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Viral Life Cycle

Papillomaviruses have evolved a life

cycle that is perfectly coordinated with the

differentiation process of the host epidermal

tissue. The stratified epithelium of the

cutaneous and mucosal epithelium of the

epidermis consists of a basal layer of cells

(including stem cells) that continually divide

to replenish the overlying layers of differ-

entiated cells. Differentiation proceeds in a

systematic process to generate the stratum

spinosum, granulosum, and in some cases

corneum to provide the epidermis with

strength as well as a barrier against water

loss and pathogen invasion (see Figure 1).

Papillomaviruses capitalize on this process

by infecting the cells of the stratum basale

(through a microabrasion) and setting up a

persistent infection in which the small

double-stranded circular genome is main-

tained as a low copy replicating plasmid in

the stratum basale. There is very little viral

gene expression in these cells, just enough

to replicate and maintain the viral genome,

enhance cellular proliferation, and evade

host immune defenses. However, when the

infected cells begin the process of differen-

tiation, late viral gene expression and viral

genome amplification are induced. In this

way, high-level viral transcription and

replication is restricted to terminally differ-

entiating cells (invisible to the immune

system) and viral-laden squames are

sloughed from the surface of the epithelium

as part of the normal epidermal renewal

process. One difficulty with this strategy is

that the viruses need to synthesize large

quantities of viral DNA in differentiated

cells that have exited the cell cycle.

It has been thought that the E6 and E7

viral oncogenes papillomaviruses circum-

vented this problem by either inducing cell

cycle reentry and/or preventing cells from

leaving the cell cycle upon differentiation

so that the virus could replicate its DNA in

S-phase–like cells. However, a careful

pulse-chase analysis of replication of

cellular and viral DNA in differentiated

tissue indicated that viral DNA was

replicated after host DNA, most likely in

the G2 phase of the cell cycle [1,2]. Thus,

the virus needs other means to obtain the

machinery necessary to replicate viral

genomes. There is accumulating evidence

that papillomaviruses, like many other

viruses, both induce and use the host

DNA damage response for replication of

viral DNA [3–7]. We propose that papil-

lomaviruses use recombination-dependent

replication (RDR) to produce progeny

viral genomes in differentiated cells.

Different Types of Replication

In the papillomavirus life cycle, it is

generally assumed that there are at least

three different phases of replication. The

first occurs when the virion particle infects

the basal keratinocyte. In this phase, the

viral genome must undergo a few rounds of

unlicensed replication to produce a small

number of viral genomes in this initially

infected cell. In the second phase, when the

basal cells divide, the viral genomes repli-

cate in concert with host DNA and are

partitioned to daughter cells. Daughter cells

can either remain in the basal layer and

continue dividing, or can move upwards

and begin the process of differentiation.

Those cells that differentiate can activate

late gene expression and the third phase of

replication, vegetative viral DNA amplifi-

cation. In this last phase of replication,

large numbers of progeny viral genomes

are synthesized for packaging in viral

capsids. Thus, the infected basal cells

provide a long-term reservoir of infected

cells that are continually replenishing the

overlying epithelium and producing viral

particles (reviewed in [8]).

Papillomaviruses encode two proteins

that are directly involved in viral DNA

replication, and the well-defined origin of

replication contains adjacent binding sites

for these proteins [9,10]. The E1 protein is

an ATP-dependent helicase that binds

specifically and cooperatively to the repli-

cation origin with the E2 protein. E2 is a

transcriptional regulator that also func-

tions to load the E1 helicase on the origin

during initiation of replication [11]. After

loading E1 on the origin, E2 is displaced

from the complex and E1 converts to a

hexameric helicase that encircles and

unwinds the viral DNA to allow access of

cellular replicative proteins. In the main-

tenance phase of replication, E2 tethers

the viral genomes to host chromosomes to

maintain them in dividing cells and

partition them to daughter cells (reviewed

in [12]).

Both E1 and E2 are required for initial

and vegetative amplification of viral DNA

[13]. In fact, HPVs induce caspases in

differentiated cells that cleave the N-

terminus of the E1 protein to promote

vegetative viral DNA replication [14]. It

has been assumed that both E1 and E2

proteins are required during all three

phases of replication and that E2 partitions

the viral genomes during the maintenance

phase of replication. However, there is

some evidence that E1 might not always

be required during the maintenance phase

[13,15]. This is not surprising, as E1 is
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very toxic to cells and must be sequestered

in the cytoplasm except when required for

replication [5,16,17]. To date, all evidence

indicates that the E2 protein is essential for

genome maintenance [18]. However, one

could envisage circumstances in which the

viral genome could be replicated and

partitioned by host proteins in infrequently

dividing cells. For example, although not

yet well established for HPV, there are

emerging studies that indicate that papil-

lomaviruses might develop true latent

infections in which the viral genome is

retained in a silent state with little or no

gene expression [19–21].

Papillomavirus Replication and
the DNA Damage Response

DNA replication of many viruses in-

duces a DNA damage response because

viral DNA and replication intermediates

are sensed by the host as damaged DNA

[22,23]. Viral proteins can also induce a

DNA damage response by interfering with

cell cycle regulation and inducing replica-

tion stress [24]. Viruses are equipped to

deal with such host responses and can

intercept or inactivate any signal that

might be detrimental to viral DNA

replication. But viruses also rarely miss

an opportunity to hijack and take advan-

tage of host defenses, and many use the

ATM (ataxia telangiectasia mutated) and

ATR (ATM and Rad3-related) arms of the

DDR responses for various aspects of viral

replication (reviewed in [25]).

Human papillomaviruses (HPVs) in-

duce an ATM-mediated DNA damage

response in the differentiated cells of

infected epithelial tissue, and this response

is required for efficient vegetative viral

DNA replication [3]. Moody and Laimins

provided the first indication that papillo-

maviruses used the cellular DNA damage

response and, importantly, these studies

Figure 1. The papillomavirus life cycle is closely coupled with differentiation of the host epithelium. The virus infects the dividing basal
cells through a microabrasion. The viral DNA is maintained at a low copy number in these cells. When basal cells divide, some daughter cells move up
in the epithelium and begin the process of terminal differentiation. Papillomaviruses are finely tuned to this process and turn on late transcription,
translation, and late DNA replication in specific stages of the differentiation process. Vegetative viral DNA replication takes place in cells that are in
either the G2 phase of the cell cycle or have exited the cell cycle. By inducing the DNA damage response and homologous recombination repair
pathways, the virus can efficiently replicate progeny genomes in differentiated cells without competition from host DNA synthesis.
doi:10.1371/journal.ppat.1003321.g001
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were carried out in naturally infected

HPV31-infected cells derived from a

cervical lesion [3]. These cells maintain

the viral genome as an episome and upon

differentiation support the complete viral

life cycle [26,27].

Subsequent studies have examined the

role of individual viral proteins in facili-

tating viral replication by inducing the

DNA damage response in both keratino-

cytes and other cell types. The E7 protein

plays a role in activation of the ATM

response both directly [3] and indirectly

by causing replication stress due to a

deficiency in nucleotides [24]. The E1

protein also induces a DNA damage

response that requires both the DNA

binding and helicase functions of the

protein [5–7,28]. When expressed togeth-

er, both E1 and E2 are localized to

prominent nuclear foci that recruit mark-

ers of the DNA damage response and

repair pathways [5–7,29]. In the presence

of E1, the E2 protein nucleates these foci

onto host chromatin [6]. In this situation,

the E1 protein is responsible for inducing

the DNA damage response, perhaps by

locally melting regions of host DNA [7].

The E1-E2 foci appear very similar to

those that accumulate in differentiated

tissue, in that they recruit DNA damage

response markers such as pATM, pChk2,

cH2AX, MRE11, and NBS1. In the

presence or absence of viral DNA, the

E1-E2 foci incorporate labeled nucleo-

tides, even though the cells are not in S-

phase, indicating that active DNA synthe-

sis or repair is taking place [6,29].

Thus, both E7 and E1 proteins can

induce the DNA damage response path-

ways. The usual outcome of DDR activa-

tion is cell cycle arrest, which would not be

beneficial for many viruses. However,

since papillomaviruses seem to only highly

activate this response in differentiated

keratinocytes, cell cycle arrest has no

negative consequences for the virus. Rest-

ing or arrested cells are well equipped with

specific enzymes (e.g., p53R2 ribonucleo-

tide reductase) to obtain deoxyribonucle-

otides for DNA repair [30].

Recombination-Dependent
Replication

When the DNA damage response is

activated in response to cellular DNA

damage or the collapse of a replication

fork, the cell must decide whether the

damage can be repaired and select the

means of repair. Mammalian cells repair

DNA breaks either by nonhomologous

end joining (NHEJ) or by homologous

recombination (HR). In NHEJ, the broken

ends are aligned and ligated (often result-

ing in mutation). This can take place at

any stage of the cell cycle since a

complementary sequence template is not

required. Conversely, HR requires a

homologous sequence (most often the

sister chromatid) and so occurs only in

the post-replicative phases of the cell cycle

(late S and G2). In homologous recombi-

nation, the broken end of DNA is resected

to produce a single-stranded 39 end that

invades the double-strand of the homolo-

gous template to initiate DNA synthesis.

The advantage of this type of repair is that

it is highly efficient and faithful as it uses

replicative DNA polymerases to duplicate

a homologous DNA strand [31,32]. Dur-

ing the homologous recombination pro-

cess, long stretches of DNA are resected

and synthesized and ample substrates and

proteins required for DNA synthesis must

be recruited to the site of damage. The

DNA damage response signaling cascade

promotes an influx of the necessary

components to DNA damage foci. Clearly,

it would be very advantageous for a virus

to mimic and hijack this process. By

initiating the DDR response in the vicinity

of the viral genome, all components

required for DNA synthesis would be

delivered to the genome and the DNA

damage response foci would become viral

replication factories. Additional advantag-

es are that this can occur in the G2 phase

of the cell cycle (in differentiated cells)

where there is no competition from host

DNA synthesis.

Evidence for Homologous
Recombination in
Papillomavirus Replication

Papillomaviruses replicate in a bidirec-

tional theta mode, at least in the mainte-

nance phase of the life cycle. However,

there have been several observations of

additional replication intermediates that

are consistent with rolling circle replica-

tion [33–35]. Flores and Lambert have

shown that there is a fundamental shift in

the mode of replication of both HPV16

and HPV31 from bidirectional theta

replication in undifferentiated cells to an

alternative mode in differentiated cells. 2D

gel analysis has demonstrated that in

differentiated cells replication is unidirec-

tional and a single initiation event can give

rise to multiple copies of the viral genome

[33]. Although characteristic of rolling

circle replication, these intermediates are

also consistent with recombination-depen-

dent replication. Lariat-containing ge-

nomes have also been isolated from a

small percentage of BPV1 virion particles,

which is consistent with a different mode

of replication in the late stages of infection

[34]. And, although viral DNA isolated

from HPV11-containing respiratory pap-

illomas showed predominantly theta mode

replication intermediates, a small number

of molecules were observed that were

consistent with other mechanisms such as

rolling circle [36].

Analysis of the composition of the large

replication foci generated by calcium-

induced differentiation of HPV genome–

containing cells shows that they contain

proteins consistent not only with the DNA

damage response, but also with factors

involved in homologous recombination.

One of the key players in the recombina-

tion process is Rad51, a recombinase that

coats the single-stranded resected DNA

and promotes its invasion into the homol-

ogous template (reviewed in [37]). As

shown previously by Gillespie and Moody,

and here in Figure 2, Rad51 colocalizes

with HPV replication foci. cH2AX is

incorporated into the chromatin surround-

ing the site of damage in cellular DNA

damage foci, and colocalizes with viral

DNA in HPV replication foci [4]. As

shown in Figure 2, Rad51 forms punctate

foci within a cloud of cH2AX, indicating

that these are most likely the core sites of

initiation of viral DNA synthesis. The

HPV-differentiated cell replication foci

also stain with Rad52 and pNBS1, which

are also all involved in various aspects of

homologous recombination [4].

Many Viruses Use
Recombination-Dependent
Replication as One of Their
Modes of Replication

Many viruses use RDR as one of their

modes of replication and often encode

many of the gene products required for

this mode of replication [38]. Common

factors often encoded by dsDNA viruses

are a recombinase, a recombinase media-

tor and/or single-stranded DNA binding

protein, an exonuclease for end resection,

a Holliday junction resolvase, and a

replicative DNA helicase [38]. Best char-

acterized is T4 bacteriophage replication,

where gene products required for each

step of RDR have been well defined

(reviewed in [38–40]). T4 encodes proteins

with functions similar to those involved in

homologous recombination of higher eu-

karyotes. For example, T4 encodes a

protein analogous to the Rad51 recombi-

nase, the RPA single-stranded DNA

binding protein, and a recombination

mediator protein that functions similar to

Rad52, Rad51 paralogs, and BRCA2
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Figure 2. CIN612-9E cells were derived from a cervical lesion and contain hundreds of copies of extrachromosomally replicating
HPV31 genomes [52]. These cells can be induced to differentiate with high calcium–containing medium, which switches on vegetative viral DNA
replication [3]. Many of these cells contain multiple small replication foci [3,4]; but numerous cells contain one large foci, as shown here, perhaps
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[40]. The mammalian viruses HSV1 and

vaccinia also use RDR in part of their life

cycle and encode several proteins involved

in RDR replication (reviewed in [38,41]).

Large viruses such as bacteriophages,

baculoviruses, vaccinia virus, and HSV

encode most proteins required for viral

DNA replication, giving them indepen-

dence from the host cell. Conversely,

papillomaviruses are very dependent on

host factors and so it is very likely that, for

the most part, papillomaviruses use and

modify host recombination factors for

replication.

Mechanism of Papillomavirus
Recombination-Dependent
Replication

Papillomaviruses are evolving very slow-

ly, with an evolutionary rate of approxi-

mately 261028 nucleotide substitutions

per site per year for the coding region of

the virus [42]. Thus, the host polymerases

that duplicate the viral DNA must be of

high fidelity. Homologous recombination

results in virtually error-free DNA synthe-

sis as it often employs the high fidelity

replicative DNA polymerases, delta and

epsilon [31]. HR mechanisms can be

divided into several modes, including

double Holliday junction (dHJ), synthesis-

dependent strand annealing (SDSA), and

break-induced recombination (BIR). In

BIR, the end of the invading single-strand

(often derived from a collapsed replication

fork) can be extended for hundreds of

kilobases using replicative factors [32,43],

making this a potentially highly efficient

mode for vegetative viral DNA replication.

BIR is also unidirectional (as observed for

the alternative mode of HPV16 replication

[33]) and would give rise to long con-

catamers of viral DNA that could be

processed to unit-sized genomes. Also, as

noted previously [6], BIR pathways do not

require origin licensing proteins to reini-

tiate DNA replication [32] and so can be

very efficient for a virus.

The exact mechanism by which papil-

lomaviruses manipulate and use the ho-

mologous recombination pathways re-

mains to be elucidated. One possibility is

that it follows a model similar to that

proposed for the circular bacteriophage

SPP1 [38]. In this model, replication

switches from theta mode to RDR when

replication collapse or blockage gives rise

to a DNA end that is promoted to invade

another supercoiled molecule by the HR

machinery. The resulting D-loop forms a

bubble that migrates in a unidirectional

fashion around the viral genome, generat-

ing long concatamers by coupling recom-

bination and replicative activities. The role

of the E1 and E2 proteins in this process is

not clear as there is less need for origin-

specific replication initiation proteins in

such a model. However, RDR often

employs replicative helicases, such as

phage T4 Gp41, and its helicase loader,

Gp59, to coordinate recombination and

replication and leading- and lagging-

strand DNA synthesis (reviewed in [37]).

Elucidation of novel functions of the

papillomaviral E1 and E2 proteins could

lead to the development of novel therapies

for HPV infection.

Viruses that that replicate via long

concatameric intermediates must resolve

these intermediates into unit-sized viral

genomes. Large viruses such as vaccinia or

herpes simplex encode factors that assist in

this process [44,45]. However, the strategy

of small viruses is to manipulate or adapt

host factors for viral use. Therefore, an

alternative, or additional, role for cellular

homologous recombination is to recom-

bine and resolve papillomavirus DNA into

circular, unit-sized genomes.

Clinical Association of HPV
Replication and DNA Repair
Pathways

One clinical connection between HPV

oncogenesis and DNA repair is Fanconi

anaemia (reviewed in [46]). Fanconi

anaemia (FA) results from the mutation

in any one of 15 genes in the FA repair

pathway and gives rise to increased

susceptibility to cancers and hypersensitiv-

ity to agents that cause inter-strand DNA

crosslinks. Notably, individuals with FA

are extremely susceptible to head and neck

squamous-cell carcinomas, which have

about a 25% association with HPVs in

normal individuals. There are reports of a

greatly increased association of HPVs with

these carcinomas in FA, but this is

controversial (reviewed in [47]). Nonethe-

less, HPV16 E7 greatly increases kerati-

nocyte proliferation in cells deficient in

FANCD2 or FANCA, and there is a

substantial increase in levels of viral

DNA in differentiating cells [48,49]. This

seems counterintuitive to the model pro-

posed here, but there is recent evidence

that the role of the FA pathway is to direct

repair to the more faithful HR pathway

instead of the more error-prone NHEJ

pathway [50,51]. Thus, it is possible that

viral DNA synthesized in cells defective in

the FA repair pathway is prolific, but

aberrant, and perhaps more likely to

become integrated into the host genome.

Advantages of RDR Replication
for Papillomaviruses

Papillomaviruses have evolved a re-

markable lifestyle in which they take

advantage of many fundamental processes

involved in the growth and differentiation

of stratified epithelia. They initially bind to

a wounded epithelium, interacting with

proteoglycans exposed on the basement

membrane before entering the adjacent

keratinocytes that have been stimulated to

divide by the injury [8]. The virus

establishes a long-term home within these

cells by closely associating its genome with

host chromatin while greatly limiting viral

gene expression to escape detection by the

host. The virus waits until its host cells

have begun to differentiate and have safely

escaped immune surveillance before it

switches to late replication and gene

expression. Although the differentiated

host cells have completed S-phase, the

virus induces or mimics a DNA damage

response in the vicinity of the genome,

resulting in a cascade of recombination

and replicative factors being delivered to a

nascent viral replication factory. The

DDR is a very potent signaling mecha-

nism that can detect a single nucleotide

mutation or collapsed fork and immedi-

ately build a repair foci consisting of a

multitude of signaling and repair factors.

The nucleation process is extremely effi-

cient and allows the virus to replicate

without competition from host DNA

syntheses. Hijacking the host DNA dam-

age response and HR repair processes is

just one more instance of the ingenious

strategies acquired by this ancient group of

persistent viruses.
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