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Abstract 

Background:  The flux phenotype describes the entirety of biochemical conversions in a cell, which renders it a key 
characteristic of metabolic function. To quantify the functional relevance of individual biochemical reactions, func‑
tional centrality has been introduced based on cooperative game theory and structural modeling. It was shown to 
be capable to determine metabolic control properties utilizing only structural information. Here, we demonstrate the 
capability of functional centrality to predict changes in the flux phenotype.

Results:  We use functional centrality to successfully predict changes of metabolic flux triggered by switches in 
the environment. The predictions via functional centrality improve upon predictions using control-effective fluxes, 
another measure aiming at capturing metabolic control using structural information.

Conclusions:  The predictions of flux changes via functional centrality corroborate the capability of the measure to 
gain a mechanistic understanding of metabolic control from the structure of metabolic networks.
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Background
The metabolic state of a cellular system is characterized 
by the fluxes of the underlying biochemical reactions and 
the concentrations of the involved metabolites [1]. In the 
analysis of metabolism, the flux phenotype is one of the 
most important cellular observables as it directly relates 
to metabolic functionality, i.e., the conversion of indi-
vidual biochemical compounds [2], which also naturally 
accounts for changes in metabolic state.

Alterations in the flux phenotype are triggered by 
internal or external shifts and imply rerouting of meta-
bolic flux, for example from respiration towards fermen-
tation in facultative aerobic bacteria [3], which is the 
result of metabolic control [1]. Several constraint-based 
approaches were proposed to predict flux phenotypes 
in unicellular organisms resulting from genetic inter-
ventions by minimizing their effect on flux distributions 
[4, 5]. Nevertheless, elucidating the principles of how 

large-scale metabolic systems achieve efficient metabolic 
rerouting remains one of the key challenges in develop-
ing a mechanistic understanding of metabolic control, in 
accordance with the general case of controlling complex 
networks [6]. Here, we demonstrate the ability of our 
recently introduced measure of functional centrality to 
predict changes in experimentally determined metabolic 
fluxes based solely on the structure of the metabolic net-
work captured by its stoichiometric matrix.

Functional centrality combines cooperative game the-
ory, in particular a modified version of the Shapley value 
for arbitrary restricted games [7], with flux balance anal-
ysis (FBA) [8] to determine the functional relevance of 
biochemical reactions [1, 9]. It quantifies the contribution 
of individual biochemical reactions to metabolic func-
tionality, e.g., to biomass production, based on the struc-
ture of a metabolic network together with constraints on 
internal and exchange fluxes, which mimic internal and 
external conditions.

In our previous study we examined the relationship 
of functional relevance and transcriptional readout [1], 
whereby we examined four measures based on structural 
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modeling and associated with metabolic control. Our 
comparative analysis showed that control-effective fluxes 
[10] were superior in predicting changes of gene expres-
sion. However, gene expression may not directly be mani-
fested in changes of flux; a more suitable comparison 
necessitates the usage of changes in fluxes inferred based 
on labeling data [11]. In this brief research note, we dem-
onstrate that functional centrality performs better than 
control-effective fluxes in predicting changes in metabolic 
flux in the central carbon metabolism of Escherichia coli.

Results
We examine the capability to predict flux changes using 
functional centralities as well as control-effective fluxes, 
which were found to be the two best-performing contend-
ing predictors of transcriptional change in a recent study 
of structural control of metabolism [1]. To this end, we 
analyze the relationship of flux changes in the central car-
bon metabolism of E. coli resulting from a shift between 
aerobic and fermentative conditions and the correspond-
ing changes of the two investigated measures. The flux 
data were obtained via stationary 13C labeling experi-
ments and metabolic flux analysis by Fischer et al. [12].

In accordance with the definition of control-effective 
fluxes [10], we utilize the mean of normalized functional 
centralities obtained for the metabolic functions of ATP 
and biomass production, which are the two dominant 
metabolic functions shaping the flux phenotype [13]. The 
control-effective fluxes and the mean functional centralities 
are calculated for aerobic as well as for fermentative condi-
tions using the metabolic network of E. coli’s central carbon 
metabolism provided by Schuetz et al. [13]. For both meas-
ures, we calculate the ratios of values obtained for the two 
conditions and use them as predictors of ratios of the cor-
responding fluxes. Estimates of functional centralities are 
used, because exact computation is computationally intrac-
table for large metabolic network. We demonstrated that 
robust estimates of functional centralities can be obtained 
via Monte Carlo sampling utilizing the set of elementary 
flux modes in medium-size metabolic networks [1].

The ability of control-effective fluxes and functional 
centrality to predict the observed flux changes (23 data 
points) is assessed by employing two statistical proce-
dures. In the first, we fit a regression model. Inspection of 
the dataset indicates a non-linear relationship in the case 
of both measures. We utilize logarithmic transformation 
of the predictor’s and of the regressor’s values, respec-
tively, to discount non-linearity and to render the distri-
bution of the predicted quantity closer to normal. A linear 
regression model is fitted to the double-log-transformed 
data (residuals do not show significant deviations from a 
normal distribution). The slope of the linear regression 
line then indicates the relative (percental) change of flux 

resulting from a relative (percental) change of the predic-
tor. The goodness of fit is determined by the coefficient of 
determination

whereby yi and y∗i  denote the ith (log-transformed) data 
point and the (log-transformed) predicted value, respec-
tively; Ri = yi − y∗i  denotes the ith residual and ȳ the 
mean of data points. In the second, we use Kendall’s rank 
correlation coefficient. We find that functional centrality 
improves prediction of metabolic fluxes in comparison 
to control-effective fluxes (see Figs. 1, 2). While control-
effective fluxes can only explain 35.1% of the variance of 
measured fluxes, functional centrality is capable to explain 
44.21% of the variance. The association found by utilizing 
Kendall’s rank correlation coefficient is even more pro-
nounced as shown in Table 1, which also provides values 
of Pearson’s and Spearman’s correlation coefficient.

Conclusions
Functional centrality, like control-effective fluxes, does 
not require any further information besides reaction stoi-
chiometry, characterization of exchange fluxes and the 
choice of a metabolic function. Here we demonstrated 
that functional centrality enables prediction of changes 
in metabolic flux with improved accuracy, exceeding the 
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Fig. 1  Prediction of flux changes by control-effective fluxes. Cal‑
culated ratios between flux during growth on glucose (GLC) under 
conditions of aerobic respiration and fermentative conditions based 
on control-effective fluxes versus experimentally determined flux 
changes (double-logarithmic plot). Lines indicate 95% confidence 
intervals for experimental data (horizontal lines), linear regression 
(solid line), perfect match (dashed line) and twofold deviation (dotted 
line). Some data points are shown without error bars, because the 
corresponding error intervals exhibit partially negative values; linear 
regression fit only for the data points with strictly positive error inter‑
vals is shown in red (R2 = 0.1934)
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results of control-effective fluxes. The functional central-
ity measure is based on the rich axiomatic framework of 
power indices in cooperative games, and is suitable for 
the analysis of structural control of metabolic networks, 
as supported by the analyzed data. Our results provide 
further indication that concepts from cooperative game 
theory can help in obtaining a better understanding of 
control in metabolic networks.

Methods
Flux balance analysis
Flux balance analysis is a structural modeling framework 
enabling prediction of steady-state metabolic flux [8]. It 
relies on the assumption that metabolism is governed by 
an optimization principle with respect to some cellular 
objective. Usually, the objective is expressed as a linear 
combination of individual fluxes fi (i ∈ N , with N  denot-
ing the set of reactions forming the metabolic network). 
Optimization can then be formulated in terms of a linear 
programming problem:

with z representing the objective to be optimized, c being 
a vector of coefficients quantifying the contribution of 

(2)

min(max)z =
∑

i

cifi, s.t.

S · f = 0,

fmin(i) ≤ fi ≤ fmax(i),

each flux to this objective, and matrix S capturing reac-
tion stoichiometries. The bounds fmin(i) and fmax(i), 
denote minimum and maximum values of the fluxes and, 
therefore, determine reaction reversibility.

Functional centrality
Functional centrality quantifies the contribution of indi-
vidual reactions to a metabolic function, e.g., biomass 
production, by utilizing a formulation of the Shapley 
value for restricted cooperative games [9]. The metabolic 
function of interest is formulated in terms of a linear 
objective function accessible via FBA. We provide briefly 
the definition of functional centrality, an extensive deri-
vation and an algorithm for estimation of functional cen-
trality in large networks is provided by Sajitz-Hermstein 
and Nikoloski [1, 9].

The optimal value of the objective function v in a sub-
network formed by the reaction set S is determined by 
FBA. Let GS = (S ,A) be a directed graph. The set of 
nodes S encompasses all subsets S ⊆ N  which corre-
spond to functional subnetworks, i.e., exhibiting positive 
outcome of FBA, and the empty set ∅. The set of arcs A 
consists of all (S, S′) with S � S′ for which it holds that 
there exists no S′′ ∈ S with S � S′′ � S′. In GS, every 
path from the empty set to the set N  represents one pos-
sibility to add reactions successively in such a way that 
the corresponding subnetworks belong to the family of 
functional subnetworks. These paths are called maxi-
mal chains. The calculation of functional centrality is as 
follows:

Let W = (S0, S1, . . . , Sl(W )) with S0 = ∅ and Sl(W ) = N  
be a maximal chain for inclusion in S, implying 
S0 � S1 � · · · � Sl(W ). Then, the contribution of reaction 
i in maximal chain W is given by

with l(W) being the length of the maximal chain W and 
| · | denoting the cardinality of a set. Let the set of all max-
imal chains be denoted by W . The functional centrality 
�i(v) of reaction i with respect to the objective function 
v is

Control‑effective fluxes
Control-effective fluxes are defined by efficiencies εi of 
the individual elementary flux modes (EFM) ei with 

(3)ψW ,i(v) =

l(W )
∑

j=1

v(Sj)− v(Sj−1)

|Sj| − |Sj−1|
· χ(Sj \ Sj−1, i) for i ∈ N ,

(4)χ(S, i) =

{

1 if i ∈ S
0 otherwise,

(5)φi(v) =
∑

W∈W

1

|W|
ψW ,i(v).
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Fig. 2  Prediction of flux changes by functional centralities. Calcu‑
lated ratios between flux during growth on glucose (GLC) under con‑
ditions of aerobic respiration and fermentative conditions based on 
functional centralities versus experimentally determined flux changes 
(double-logarithmic plot). Lines indicate 95% confidence intervals 
for experimental data (horizontal lines), linear regression (solid line), 
perfect match (dashed line) and twofold deviation (dotted line). Some 
data points are shown without error bars, because the corresponding 
error intervals exhibit partially negative values; linear regression fit 
only for the data points with strictly positive error intervals is shown 
in red (R2 = 0.3489)
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respect to a substrate Sk and the production of biomass 
(µ) and ATP (EFMs are normalized by substrate uptake 
in advance) [10]:

whereby eli denotes the flux through reaction l in the EFM 
ei. The control-effective fluxes are then given by

with Ymax
(µ/ATP)/Sk

 being the maximum yield of biomass or 
ATP production, respectively, for substrate Sk.

Model
We utilize a model of central carbon metabolism of E. 
coli originally published by Schuetz et al. [13]. Import of 
acetate and ethanol is disabled in our study. The sum of 
glucose import by the reactions mglABC and ptsGHI is 
constrained from above arbitrarily by one. Isozymes in 
the model were deleted. We examine two environmental 
conditions: (i) aerobic respiration and (ii), fermentation 
(no oxygen and no nitrate import). The utilized objective 
functions are the fluxes through the reactions: (i) maint 
(ATP production) and (ii), biomass (biomass production).
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Table 1  Association of flux changes and their predictions

Changes are caused by switching from aerobic to fermentative conditions; 
predictors are changes of functional centralities (FC) and of control-effective 
fluxes (CEF), respectively

FC p value CEF p value

Kendall’s τ 0.63 <3 · 10−5 0.45 <3 · 10−3

Pearson’s r 0.50 0.016 0.39 0.065

Spearman’s ρ 0.74 <5 · 10−5 0.67 <5 · 10−4
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