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Abstract

Background: Fragaria vesca or ‘woodland strawberry’ has emerged as an attractive model for the study of ripening
of non-climacteric fruit. It has several advantages, such as its small genome and its diploidy. The recent availability
of the complete sequence of its genome opens the possibility for further analysis and its use as a reference species.
Fruit softening is a physiological event and involves many biochemical changes that take place at the final stages
of fruit development; among them, the remodeling of cell walls by the action of a set of enzymes. Xyloglucan
endotransglycosylase/hydrolase (XTH) is a cell wall-associated enzyme, which is encoded by a multigene family. Its
action modifies the structure of xyloglucans, a diverse group of polysaccharides that crosslink with cellulose
microfibrills, affecting therefore the functional structure of the cell wall. The aim of this work is to identify the XTH-
encoding genes present in F. vesca and to determine its transcription level in ripening fruit.

Results: The search resulted in identification of 26 XTH-encoding genes named as FvXTHs. Genetic structure and
phylogenetic analyses were performed allowing the classification of FVXTH genes into three phylogenetic groups:
17 in group I/1l, 2 in group IIIA and 4 in group IlIB. Two sequences were included into the ancestral group. Through
a comparative analysis, characteristic structural protein domains were found in FvXTH protein sequences. In
complement, expression analyses of FvXTHs by qPCR were performed in fruit at different developmental and
ripening stages, as well as, in other tissues. The results showed a diverse expression pattern of FVXTHs in several
tissues, although most of them are highly expressed in roots. Their expression patterns are not related to their
respective phylogenetic groups. In addition, most FVXTHs are expressed in ripe fruit, and interestingly, some of
them (FvXTH 18 and 20, belonging to phylogenic group I/ll, and FvXTH 25 and 26 to group llIB) display an
increasing expression pattern as the fruit ripens.

Conclusion: A discrete group of FvXTHs (18, 20, 25 and 26) increases their expression during softening of F. vesca
fruit, and could take part in cell wall remodeling required for softening in collaboration with other cell wall
degrading enzymes.
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Background

Fruit ripening is a differentiation process that involves
several biochemical and biophysical modifications, which
contribute to the formation of an attractive fruit for the
final consumer or to encourage its seed dispersal [1].
Ripening has been well characterized in climacteric
fruits such as tomato, where ethylene induces and con-
trols the associated changes, which are due to the coor-
dinated action of thousands of genes [2]. In contrast,
certain fruits such as grape, citrus and strawberries do
not display an increase in ethylene production rate in as-
sociation with ripening, and are classified as non-
climacteric. However, many of the biochemical modifica-
tions of ripening in non-climacteric fruits resemble those
of climacteric fruits, but the molecular mechanism of
regulation is not fully understood [3-6].

The cultivated strawberry, Fragaria x ananassa, has
been a widely studied subject of non-climacteric fruit
ripening [7-9]. Recent studies indicate that, although
strawberry fruit ripening is not accompanied by a burst
of ethylene activity as seen in climacteric fruit, neverthe-
less, ethylene plays an important role in its ripening [8,
9]. However, the complex octoploid genome compos-
ition of the cultivated strawberry F. x ananassa compli-
cates molecular dissection of its physiological processes
[10], including the role of ethylene in fruit ripening.
Thus, the diploid strawberry model system [11] is an en-
ticing alternate system in which to study the molecular
mechanisms of fruit ripening.

The strawberry genus Fragaria is composed of about
24 species [10], with 11 diploid species including Fra-
garia vesca, also known as the woodland strawberry.
The wild forms of F. vesca, comprising four subspecies,
are widely distributed in the northern hemisphere, while
the so-called ‘Alpine’ or ‘semperflorens’ (perpetual flow-
ering) forms of F. vesca ssp. vesca have been cultivated
in Europe for several hundred years [10]. F. vesca ssp.
vesca Alpine accession Hawaii 4 has been developed as
an attractive model for genomic and physiological stud-
ies because of its small genome (240 Mb), comparatively
simple diploid genomic state, high transformation cap-
acity, and short reproductive cycle [12-15]. Moreover,
recent sequencing and revised assembly of the F. vesca
Hawaii 4 genome [11, 16] has transformed it into an at-
tractive system and excellent reference tool for ripening
studies in a non-climacteric fruit.

The expression levels of several genes are modulated
during fruit development and ripening, particularly those
encoding cell wall associated enzymes such as xyloglucan
endotransglycosylase/hydrolase (XTH) [17-20]. XTH en-
zymes have a fundamental role in cell wall loosening
through the modification of xyloglucan chains [21, 22].
XTHs have been isolated from several plant species and
tissues, and are encoded by multigenic families [23-26].
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The number of genes varies among the species: in Arabi-
dopsis 33 XTH gene family members have been described
[23], 41 in poplar [27] and 29 in rice [28]. Phylogenetic
analysis of these family members allows their assignment
into three groups (I/II, IIIA and IIIB) according to the
most recent classification [29]. XTH proteins present a f3-
jellyroll secondary structure characteristic of the GH16
(Glycosyl hydrolases) family, with cysteine residues stabil-
izing the C-terminal and a N-glycosylation site necessary
for protein stability [30]. XTH catalyzes hydrolytic
(E.C3.2.1.151) and/or transglycosylation reactions
(E.C.2.4.1.207). It has been noticed that several structural
characteristics are functionally determinant for each en-
zyme activity. In this sense, based on the structures of
TmNXG1 [31], a predominant endo-xyloglucanase that
can also perform xyloglucan endo-transglycosylation at el-
evated concentration of acceptor substrates and belonging
to group IIIA, and PttXET16-34 [32], a transglycosylase
and member of group I/1I, it has been determined that the
length (two to three amino acids) of the denominated loop
2 can influence the type of activity of XTH protein mem-
bers. Baumann et al. [29] developed a TmNXG1 mutant
protein by elimination of loop 2 and obtained an incre-
mental gain in transglycosylase activity. Moreover, the
analysis of both structures allowed the identification of
structural motifs for the prediction of activity. Expression
analysis of XTH gene family members in Arabidopsis
thaliana showed that they are expressed in different tis-
sues and with specific expression patterns in response to
hormonal stimuli, even though there are several family
members which present similar expression patterns [23].

With the aim to clarify the participation of some
XTHs in F. vesca fruit development and ripening, we
performed the bioinformatic identification of FvXTH
family members through database analysis. We analyzed
the structure of each gene, and after decoding its pri-
mary protein sequence the prediction of its secondary
structure was done for each predicted protein with the
aim to identify structural elements related to a possible
activity. The expression profile for each identified XTH
gene was analyzed by qPCR (quantitative PCR) in F. ves-
ca’s fruit at different developmental and ripening stages,
and some vegetative tissues. Following this strategy, we
were able to identify some FvXTHs which could be re-
sponsible for the cell wall remodeling required for en-
largement and softening of F. vesca fruit.

Results

FvXTHs identification

Aiming to identify the complete set of XTH family mem-
bers in F. vesca, we searched the public database of the
Hawaii 4 strawberry reference genome version 1.1
(https://www.rosaceae.org/species/fragaria/fragaria_vesca
/genome_v1.1). Through tblastn analysis (BLAST, Basic
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Local Alignment Search Tool) we identified 26 XTH-like
sequences, which are described in Fig. 1. These putative
XTH genes were named using the nomenclature pro-
posed earlier for XTHs [24, 29]. A schematic representa-
tion of the structure of each gene is also displayed in the
same figure: coding regions are shown as black boxes
and introns are shown as thin lines. The genic structure
of FvXTHs shares similar characteristics regarding the
presence of exons and introns, with the exceptions of
FvXTH10 and FvXTH24, as shown in Fig. 1. These two
last genes showed no introns in their sequences. Inter-
estingly, we found in the FVXTH gene family tandemly
organized clusters of two or three family members at
four chromosomal locations (Additional file 1: Table S1).

Phylogenetic analysis

The tree was constructed using ~ 120 XTH amino acid se-
quences from Fragaria vesca and other species, such as
Arabidopsis thaliana, Fragaria x ananassa, Fragaria
chiloensis, Malus domestica, Oryza sativa and Populus
tremula x Populus tremuloides among others (Fig. 2). The
complete list of sequences employed is provided in
Additional file 2: Table S2. Two sequences belonging to
bacterial glucanases that constitute an ancestral group
were included to root the phylogenetic tree. The
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phylogenetic analysis allows the classification of FvXTHs
into the three predicted groups according to Baumann
[29]. Seventeen FvXTH genes were classified into group I/
II, 2 into group IIIA and 4 in group IIIB. In addition, two
sequences were included into the ancestral group. One
gene was grouped as a glucanase (FvXTHI0) and appears
as non-classified (Fig. 1) and its classification as XTH
needs to be reviewed.

Structural element analysis

The prediction of secondary structures of the F. vesca’s
XTH protein sequences was obtained using ESPript and
the two fully resolved XTH protein structures:
PttXET16-34 (PDB id: 1UN1) and TmNXG1 (PDB id:
2UWA). The analysis showed the presence of character-
istic domains in the selected sequences (Fig. 3, Add-
itional files 3 and 4: Figs. S1 and S2). The first element
identified corresponds to the catalytic domain denoted
as DEIDFEFLG. The first glutamate residue (E) is indi-
cated as the catalytic nucleophile that initiates the en-
zymatic reaction, and the second E residue functions as
a base to activate the entrant substrate. All FvXTH se-
quences contain both catalytic glutamate residues, ex-
cept for FvXTH13 that only contains the second E
residue and FvXTH24 that lacks most of the important

Gene Id Chr# XTH Group Gene Structure
17598 2 FVvXTH1 Ancestral mm—m-u-a
17597 2 FvXTH2 Ancestral HEHE1—
05591 1 FVXTH3 n s |
19553 3 FVvXTH4 1N CHHO—C
01781 2 FVXTH5 n [ — S|
01986 6 FVXTH6 i .-
00216 4 FVXTH7 111 - - - -
09279 7 FVXTH8 1N O |
05197 4 FVXTH9 n -
18893 7  FVXTH10  nic ]
24871 3 FVXTH11 n [ —
28698 6  FVXTH12 I [
28700 6 FVXTH13 I [ M T
28699 6  FVXTH14 I -
05220 4 FVXTH15 Il [ TR
19781 3 FVXTH16 I o |
19782 3 FVXTH17 I .
05204 4 FVXTH18 I [T
12291 4 FVXTH19 I [
19783 3 FvXTH20 I [ —
09672 6  FVXTH21 1A CHHO——1
24600 3 FvXTH22 1A [ - . =
00661 4 FVXTH23 B R
00663 4 FvXTH24 1B =
13718 5  FvXTH25 B [ —
04129 4 FvXTH26  lIIB [ ——
o e s 5 s w5 s s s w5 oo ot ~aoss
Fig. 1 FvXTH genes identified in the genome of F. vesca. For each gene, the phylogenetic classification according to Baumann [29] is indicated. A diagram
of the genic structure of each gene is provided, where bars and thin lines represent coding sequences and introns, respectively. n/c, non-classified
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(A1), 2 from Fragaria x ananassa (Fa), 2 from Fragaria chiloensis (Fc), 12 from Malus domestica (Md), 16 from Oryza sativa (Os), 1 from Carica papaya
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domains of the protein. Figure 3 also shows the presence
of the N-glycosylation site denominated as NxT/S/Y
(marked with asterisks), that binds N-glycans and is
related to protein stability. The presence and location of
this N-glycosylation site adjacent to the catalytic domain
is characteristic of XTHs from group I/II (Fig. 3A).
FvXTH proteins classified within the ancestral group do
not display this N-glycosylation site. FvXTH proteins
from group IIB display the characteristic N-
glycosylation site displaced around 20 amino acids from
the catalytic domain towards the carboxyl terminal, be-
ing consistent with other XTHs described from the same
group (Fig. 3B). In the case of FVvXTH proteins from
group IIIA, the N-glycosylation motif is absent in
FvXTH?22 as it has been reported for other members of
this group; nevertheless, this motif apparently exists in
FvXTH21 and displaced from the catalytic domain to-
wards the carboxyl terminal (Fig. 3B).

On the other hand, the prediction of secondary struc-
tures with -sheet pattern in all FvXTHs is concordant
with the formation of the typical B-jellyroll structure ob-
served in Glycosyl hydrolases (Additional files 3 and 4:
Figs. S1 and S2). The presence of an a-helix structure at
the carboxyl terminal is also observed. The proteins also
contain a conserved domain next to the substrate bind-
ing site called as loop 1, loop 2 and loop 3. These loops
were identified in FvXTH sequences and are underlined
in Fig. 3. The presence and extension of these loops vary
among XTH groups. Loops 1 and 3 are in general con-
served in extension in FvXTH sequences; major differ-
ences are observed in loop 2, as it is shorter in FvXTHs
from group I/II and group IIIB compared to group IIIA.
The sequence DWATRGG of loop 3 is present in most
of FvXTH sequences from group I/II, but not in the an-
cestral members; this sequence is replaced for SWATEN
in FvXTH members from group IIIA.
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Fig. 3 A simplified version of the multiple alignment of deduced amino acid sequences of FvXTHs belonging to group I/Il (a), and groups IIIA
and lIIB (b). The catalytic conserved domain (DEIDFEFLG), the secondary structures of 3 sheets (arrows) and a-helices (spiral), and loops 1, 2 and 3
(lines) are indicated. The conserved residues are shown in red letters; N-glycosylation residues are indicated as
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Expression analysis of XTH genes identified in Fragaria
vesca

Structural analysis of FvXTH genes was complemented
with the determination of their relative expression ana-
lysis by qPCR. The purpose of this analysis was to estab-
lish the expression pattern of these genes in fruits at
different developmental and ripening stages, as well as,
in several vegetative tissues. Twenty-one genes were an-
alyzed using FVGAPDH (Glyceraldehyde-3-phosphate
dehydrogenase) as normalizer. For genes FvXTH 1, 8,
10, 15 and 24 it was not possible to design appropriate
qPCR primer sets and therefore were not analyzed.

Transcripts from genes FvXTH 3, 6, 11, 12, 13, 14, 16,
17,18, 19, 20, 21, 23, 25 and 26 were detected in fruit at
all developmental stages, with a substantial increment in
expression at the ripe stage (Fig. 4). There is a gradual
increment in expression during fruit development and
ripening for FVXTH 18, 20, 25 and 26. On the other
hand, transcripts from genes FVXTH 2, 4, 5, 7, 9 and 22
were only expressed in fruit at the ripe stage.

The relative expression of FvXTHs in other tissues
such as leaves, flowers, runners, stem and roots was also
differential (Additional file 5: Fig. S3). All genes accumu-
late transcripts in the tissues analyzed with the exception
of FvXTH 7, 9, 12, 13, 14, 20 and 22, which were not de-
tected in runners. For all FvXTH genes analyzed the
highest expression levels were recorded in roots, except
for FvXTH3 where the same expression level was re-
corded in roots and stem, and for FvXTHI9 where

similar high expression values were recorded in roots
and flowers.

Heat map analysis and gene structure of FVXTHs

The heat map analysis considered 22 FvXTH genes and
their expression in 5 different tissues and 3 fruit devel-
opmental stages. The genes could be divided into three
main clusters based on their expression patterns (Fig. 5).
Clusters 1 (XTH 9, 11, 12, 14, 20) and 2 (XTH 2, 5, 13,
22) are composed of genes that are highly expressed in
roots, with low expression levels in stem, flowers and
leaves, and extremely low or undetected transcripts
levels in runners. Genes of these clusters also share low
expression levels in green and turning fruit stages com-
pared to the high expression level in fruit at the ripe
stage (Fig. 4). As mentioned, genes of clusters 1 and 2
share high expression levels in roots, however genes
from cluster 1 have higher expression levels than those
grouped in cluster 2 (Fig. 5). The remaining genes were
grouped into cluster 3, except for FvXTH7 that was
grouped apart, as it is expressed in roots at an extremely
high expression level but has no expression at all in run-
ners or in fruit at the immature stages. Cluster 3 genes
(XTH 3, 4, 6, 16, 17, 18, 19, 21, 23, 25, 26) displayed
their highest expression levels in fruit at the ripe stage,
and although they are also expressed in roots their
expression levels are lower than in ripe fruit (Fig. 4 and
Additional file 5: Fig. S3).
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Genes grouped into cluster 1 belong to XTH
phylogenetic group I/II, while those clustered in groups
2 and 3 belong to the three XTH phylogenetic groups
described, and therefore, no correlation between a
phylogenetic group and a specific tissue expression
pattern for XTH genes in F. vesca was evident.

When the XTH predicted protein structures were ana-
lyzed using Interproscan, some characteristic domains of
XTHs were missing in some of the proteins (Fig. 5). For
example, the protein sequences of FvXTH 7, 9, 13 and
22 do not contain the xyloglucan endotransglycosylase/
hydrolase domain, and in FvXTH 13 and 22 proteins the
B-glucanase domain is also missing. On the other hand,
most FvXTHs proteins share in addition to the
xyloglucan  endotransglycosylase/hydrolase ~ domain
others such as the B-glucanase domain and the active
site of glycoside hydrolase family 16 domain. The pro-
tein sequences of FvXTH 3, 4, 11 and 19, all belonging
to XTH phylogenetic group I/II, display the three
conserved domains previously mentioned.

Discussion
A total of 26 putative XTH genes were identified in the
genome of F. vesca (Fig. 1). Our phylogenetic analysis al-
lows the classification of F. vesca XTH genes into the
three groups currently accepted for the protein family:
17 genes in group I/II, 2 in group IIIA and 4 in group
HIB (Fig. 2). Other two genes were grouped within the
ancestral group. Most FvXTHs contain several introns
which is characteristic of XTH genes [24, 28, 29], with
the exception of FVYXTHI10 and FvXTH24. As shown in
Fig. 2, FvXTHIO0 was not classified as an XTH. A further
analysis of FvXTH24 indicates that its sequence corre-
sponds to a partial duplication of FYXTH23, as exon 4 of
FvXTH?23 is identical to the unique exon of FvXTH24
(Additional file 6: Fig. S4). On the other hand, the genes
FvXTH7, FvXTHI13 and FvXTH22 display unusual large
introns, and therefore, we cannot exclude a possible
mis-assembly of the Hawaii 4 genome.

Gene families arise over evolutionary time through
various process of gene duplication and divergence [33].
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Duplication events can act on a genomic scale, as in
whole genome duplication (WGD) via polyploidization
[34], or locally as a consequence of unequal crossing
over, transposable element activity, and other forms of
local rearrangement that can result in tandem duplica-
tion and gene cluster expansion/contraction [33]. An ini-
tial survey of gene neighborhoods in the diploid
strawberry species, Fragaria vesca subsp. americana
[35], found that six out of the twenty genes targeted by
hybridization probes were tandemly duplicated or clus-
tered, including duplications of the targeted genes ADH
(alcohol dehydrogenase), CHS (chalcone synthase), TPS
(terpene synthase), and PISTILLATA, and a tandemly
duplicated NBS-LRR resistance-like gene. A second tar-
geted NBS-LRR resistance gene was present in four cop-
ies, one of which was a pseudogene, within a 20 kb
region. Thus, it was not surprising to find that, in the
XTH gene family of 26 members, tandemly organized
clusters of two or three family members were found at
four chromosomal locations.

Gene duplication is commonly followed by structural
and/or functional divergence, the latter possibilities in-
cluding subfunctionalization, neofunctionalization, and
pseudogenization [36]. Genes within a local cluster are
likely to have arisen from an immediate common ances-
tor, and to have diverged from each other to a lesser ex-
tent than duplicate genes (paralogues) that have become
scattered about the genome via processes of chromo-
some repatterning operating over extended evolutionary
periods. Following this pattern, the members of each of
the four FvXTH gene clusters we have described tend to
occupy terminal or subterminal clades in the phylogen-
etic tree (Fig. 2).

The prediction of secondary structures in the translated
FvXTH sequences confirms the existence of the catalytic do-
main DEIDFEFLG in all the FvXTH proteins (Fig. 3), except
for FvXTH13 that has an incomplete active site and the
truncated FvXTH24 sequence. In addition, the N-
glycosylation site adjacent to the catalytic domain is present
in FvXTHs from group I/II (Fig. 3A), and displaced towards
the carboxyl terminal in FvXTHs members of group IIIB
(Fig. 3B). The non-existence of this N-glycosylation site in
FvXTH22, a member of group IIIA, was also confirmed
(Fig. 3B). The prediction of several secondary structures with
[-sheet pattern also suggests the formation of the typical 3-
jellyroll structure observed in Glycosyl hydrolases [37, 38].
Additionally, the existence of the conserved domains named
as loops 1, 2 and 3 in all FvXTHs, which are characteristics
of this type of protein, affirms its XTH nature.

Important differences in loop 2 are observed between
FvXTHs from groups IIIA and IIIB (Fig. 3B). According to
Baumann [29] loop 2 interferes with substrate binding.
The longer extension of loop 2 in FvXTHs from group
IITA compared to group IIIB has been proposed as a major
structural change responsible for its endo-hydrolase activ-
ity [29]. In addition, the existence of a volumetric isoleu-
cine in the extended loop 2 of FvXTH IIIA could interfere
with the binding to the ligand as it could collide with the
glucose unit in the +1 binding site.

Transcriptional analysis of FvXTHs in several tissues
and in fruit at different development stages followed by
heat map analysis allows the grouping of the genes into 3
clusters. Genes belonging to clusters 1 and 2 are highly
expressed in roots and in fruit at the ripe stage, while
genes of cluster 3 displayed the highest expression level in
ripe fruit stage. We found no correlation between the
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phylogenetic group and a specific tissue expression pat-
tern (cluster). Several XTHs have been described in other
plant species and more than one gene has been expressed
at the same time in a certain tissue [21, 39, 40]. Interest-
ingly, two or more isoenzymes were co-expressed during
development and ripening of several fruit [21, 40].

Moreover, we found the same 26 FvXTH genes differen-
tially expressed in flower and early fruit development
stages in the data provided by the work performed by Hol-
lender et al. [14] in F. vesca. Although the experimental
conditions and tissues analyzed are different, our results
concur with the finding that different gene isoforms can
be expressed at the same time in a particular tissue.

In strawberry, during the transition from turning to
ripe fruit stages, the fruit increases in size (enlargement)
and ripens, and at the same time a reduction in fruit
firmness is taking place [41]. FvXTH18 and FvXTH?20,
belonging to phylogenic group I/II, and FvXTH25 and
FvXTH26 to group IIIB, displayed a substantial increase
in their transcription levels as softening is taking place.
This suggests a possible role for these genes in cell wall
remodeling related to softening of F. vesca fruit.

In apple fruit the most abundant transcripts during rip-
ening are those corresponding to MdXTH2 and
MdAXTH]I0, whilst AdXTH4 and AdXTHS predominate in
ripe kiwifruit [21]. Interestingly, MdXTH2, AdXTH4 and
AdXTHS are members of phylogenic group I/II of XTHs,
similar to the case of FVXTHI18 and FvXTH20. Moreover,
for AdXTH5 and other members of phylogenic group I/1I,
the respective proteins have xyloglucan endotransglycosy-
lase (XET) activity, which could be involved in fruit soft-
ening [21]. On the other hand, MdXTHI10 belongs to
group IIIB, as FYXTH25 and FvXTH26. In tomato fruit,
the genes SIXTHS and SIXTH8 have been associated with
fruit ripening, and both of them belong to group IIIB [42],
and SIXTHS5 has transglycosylase activity [43]. Members
of group IIIA display XEH activity [43—46].

In active developing tissues, such as roots, there is an
active transcription of FVXTH genes in F. vesca. Genes be-
longing to the different XTH groups are highly expressed.
This high expression level in expanding tissues could fa-
cilitate the degradation of xyloglucans of the cell wall
allowing the rapid wall extension of root tips.

Conclusions

Some FvXTHs belonging to groups I/II and IIIB are
preferentially expressed in F. vesca’s ripening fruit. Their
potential xyloglucan endotransglycosylase activity could
be responsible for cell wall remodeling related to the en-
largement and softening of F. vesca fruit. Finally, this is
the first time that the expression pattern of almost all
members of the XTH multigenic family has been evalu-
ated in a non-climacteric fruit at different developmental
stages.
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Methods

Plant material

Fragaria vesca (accession Hawaii 4) seeds were obtained
from Macfarlane Greenhouse at New Hampshire Uni-
versity (USA). The seeds were germinated and then
sown in pots. Plants were allowed to grow for 6 months
in the greenhouse. A set of 30 plants was employed as
source of biological material. The fruit was harvested
and classified into three developmental and ripening
stages according to receptacle size and achene color:
green fruit stage (G), corresponding to small fruit with
green receptacle and green achenes; turning stage (T),
corresponding to fruit with white receptacle and green
achenes; and ripe stage (R), corresponding to fully devel-
oped fruit with vyellow-white receptacle and yellow
achenes. Other tissues were obtained from the same
plants: runners (Ru), flowers (F), leaves (L), roots (R)
and stem (St). Three independent replicates of each fruit
stage and vegetative tissues were obtained, and immedi-
ately frozen under liquid nitrogen until use.

Identification of Fragaria vesca’'s XTH genes

The annotated Fragaria vesca genome V1.0 (fves-
ca_v1.0_genemark_hybrid.faa.gz) available at the Gen-
ome Database for Rosaceae (GDR) [47] (https://
www.rosaceae.org/species/fragaria/fragaria_vesca)  was
used. Sequences were re-interrogated in F. vesca genome
V1.1 [11], and annotated sequences were analyzed
through BLAST search against the NR (non-redundant)
database of NCBI (National Center for Biotechnology
Information) as part of the validation procedure. Finally,
the identified XTH sequences were mapped onto the F.
vesca genome V2.0, updating the information and con-
firming the genetic structure obtained from V1.0. Amino
acidic sequences were also obtained using the same ap-
proach. Each gene sequence encoding an XTH protein
was named as FVXTH. The structure of each gene was
obtained using Genome Browser version 2.0 at https://
www.rosaceae.org/gb/gbrowse/fragaria_vesca_v2.0.al/.

Phylogenetic analysis

Phylogenetic analysis was performed using the deduced
amino acid sequences obtained for the FVvXTH genes
identified, and the methodology previously described by
Baumann [29]. Arabidopsis thaliana XTH sequences avail-
able at (https://www.arabidopsis.org/download_files/Pro-
teins/TAIR10_protein_lists/ TAIR10_pep_20101214) were
used to build the tree, including XTH sequences belonging
to other organisms and available in public databases. All
sequences were obtained from CAZy (The Carbohydrate-
Active EnZymes) database (www.cazy.org), and the acces-
sion numbers are listed in Additional file 2: Table S2.
Briefly, the procedure consisted in the removal of pre-
dicted signal peptides through SignalP [48], alignment of
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sequences using MAFFT [49] and manually refined by
using BioEdit (http://www.mbio.ncsu.edu/BioEdit/bioe-
dit.html). The phylogenetic tree was built through PhyML
software [50] using maximum likelihood method, using
lichenase from Bacillus licheniformis (PDB id: 1GBG) and
beta-glucanase from Bacillus amyloliquefaciens/Bacillus
macerans (PDB id: 2AYH) as outgroup, tested by boot-
strap analysis using 100 resamplings of the data set. The
tree was displayed with FigTree software (http://tree.bio.e-
d.ac.uk/software/figtree/), and the phylogenetic data were
deposited in TreeBASE (study identity TB2:521730).

Sequence alignment

An alignment analysis of the identified FvXTH sequences
was performed with the aim to identify common structural
elements present on the sequences encoding putative XTHs
in F vesca. For this purpose, the crystal structures of
TmNXG1 (PDB id: 2UWA) [29] and that of PttXET16-34
(PDB id: 1UN1) [51] were obtained from the PDB databank
(www.pdb.org). Then, by using the online available tool
ESPript (http://espript.ibcp.fr/ESPript/ESPript/) [52] the pre-
diction of secondary structures and the presence of structural
elements on the FvXTH sequences were obtained.

gPCR analysis

RNA extractions from fruit and other tissue samples were
followed by cDNA (complementary DNA) synthesis as
previously reported [20]. qPCR analyses were performed
as described in [53]. Primer sequences and efficiency
values for each primer pair are shown in Additional file 7:
Table S3. Ct (threshold cycle) values were obtained and
used to calculate the variations on relative expression
levels of the identified XTH genes using Pfaffl method
[54], and employing FvGAPDH as normalizer.

Heatmap analysis

A color-coded two-dimensional mosaic describing the
whole expression matrix (samples vs. gene targets) was
built according to [55], in which each tile was colored
with a different intensity according to the expression
pre-processed data. Gene expression values can be visu-
alized with the colors density ranging from the least (—4)
to the most expressed (+4) condition.

Statistical analysis

Statistical analyses were performed using Statistica v7.0
software. Analysis of variance (ANOVA) was performed
and significant differences were determined at p < 0.05
using the Scheirer—Ray—Hare test, an extension of the
Kruskal-Wallis test, for relative expression analysis.
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Additional file 1: Table S1. Information of the genomic sequences of
FVXTH genes identified in F. vesca genome (DOCX 46 kb)

Additional file 2: Table S2. List of XTH sequences employed in the
phylogenetic analysis (DOCX 51 kb)

Additional file 3: Figure S1. The multiple alignment of deduced amino
acid sequences of FvXTHs belonging to group I/Il and ancient group. The
catalytic conserved domain (DEIDFEFLG), the secondary structures of 3
sheets (arrows) and a-helices (spiral), and loops 1, 2 and 3 (lines) are indi-
cated (PDF 1069 kb)

Additional file 4: Figure S2. The multiple alignment of deduced amino
acid sequences of FvXTHs belonging to group llIA and IlIB. The catalytic
conserved domain (DEIDFEFLG), the secondary structures of {3 sheets (arrows)
and a-helices (spiral), and loops 1, 2 and 3 (lines) are indicated (PDF 494 kb)

Additional file 5: Figure S3. Relative expression levels of FVXTHs in
different F. vesca tissues. Each bar represents the relative expression of
runners (Ru), flowers (F), leaves (L), roots (R), and stem (St). Values were
normalized against the expression data of FYvGAPDH gene and are means +
SE of three independent experiments. Different letters indicate significant
differences between tissues (p < 0.05) according to LSD's test (PDF 296 kb)

Additional file 6: Figure S4. Comparison of the genomic sequences of
FVXTH23 and FvXTH24. At the top: Alignment of the genomic sequences
showing the 4 exons of FVXTH23. Exon 4 of FVXTH23 and FvXTH24 share
98.7% sequence similarity. At the bottom: The translated proteins of
FVXTH24 and exon 4 of FvXTH23 share the same xyloglucan
endo-transglycosylase C-terminus domain according to Pfam analysis
(PDF 209 kb)

Additional file 7: Table S3. List of primers employed in the determination
of relative expression level of FVXTHs from F. vesca by qPCR (DOCX 39 kb)
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