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Supplementary which couldmaintain normal physiological mechanisms and functions while aging has drawn our attention due to
the population aging in recent years. Probiotics have been believed with desirable properties such as antioxidation and anti-
inflammatory for delaying the aging process. However, the age-related experiments conducted in the mammalian models with
probiotics were few. In this study, we demonstrated the effects of administration of probiotics Lactobacillus paracasei GKS6
(GKS6) and Bifidobacterium lactis GKK2 (GKK2), respectively, at the dosage of 5.0×109 cfu/kg BW/day for fourteen weeks in
senescence-acceleratedmouse prone 8 (SAMP8)mice.0e three-month-old SAMP8mice were divided into three groups: control,
mice fed with GKS6, and mice fed with GKK2. 0ere were ten females and ten males in each group. 0e SAMP8 mice fed with
probiotics GKS6 and GKK2 showed a significantly lower degree of aging followed by Takeda’s grading method on the eleventh
week of the experiment. 0e GKK2 group showed significantly increased forelimb grip strength in male SAMP8 mice and muscle
fiber number in both genders. Compared to the control, both GKS6 and GKK2 presented a significant increase in liver superoxide
dismutase and catalase activities. In addition, a significant decrease in the levels of liver thiobarbituric acid-reactive substances was
observed in the probiotics group.0ese results suggested that probiotics GKS6 and GKK2 could act as antioxidants in delaying the
process of aging and preventing age-related muscle loss.

1. Introduction

0e number and proportion of people aged sixty years and
older in the population are increasing [1]. According to the
report from the World Health Organization (WHO), the
number of elderly (>60 years old) was calculated as one
billion in 2019 and was expected to be two billion by 2050. As
aging increases, the normal functions of various organs or
tissues in the body gradually decline, leading to a decrease in
mobility, antioxidant defense system, and immunity [2–4].

In addition, the reduction of antioxidant substances in the
body would easily develop relative diseases such as immune
disorder, cardiovascular diseases, and frailty syndrome
[5–7]. 0erefore, it is attracting attention on maintaining
normal physiological mechanisms and functions during the
aging process [8].

One of the age-related figures was muscle loss, including
the loss of muscle mass and the loss of muscle function
which could be developing to sarcopenia or dynapenia
[9–11]. It has been reported that over 30% prevalence in
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those aged eighty years and older suffered sarcopenia [12].
Although the reason for age-related muscle decline has not
been clear yet, some scientists suggested that oxidative stress,
reactive oxygen species (ROS), for example, could affect cell
signaling pathways, promote proteolysis, and inhibit protein
synthesis in muscle fibers [13, 14]. Another explanation
resulted from inflammatory cytokines IL-6 and TNF-α, for
example, the introduction of inflammatory markers that
could cause muscle breakdown, was being conducted
[15, 16].

Probiotics have been reported with effects on anti-
oxidation, anti-inflammatory, and metabolic regulation
[17–19]. Although these properties were highly linked to
delay the aging process, there have been few reported about
antiaging in mammalian models. In our previous studies, we
isolated two bacteria strains, Lactobacillus paracasei GKS6
(GKS6) and Bifidobacterium lactis GKK2 (GKK2), from
healthy infant feces. Both strains presented potential
properties with application as probiotics in acid and bile
tolerance tests. Probiotics L. paracasei GKS6 had been re-
ported with metabolic modulation in alcohol diet mouse
model and antiosteoporosis in ovariectomized mice [20, 21].
B. lactis GKK2 showed immune enhancement in the OVA-
induced murine model [22]. 0ese evidences provided the
possibility of contributing to delaying the development of
aging and raised our interest [23].

0e senescence-accelerated mouse prone 8 (SAMP8) is
widely used in age-related studies [24]. It is a spontaneous
age-accelerated mouse model of AKR/J inbred line bred by
Pf. Takeda (Kyoto University, Japan) in the early 1980s [25].
0e figure of SAMP8 includes comparatively old appear-
ance, fast decline of organ function, and short life span. For
the evaluation of probiotics GKS6 and GKK2 on delaying
aging, SAMP8 was introduced in this study. After fourteen
weeks of administration of GKS6 and GKK2, the age-as-
sociated parameters in SAMP8 were measured.

2. Materials and Methods

2.1.BacteriaPreparation. Both Lactobacillus paracaseiGKS6
(BCRC 910788) and Bifidobacterium lactis GKK2 (BCRC
910826) were isolated from healthy Taiwanese infant feces.
0e bacteria strains were, respectively, cultured at 37°C and
pH 6.0 under anaerobic conditions for 16 h with the fol-
lowingmedium: 5% glucose, 2% yeast extract, 0.05%MgSO4,
0.1% K2HPO4, and 0.1% Tween-80. For harvesting, the
fermented bacteria were centrifuged and mixed with pro-
tectant and then freeze-dried at 25°C for 48 hours. 0e live
bacteria were counted by plate counting.

2.2. Animal Subjects. 0e three-month-old senescence-
accelerated mice prone P8 (SAMP8) were housed under
25± 2°C, 65± 5% RH at 12 h dark/light cycle with food and
water ad libitum. A total of sixty SAMP8 mice were divided
into three groups (n� 10 in each gender): control (saline),
mice fed with probiotics GKS6, and mice fed with probiotics
GKK2. 0e probiotics were continuously given for fourteen
weeks with a dosage of 5.0×109 cfu/kg BW/day. 0e animal

protocol in this study has been approved by the Institutional
Animal Care and Use Committee (IACUC no. 20170629-
A02).

2.3.Grading Score of Senescence. On the eleventh week of the
experiment, the degree of senescence on SAMP8 was
evaluated by Takeda’s method [25]. 0e evaluation was
included as follows: (1) behavior of reactivity, (2) behavior of
passivity, (3) glossiness, (4) coarseness, (5) hair loss, (6) skin
ulcer, (7) eye periophthalmic lesions, and (8) spine lordo-
kyphosis. 0ere were five grades from score 0 to score 4
representing the degree of senescence from slight to serve in
each category. 0e total score was summed.

2.4.Grip StrengthTest. 0e forelimb grip strength of SAMP8
mice was tested on the twelfth week by Grip Strength Meter
(GSM 47200, Ugo Basile S.R.L., VA, Italy). 0e maximal
force was recorded.

2.5. Biochemical Analysis. On the fourth week of the ex-
periment, the SAMP8 mice blood was collected from the
orbital sinus and centrifuged at 6000 rpm and at 4°C for 5
minutes and then stored at −20°C. 0e following parameters
were analyzed by Beckman D×C 800 chemistry analyzer
(Beckman Coulter, CA, USA): glucose, total protein, albu-
min, triglycerides, total cholesterol, high-density/low-den-
sity lipoprotein cholesterol (HDL-C/LDL-C), glutamate
oxaloacetate transaminase (GOT), glutamic pyruvic trans-
aminase (GPT), blood urea nitrogen (BUN), and creatinine.

2.6. Determination of Oxidative Parameters. 25mg liver
tissue was homogenized with 250 μl RIPA buffer and then
centrifuged at 1600×g and 4°C for 10 minutes. 0e super-
natant was collected and stored at −80°C for use. 0e su-
peroxide dismutase (SOD) activity in the liver was analyzed
by Randox assay kit (Cat. no. SD125, Randox Laboratories,
ANT, UK) with absorbance at 340 nm. 0e catalase assay kit
(Cat. no. 707002, Cayman Chemical, MI, USA) was used
with 540 nm adsorption rate for the detection of catalase
activity in the liver. For analyzing the levels of thiobarbituric
acid reactive substances (TBARS) in mouse liver, 100 μl
homogenized liver supernatant was mixed with 100 μl so-
dium dodecyl sulfate (SDS) solution and 4ml color reagent
under boiled water for an hour and then ice-cooled. 0e
mixture was centrifuged at 1600×g under 4°C for 10
minutes and then the absorbance value was read at 535 nm
spectrophotometrically. 0e data were expressed as equiv-
alent malondialdehyde (MDA) µM/g protein [26].

2.7. Immunohistochemical Analysis of Muscle Cells. After
sacrifice, mouse muscle tissue was washed with 0.9% saline
and fixed in 10% formalin. Tissues were embedded in
paraffin and cut into 4 μm thick slices for morphological and
pathological evaluations. Immunohistochemical (IHC)
staining of tissues involved the use of the Leica antibody to
myosin heavy chain fast (WB-MHCf) and myosin heavy
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chain slow (WB-MHCs). By using automated BondMax
with double staining, WB-MHCf and WB-MHCs epitope
retrieval involved the use of ER2 (AR9640) retrieval solution
for 30min once, followed by incubation with WB-MHCf
and WB-MHCs antibodies with diluent 100X for 30min.
0e detection kit used was the Bond Polymer Refine De-
tection (DS9800) (incubation with post-primary for 8min,
polymer for 8min, and 3′3′-diaminobenzidine for 5min)
and Bond Polymer Refine Red Detection (DS9390) (incu-
bation with post-primary for 20min, polymer for 30min,
red for 10min, and haematoxylin for 5min). Finally, results
were examined under a light microscope equipped with a
CCD camera (BX-51, Olympus, Tokyo) by a veterinary
pathologist.

2.8. Statistical Analysis. Data are presented as mean± SEM
(n� 10 in each gender) and analyzed by one-way ANOVA
with SPSS 19.0 (SPSS, NY, USA). For the comparison of
statistical significance among the groups, Duncan’s multiple
range test was used. A p value <0.05 was considered sta-
tistically significant.

3. Results

3.1. BodyWeight and General Characteristics of SAMP8Mice
with or without Probiotics. 0ere was no significant differ-
ence at the first week of all SAMP8 mice after grouping. 0e
food intake and water consumption during the experiment
were not significantly different (data not shown). Figure 1
shows the weight changes during fourteen weeks of pro-
biotics consumption. Male SAMP8mice gained about two to
three grams of weight on average at the end of the exper-
iment with no significant difference among the groups
(Figure 1(a)). 0ere was also no significant difference in
weight changes among the treatments in the female gender
(Figure 1(b)). 0e relative organ weights were presented as
normal in both genders when compared with the control
group (Table 1). In addition, probiotics GKS6 and GKK2 did
not affect biochemical parameters.

3.2. Effect of Probiotics L. paracasei GKS6 and B. lactis GKK2
on theScoreof Senescence. 0edegree of senescence in three-
month-old SAMP8 mice was scored on the eleventh week
of the experiment. 0e characteristics of SAMP8 mice
showed an aging appearance including dull or rough hair,
hair loss, turbid eyes, and lordokyphosis. Both control
male and female SAMP8 mice presented a severe senes-
cence appearance with total grading scores at 3.0 ± 0.33
and 4.9 ± 0.23, respectively (Figure 2). Probiotics GKS6
significantly reduced the degree of senescence in skin,
eyes, and spine, which presented a total aging score at
1.0 ± 0.33 in both genders. With supplementary use of
probiotics GKK2, the SAMP8 male and female mice also
showed a significantly lower senescence (p< 0.05). 0ese
results suggested that administration of probiotics GKS6
and GKK2 provided effects on delaying the process of
aging.

3.3. Effect of Probiotics L. paracasei GKS6 and B. lactis GKK2
onGrip Strength. In the grip strength test, control male mice
presented a better grip strength than control female mice.
Both probiotics GKS6 and GKK2 had no effect on the
maximal peak force developed by female SAMP8 mice in a
comparison with the female control (Figure 3). Adminis-
tration of L. paracasei GKS6 showed a tendency of increased
strength in male SAMP8 when compared to the male
control, although it has not reached statistical significance.
0e male SAMP8 mice fed with B. lactis GKK2 presented
significantly greater grip strength than the control male mice
(p< 0.05). It is demonstrated that both probiotics GKS6 and
GKK2 supplementation could alleviate the strength loss
caused by aging in the male animal model.

3.4. Effect of Probiotics GKS6 and GKK2 on SAMP8 Mouse
Muscle Cells. Histological results revealed that there was no
clear difference in fiber arrangement among the SAMP8
mice, as well as the proportion of type I and type II fibers
(Figure 4(a)). Both GKS6 and GKK2 did not affect the fiber
size in SAMP8 mice, regardless of gender. 0e probiotics
GKS6 showed a tendency of increase in muscle cell count of
male SAMP8 (Figure 4(b)). A significant increase in muscle
fiber was observed in the GKK2 group when, respectively,
compared to the control male and female group (p< 0.05). It
is suggested that probiotics GKK2 could contribute to al-
leviating the loss of muscle fibers associated with muscle
aging.

3.5. Effect of Probiotics GKS6 and GKK2 on Oxidative Pa-
rameters in SAMP8 Mouse. SOD and catalase are enzymes
that involve in reactive oxygen species (ROS) scavenging.
0e activity of liver SOD in SAMP8 mice was significantly
greater with probiotics GKS6 and GKK2, respectively, than
with the control (Figure 5(a)). Similar results were observed
with catalase activity in the SAMP8 mouse liver, as shown in
Figure 5(b). It is indicated that both administration of GKS6
and GKK2 could improve the antioxidants activity in an
aged mouse model. In addition, MDA reacted to TBARS
were less detected in the liver tissue of GKS6 and GKK2
groups with p< 0.05 (Figure 5(c)). Furthermore, the TBARS
and 8-hydoxy-2-deoxyguanosine (8-OHdG) in mouse brain
were also detected with lower level in both probiotics groups
when compared to the control (Figure S1). 0e effect of
probiotics GKS6 and GKK2 on lipid oxidation during the
aging process was revealed.

4. Discussion

In the present study, administration of probiotics GKS6 and
GKK2 demonstrated a delayed effect on aging. However, the
mechanisms of these two strains were supposed to be dif-
ferent based on our previous experiments and partial un-
revealed data. 0ere was a possibility that the effect of
B. lactis GKK2 on antiaging was contributed by mito-
chondrial antioxidation; whereas the effect of L. paracasei
GKS6 could be explained by the anti-inflammatory.
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0e CDGSH iron-sulfur domain 2 (Cisd2), a redox-
sensitive gene, was reported with a crucial role in the lifespan
and the development of age-related diseases [27]. In our
preliminary test, an enhancement of Cisd2 gene expression
in HEK293Tcells was presented in GKK2 treatment but not
in the GKS6 group (Figure S2). A persistent level of Cisd2
protected mitochondrial dysregulation and reduced DNA
damage caused by oxidative stress; in addition, Cisd2 was
involved in calcium homeostasis through the regulation of
the calcium channels located on the endoplasmic reticulum
and mitochondrial outer membranes [28–30]. 0ese affec-
tions maintain a better physical function in skeletal muscle,

liver, and heart [31, 32]. 0e Cisd2 mKO mice showed a
similar pattern as naturally aged mice in the decline of
gastrocnemius muscle [33]. It explained that GKK2 in-
creased grip strength and muscle mass in aged-accelerated
mousemodels involved with the regulation of the cisd2 gene.

Although GKS6 got lower aging scores than GKK2 in the
grading system (Figure 2), it seems like age-dependent
muscular parameters were not affected a lot by GKS6 than
GKK2. 0erefore, it gave us clues that probiotics affect
differently on antiaging from strain to strain. We also in-
vestigated the ratio of bone volume/tissue volume (BV/TV),
trabecular thickness (Tb. 0), trabecular number (Tb. N),
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Figure 1: Weight changes of SAMP8 mice during the experiment. 0e SAMP8 male (a) and female (b) mice weights during fourteen weeks
were presented as means± SEM and analyzed by one-way ANOVA (n� 10). 0e probiotics were given at a dosage of 5.0×109 CFU/kg BW/
day. Control: SAMP8 mice fed with saline; GKS6: SAMP8 mice fed with L. paracasei GKS6; GKK2: SAMP8 mice fed with B. lactis GKK2.

Table 1: Relative organ weights and plasma biochemical parameters of SAMP8 mice.

Male Female
Group Control GKS6 GKK2 Control GKS6 GKK2
Relative weight (g/100 g body weight)
Brain 1.440± 0.038a 1.535± 0.012a 1.524± 0.017a 1.736± 0.043a 1.782± 0.049a 1.769± 0.061a
Heart 0.662± 0.025a 0.651± 0.023a 0.673± 0.018a 0.564± 0.017a 0.597± 0.025a 0.556± 0.026a
Liver 4.853± 0.282a 4.829± 0.235a 4.369± 0.174a 4.651± 0.201a 4.442± 0.115a 4.768± 0.288a
Spleen 0.352± 0.037a 0.294± 0.015a 0.264± 0.018a 0.431± 0.037a 0.444± 0.023a 0.458± 0.033a
Lung 0.720± 0.030a 0.805± 0.033a 0.798± 0.045a 0.836± 0.045a 0.772± 0.020a 0.860± 0.033a
Kidney 1.710± 0.064a 1.713± 0.046a 1.663± 0.074a 1.264± 0.020a 1.264± 0.021a 1.273± 0.044a

Plasma biochemical parameters
Albumin (g/d) 2.92± 0.09a 3.11± 0.07a 3.14± 0.06a 3.45± 0.07a 3.50± 0.09a 3.50± 0.11a
Glucose (mg/dl) 154.5± 5.47a 159.90± 4.14a 159.10± 5.34a 162.60± 5.66a 155.30± 5.81a 161.10± 3.57a
Total cholesterol (mg/dl) 138.10± 6.81a 145.30± 4.71a 144.20± 4.58a 99.50± 2.98a 100.90± 2.18a 101.90± 2.61a
Triglyceride (mg/dl) 97.30± 3.36a 99.30± 3.16a 101.30± 4.35a 98.90± 3.05a 100.60± 4.11a 99.60± 1.10a
HDL (mg/dl) 109.81± 5.14a 108.73± 2.71a 112.84± 4.58a 61.01± 4.88a 53.57± 5.70a 46.25± 6.12a
Total protein (mg/dl) 5.94± 0.15a 6.32± 0.22a 6.44± 0.22a 6.06± 0.10a 6.04± 0.07a 5.89± 0.11a
LDL (mg/dl) 18.70± 2.65a 18.20± 1.73a 22.10± 1.42a 9.17± 0.96a 7.88± 0.10a 18.87± 5.73a
GPT (U/L) 47.40± 5.53a 45.80± 3.85a 46.30± 3.80a 61.30± 5.36a 63.70± 5.43a 64.10± 4.47a
GOT (U/L) 181.80± 17.01a 179.20± 9.53a 173.40± 10.99a 178.80± 9.40a 172.70± 11.22a 177.70± 12.70a
BUN (mg/dl) 27.19± 1.96a 26.95± 0.73a 29.27± 2.34a 25.93± 2.00a 23.54± 0.72a 25.78± 2.21a
Creatinine (mg/dl) 0.31± 0.02a 0.33± 0.02a 0.30± 0.22a 0.32± 0.02a 0.35± 0.01a 0.37± 0.02a

Values were presented as mean± SEM (n� 10) (one-way ANOVA). Alphabet “a” represented no significant difference by Duncan’s multiple range test. 0e
SAMP8 mice were given saline or probiotics at a dosage of 5.0×109 CFU/kg BW/day. GKS6 : L. paracasei GKS6; GKK2 :B. lactis GKK2.
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trabecular separation (Tb. Sp), and bone mineral density
(BMD) in female SAMP8 mice fed with GKS6 (Table S1).
Even though the results did not reach statistical significance,
the trends in the decrease of Tb. Sp and increase of BMD
were similar to our previous study in an ovariectomized
mice model [21]. Interestingly, GKS6 relatively maintained
higher BV/TV (%) and Tb. N (No./mm) in SAMP8 females
which was not observed in the past. Generally, bone loss due
to aging is regarded as a chronic inflammatory state in-
volving increased proinflammatory cytokines such as IL-6,
IL-1, and receptor activator of nuclear factor-κB ligand

(RANKL) [34, 35]. According to the inhibited effect of GKS6
with RANKL treatment on RANK, the functions of GKS6 in
this study on age-related bone loss via anti-inflammatory
pathway could be surmised [21].

It could be expected that the combination of GKS6 and
GKK2 has a potential synergistic effect on improving age-
related symptoms since they might work differently in
physiological function. Fu et al. revealed a similar outcome
of antiaging effect with oral Lactobacillus spp. and Bifido-
bacterium spp., respectively, in C57BL/6 mice; however, the
compositions of gut microbiota in mice were very different
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Figure 2: Aging score of three-month-old SAMP8 mice on the 11th week. Data were expressed as means± SEM and analyzed by one-way
ANOVA (n� 10). A p value <0.05 was regarded as a significant difference with ∗ symbol in the figure.0e SAMP8mice were given saline or
probiotics at a dosage of 5.0×109 CFU/kg BW/day. Control: SAMP8 mice fed with saline; GKS6: SAMP8 mice fed with L. paracasei GKS6;
GKK2: SAMP8 mice fed with B. lactis GKK2.
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one-way ANOVA (n� 10). A p value <0.05 was regarded as a significant difference with ∗ symbol in the figure.0e SAMP8mice were given
saline or probiotics at a dosage of 5.0×109 CFU/kg BW/day. Control: SAMP8mice fed with saline; GKS6: SAMP8mice fed with L. paracasei
GKS6; GKK2: SAMP8 mice fed with B. lactis GKK2.
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Figure 4: Immunohistochemical identification of muscle cell count at 200x. 0e muscle tissue of SAMP8 was observed by immuno-
histochemistry (a) and the cell count was examined (b). Type I fibers and type II fibers were stained as red and orange, respectively. 0e
values of muscle cell count were shown as means± S.E.M with one-way ANOVA (n� 10). ∗Significant difference was presented when
p< 0.05. Control: SAMP8 mice fed with saline; GKS6: SAMP8 mice fed with L. paracasei GKS6; GKK2: SAMP8 mice fed with B. lactis
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Figure 5: Continued.
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between these two treatments [36]. 0e different role of
probiotics on antiaging could provide the complexity of
physiological modulation which builds a multiple defense
system, that is, providing more appropriate solutions and
less bad effect concern. In this study, we contributed to
provide two different probiotic strains with different
mechanisms for antiaging effect.

5. Conclusions

In this study, we demonstrated that dietary supplementation
of L. paracasei GKS6 and B. lactis GKK2 in SAMP8 mice was
safe. In addition, administration of probiotics GKS6 andGKK2
significantly delayed the aging process by enhancing antioxi-
dants activity, resulting in lower oxidative damage. Moreover,
B. lactisGKK2 showed a significant effect on forelimb strength
strengthening and muscle fiber hypergenesis. Both L. paracasei
GKS6 and B. lactis GKK2 could act as candidates of functional
food for antiaging. B. lactis GKK2 could further be a potential
supplementary as an elderly muscle-building diet.
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Supplementary Materials

Figure S1: oxidative stress parameters in SAMP8 mouse
brain. 0e concentrations of thiobarbituric acid reactive
substances (a) and 8-hydoxy-2-deoxyguanosine (b) in
SAMP8 mouse brain were measured. 0e values were
shown as means± SEM with one-way ANOVA (n� 10).
∗Significant difference was presented when p< 0.05. Con-
trol: SAMP8 mice fed with saline; GKS6: SAMP8 mice fed
with L. paracasei GKS6; GKK2: SAMP8 mice fed with
B. lactis GKK2. Figure S2: Cisd2 expression with probiotic
treatments on HEK 293T cell line. A screening test from
human embryonic kidney 293T (HEK 293T) cell line
revealed by western blot (Fig. S2a) and the Cisd2 expression
was determined as a relative percentage of the control (Fig.
S2b). GKS6: L. paracasei GKS6; GKK2: B. lactis GKK2;
Cisd2: CDGSH iron-sulfur domain 2; GAPDH: glyceral-
dehyde-3-phosphate dehydrogenase. Table S1: effect of
probiotics on bone parameters in SAMP8 female mice.
(Supplementary Materials)
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Figure 5: Oxidative stress parameters in the SAMP8 mouse liver. 0e activities of superoxide dismutase (a), catalase (b), and the
concentration of thiobarbituric acid reactive substances (c) in the SAMP8 mouse liver were measured. 0e values were shown as
means± SEM with one-way ANOVA (n� 10). ∗Significant difference was presented when p< 0.05. Control: SAMP8 mice fed with saline;
GKS6: SAMP8 mice fed with L. paracasei GKS6; GKK2: SAMP8 mice fed with B. lactis GKK2.
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