astrocytes in vitro and in vivo per-
haps extends the capacity for the intracellular generation of
Ang II to glial cells as well [42].

Animal Models of the Brain
Renin-Angiotensin System

In the final section of this brief, we present recent studies
using genetically manipulated mice and rats designed to
dissect the importance of the brain RAS. Because of space
limitations, this discussion is not exhaustive, but high-
lights some of the most recent and important advances.

In early studies from our laboratory, we generated dou-
ble-transgenic mice expressing human renin and human
AGT to access the functional importance of Ang Il produc-
tion and action in a number of tissues. Double-transgenic
mice containing systemically expressed copies of human
renin and AGT are chronically hypertensive, in part due to
the action of Ang II in the brain [12,43]. To functionally
test the hypothesis that Ang I in the brain is derived from
de novo expression of renin and AGT, we developed trans-
genic mice expressing either human renin or human AGT
under the control of the neuron-specific synapsin-I (SYN)
promoter, or the glial-specific glial fibrillary acidic protein
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(GFAP) promoter [16,17]. Co-labeling with glial-specific
or neuronal-specific markers demonstrated exquisite cell
specificity. Cross breeding the two glial-specific and the
two neuronal-specific mice generated two double-trans-
genic models, each exhibiting elevated blood pressure,
drinking volume, and preference for salt, demonstrating
the importance of local Ang II generation [44]. This ele-
vated blood pressure may be mediated by an increase in
sympathetic nerve activity, because hexamethonium, a
ganglionic blocker, caused a greater decrease in blood pres-
sure in the double-transgenic mice than in negative litter-
mates. Interestingly, our most recent studies revealed
functional and regional differences in Ang II derived from
glia and neurons [45]. Mice expressing Ang II in glial cells
exhibit an attenuation in the baroreflex control of heart
rate, whereas mice expressing Ang Il in neurons exhibit a
resetting of baroreflex control of heart rate to a higher pres-
sure. The differences in baroreflex control of heart rate in
these models may reflect regional differences in the pro-
duction of Ang II in the NTS, PVN, and VLM, a finding sup-
ported by detailed immunohistochemistry.

Interestingly, brain- and glial-specific expression of Ang
II peptide, using an innovative biochemical system that
does not require AGT, was sufficient to rescue renal defects
in mice deficient in AGT [46]. This, coupled with unpub-
lished studies from our lab (Sherrod and Sigmund,
Unpublished data), strongly suggest that Ang I derived
from glial cells is a critical determinant of arterial pressure
regulation and may play an important role in develop-
ment. The importance of glial Ang Il is in agreement with
studies performed in transgenic rats expressing a GFAP-
driven antisense RNA directed against AGT mRNA [47], as
well as studies in which antisense oligonucleotides or anti-
sense-containing viruses were centrally administered
[48,49]. TGR(ASTAOGEN) rats exhibit a decrease in arterial
pressure at baseline, and when bred to another rat model
exhibiting increased tissue Ang II (TgmRen2-27). Addi-
tional studies in this model report a decrease in AT1 recep-
tors in circumventricular organs, but an increase in AT1
receptors in areas inside the BBB [50]. This increase in AT1
receptors resulted in an increased sensitivity to ICV Ang II.
Other studies on this model report an increase in AT1
receptors in the SFO and PVN [51], increased baroreflex
sensitivity [52,53], and an alteration in circadian variation
in blood pressure [54]. One provocative result implicates
glial AGT in the maturation of catecholaminergic neurons,
again suggesting an important role in development [55].

Although the relative importance of glial and neuronal
Ang Il remains unclear, there is no disputing the impor-
tance of neuronal AT1 receptors. Transgenic mice overex-
pressing AT1 receptors specifically in neurons exhibited a
profound increase in the sensitivity to the pressor effects of
Ang II [56]. These mice were normotensive at baseline, but
remained sensitive to the blood pressure-lowering effects
of central losartan, suggesting the absence of hypertension
may be due to active buffering of blood pressure. Recent

studies suggest that peripheral nitric oxide plays an impor-
tant role in the buffering of blood pressure when central
AT1 receptors are overexpressed [57].

Conclusions

Despite more than 100 years of study, new concepts con-
tinue to emerge regarding the function of the RAS. Cer-
tainly, the physiologic importance of tissue RAS continues
to gain widespread acceptance; and entirely new concepts,
based on the identification of new components of the RAS,
such as ACE2, and new pathways for Ang Il synthesis
within the cell, will continue to gain support as additional
experimental resources are brought to bear on the prob-
lem. The application of genetic tools allowing the cell-spe-
cific and regional-specific ablation of gene function in the
brain through homologous recombination [58-60] or RNA
interference [61] will provide tools with which to probe the
ever-increasing complexities of the RAS with a more supe-
rior resolution than ever possible previously.
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