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Abstract: Hepatitis B virus (HBV) is DNA-based virus, member of the Hepadnaviridae family, which
can cause liver disease and increased risk of hepatocellular carcinoma (HCC) in infected individuals,
replicating within the hepatocytes and interacting with several cellular proteins. Chronic hepatitis B
can progressively lead to liver cirrhosis, which is an independent risk factor for HCC. Complications
as liver decompensation or HCC impact the survival of HBV patients and concurrent HDV infection
worsens the disease. The available data provide evidence that HBV infection is associated with
the risk of developing HCC with or without an underlying liver cirrhosis, due to various direct
and indirect mechanisms promoting hepatocarcinogenesis. The molecular profile of HBV-HCC is
extensively and continuously under study, and it is the result of altered molecular pathways, which
modify the microenvironment and lead to DNA damage. HBV produces the protein HBx, which
has a central role in the oncogenetic process. Furthermore, the molecular profile of HBV-HCC was
recently discerned from that of HDV-HCC, despite the obligatory dependence of HDV on HBV.
Proper management of the underlying HBV-related liver disease is fundamental, including HCC
surveillance, viral suppression, and application of adequate predictive models. When HBV-HCC
occurs, liver function and HCC characteristics guide the physician among treatment strategies but
always considering the viral etiology in the treatment choice.

Keywords: hepatitis B virus; hepatitis B; hepatitis B chronic hepatitis; hepatocellular carcinoma;
hepatitis D virus

1. Introduction

Liver cancer is one of the most common malignancies worldwide, with approximately
840,000 new cases (its incidence ranks third among all cancers) and 780,000 deaths reported
in 2018, ranking as the third mortality among all cancers [1]. Hepatocellular carcinoma
(HCC) accounts for 90% of primary liver cancer cases, so it is considered a challenging
public health issue. The prevalence of HCC in the US and in Western Europe is increasing,
with most patients with HCC having an underlying cirrhosis, which was mainly secondary
to hepatitis B virus (HBV) or hepatitis C virus (HCV) infection in the past [2]. In Italy,
10,000 cases of cancers yearly are pathogen-related, with 34.7% of them attributable to liver
cancer of viral etiology (HBV- and HCV-related) [3]. However, the incidence of HCC related
to viral liver disease is decreasing in developed countries, and it is counterbalanced by an
increasing prevalence of nonalcoholic fatty liver disease (NAFLD) and its related HCC [4].
Unfortunately, a great number of HCC cases is still diagnosed in an advanced stage, and
this generally restricts the efficacy of therapies. Moreover, liver cirrhosis is the strongest
risk factor for HCC, so its decompensation together with tumour recurrence contribute to
long-term mortality, even when curative treatment of early HCC is achieved. The prognosis
of HCC patients, indeed, is relatively poor compared with other gastrointestinal (GI) tract
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tumors, since the 5-year survival rate is less than 20% [5]. However, HBV is the major risk
factor of liver cirrhosis in eastern countries, where it has its higher prevalence and incidence,
and so HBV-related HCC has consequently a higher incidence in Asia [6]. Specifically, the
prevalence of HBV infection in the general Chinese population was approximately 5–7.99%
in 2018, of which more than 90% were adults older than 20 years. This means that even if
prevention and vaccination programs decreased infections over the past 10 years, at least
an estimated population of 84 million is still infected, which is more than in any country of
Europe [7].

Regarding its structure, HBV is a DNA-based virus and a member of the Hepad-
naviridae family, which increases the risk of HCC in infected individuals through different
mechanisms. Viral transmission may be sexual or occur through an exposure to infect
blood/bodily fluids, with the majority of exposures currently occurring from mother to
child through vertical transmission during birth or early years of life. Fortunately, universal
childhood HBV vaccination has been implemented worldwide since 1992 and reduced
90% of chronic hepatitis B (CHB) prevalence in the vaccinated cohorts, as shown in Asian
countries [8,9], resulting in a parallel decline of young-age HCC [10]. Despite the imple-
mentation of vaccination programs, the World Health Organization (WHO) reports that
296 million individuals were living with CHB infection in 2019, with 1.5 million new infec-
tions every year. Moreover, among those CHB individuals, about 60 million are co-infected
with hepatitis D virus (HDV) [11]. Actually, the true prevalence of HDV co-infected HBV
patients worldwide still remains unknown due to its heterogeneity, varying from 15–20 to
72 million [12,13]. Those individuals who are HBV–HDV coinfected had no therapies avail-
able for both viruses so far, but new treatment strategies have been recently developed [14].
Although there are treatment options to lower the risk of HCC in those who have chronic
HBV infection, such as nucleos(t)ide analogs [15], globally many individuals are unaware
of their status and lack access to testing and curative treatment.

In this review article, we discuss the relationships between HBV and HCC in terms of
viral oncogenic mechanisms involving HBV-pathways, current best treatment options in
HBV-related HCC, the burden of concomitant HDV infection and the impact of HBV-related
chronic liver disease are the outcomes of HCC treatments.

2. Literature Review and Search Criteria

Studies for this review were retrieved from PubMed using the search terms “hepa-
tocellular carcinoma”, “liver cancer”, and “primary liver carcinoma”, both individually
and in combination with the terms “hepatitis B virus”, “HBV”, “HDV”, “chronic hepatitis”,
“cirrhosis”, “liver function”, “antivirals”, “HBx”, “molecular pattern”, “NUC”, “nucleoside
analogs”, “nucleotide analogs”, as well as by a manual search and review of reference
lists. The search included literature published in English until March 2022. The authors
independently evaluated and selected the studies retrieved and resolved any discrepancies
by discussion. All authors approved the final list of selected articles.

3. Epidemiology of Hepatitis B Virus Infection and Liver Cancer

In Italy, the prevalence of HBsAg carriers in the general population decreased from 3%
in the 1980s to 1% in 2010 [16]. In 2019, a national Italian study recruited 894 CHB patients,
of whom 783 were tested for Anti-HCV, showing that 3.1% of them had co-existing HCV
or HBV infection [17]. In 2018, Valery et al. reported a projected increase in liver cancer
incidence to 2030 in 30 countries. In the interval between 1978 and 2012, HCC incidence
declined in many eastern countries, even as it increased in India, Oceania, and most
western countries. Italy was analyzed through a regional population-based cancer registry
including nine regions, which surely limited the results but also showed a projection
of new cases yearly of liver cancer from approximately 7036 in 2005 to about 10,642 in
2030 [18]. Recently, however, the increase in some countries, such as the US, has abated as
a consequence of having reached a plateau in various subgroups [19]. Overall, the lifetime
incidence of HCC in HBV individuals has been reported to be approximately 10–25% [20].
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Furthermore, other major hepatotropic viruses also increase the risk of HCC development,
both coinfection with hepatitis D virus (HDV) and the presence of HCV. Previously, HDV
was shown to infect about 5% of CHB patients worldwide (15–20 million individuals) [21],
while recently the overall prevalence of HDV seemed to be 0.98%, with a prevalence
of HDV in CHB reaching 10.6%, which is twice as high as previous estimations [13].
Consequently, there are considerable differences in these virus-induced HCC populations,
mainly regarding the epidemiology of HBV–HDV-associated HCC, which is more common
in developing countries, while HCV-induced HCC is more common in post-industrial
society [22]. In comparison to HBV or HCV mono-infection, individuals who are co-infected
with HBV–HCV have increased rates of HCC development [23]. In general, risk factors for
HCC in both treated and untreated CHB patients may be demographic (male sex, older
age, Asian or African ancestry), viral (high viral load, long infection, coinfection with HCV,
human immunodeficiency virus, or HDV), clinical (liver cirrhosis), and environmental
(aflatoxin, alcohol, or tobacco) factors [24].

4. Structure and Replication Cycle of Hepatitis B Virus

HBV is an enveloped, double-stranded DNA virus belonging to the Orthohepadnavirus
genus and the Hepadnaviridae family, and its classification includes 10 genotypes (A–J) [25].
The HBV virion contains 3020 to 3320 nucleotides in a partially double-stranded DNA
genome (in the form of relaxed circular DNA, rcDNA) in a nucleocapsid composed of hep-
atitis B core antigen (HBcAg) subunits. This nucleocapsid is enveloped in a host-derived
lipid bilayer covered with hepatitis B surface antigens (HBsAg). The genome contains
four genes (P, preC/C, S and X) that encode for five main proteins: polymerase (gene P),
HBcAg (gene C), hepatitis B envelope antigen (HBeAg) (product of preC), HBsAg (gene S),
and a replication cofactor X (gene X) [26,27]. The X protein (HBx) derived from gene X plays
an essential role in HBV pathogenesis and viral transcription, and nowadays its role in
carcinogenesis of HCC is recognized to be relevant, as is analyzed below [27–29]. On a
hepatocyte level, the infection begins with the attachment of the virion to the sodium tauro-
cholate co-transporting polypeptide (NTCP), the entry receptor of the virus [30,31]. The
virus uses host cell DNA repair enzymes to successfully convert HBV rcDNA into the HBV
covalently closed circular DNA (cccDNA) form, which is an episomal “mini-chromosome”
when associated with histone and non-histone proteins and acts as a stable template for five
viral mRNAs [32,33]. These mRNAs include the pregenomic RNA (pgRNA), the precore
RNA, the surface mRNAs, and the X mRNA. The synthesis of rcDNA (the major pathway)
or double-stranded linear DNA (dslDNA) results through a reverse transcription process in
the HBV nucleocapsid, which matures and becomes enveloped by HBsAg and secreted into
the blood at multi-vesicular bodies [34]. Conversely to rcDNA, nuclear dslDNA genomes
can form replication-defective cccDNA [35] or integrate into the host cell genome [36,37].
A broad range of components generated by virus-infected cells has been investigated as
potential biomarkers for predicting HCC occurrence and recurrence.

4.1. HBV DNA Integration

HBV uses reverse transcription for replication, but integration is not essential in the
virus lifecycle because it does not produce replication-competent virus [38]. During reverse
transcription of the pgRNA, partially double-stranded rcDNA is formed 90% of the time,
and dslDNA is synthesized for the residual 10% of cases [37]. The HBV dslDNA can also be
present in virions and repaired to produce cccDNA [36]. Integration of dslDNA is an event
reported to occur in 1 of approximately 10,000,000 infected hepatocytes, and populations
with higher percentage of dslDNA integration are children (as young as 5 months old)
and patients who have acute HBV, CHB, and HCC [39,40]. Tu et al., in a review in 2017,
proposed the current and accepted mechanisms for HBV integration driving HCC, which
include: (1) chromosomal instability from HBV integrated DNA; (2) insertional mutagenesis
in proto-oncogenes and tumor suppressors; and (3) expression of mutant HBV proteins [37].
Regarding the first mechanism, non-HCC patients showed integration sites randomly
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distributed through the genome but lacking in enriched sites, causing alterations, while
HBV integration in CHB-HCC patients is enriched in certain areas causing chromosomal
instability. In the latter cases, integration usually occurs near fragile sites such as intergenic
regions, CpG islands, simple repeats, repetitive regions, and telomeres, bringing us to
the second mechanism, inducing HCC [41]. As confirmation, next-generation sequencing
(NGS) studies have found that HCC tumors generally have a greater number of integration
events and increased integration frequency in coding or promoter regions when comparing
HBV integration sites between tumor and matched non-tumor tissues [37]. In 10–15% of
HCC cases there is an upregulation of oncogenes of the enhancer II/core HBV promoter
in/near telomerase reverse transcriptase (TERT) or myeloid/lymphoid or mixed-lineage
leukemia 4 genes caused by a recurrent integration of dslDNA [42,43]. Due to the evidence
of upregulation of these genes in early and late HCC development, it is supposed that
integration in these genes may be linked to both cell transformation and HCC progression.
Moreover, integration of dslDNA generates high expression of altered HBsAg and HBx
proteins, which is associated with endoplasmic reticulum (ER) and mitochondrial stress
responses, which may lead to the increased risk of HCC [44]. In fact, past studies in animal
models showed over-expression of mutant HBsAg and HBx into precancerous liver lesions
and HCC [45]. Moreover, expression of C-terminal truncated HBx protein from integrated
HBV is associated with inhibition of apoptosis and cell transformation [46].

4.2. HBx Protein and Its Role

The HBx protein weights 17 kDa and has no direct interaction with the genome,
but nonetheless it performs different roles in the HBV lifecycle and HCC development
(Figure 1) [47]. HBx localizes in the cytoplasm, nucleus, and mitochondria, where it af-
fects signal transduction, transcription, and mitochondrial function. Consequently, it
causes transactivation of viral and cellular genes and leading to four main mechanisms
contributing to HCC development: (1) integration of the HBx gene into the hepatocyte
genome, which promotes genetic instability; (2) induction of oxidative stress through
the interaction with the mitochondrial and other cellular proteins; (3) activation of cell
survival signaling pathways and inactivation of tumor-suppressors; and (4) induction of
epigenetic modifications such as histone acetylation, DNA methylation, and microRNA ex-
pression [48]. As a consequence, HBx is able to modulate many proto-oncogenic signaling
pathways involved in inflammation and proliferation, such as mitogen-activated protein
kinase (MAPK)/Ras/Raf/c-Jun, NF-κβ, JAK-STAT, protein kinase C, Src, survivin, and
PI3K cascades [49,50]. The Wnt/β-catenin pathway, another relevant oncogenic pathway,
seems to be activated by HBx, through binding antigen-presenting cell protein or inactiva-
tion of GSK-3β through extracellular signal regulated kinase activation. The result is the
accumulation of β-catenin and an increased transcription of pro-angiogenic/metastatic
factors [51,52]. Promotion of angiogenesis and metastasis is mediated by transcription of
Ang-2 and vascular endothelial growth factor (VEGF), which is activated by HIF1α, a factor
whose transcriptional activation/stabilization is promoted by hypoxic cirrhotic nodules
expressing HBx, resulting in increased survival and growth [53]. HBx also modulates ma-
trix metallo proteinases (MMP), which digest fibrous capsules in tumors with the result of
increasing the epithelial–mesenchymal transition (EMT) and metastasis [54]. HBx may also
bind p53 in the cytoplasm and prevent p53 nuclear localization, with loss of p53 activity,
genome instability, and the deregulation of tumor suppressors [55]. Furthermore, HBx is an
epigenetic regulator of DNA hypermethylation in proto-oncogenes and hypomethylation
in tumor suppressors [56]. Another mechanism of HBx in tumour genesis is through
alteration of the transcription process of the methyl catalase DNMT1, which hypermethy-
lates, when upregulated, the tumor suppressor gene E-cadherin and INK4A, resulting in
loss of cell-cycle regulation and promoting EMT [57]. Promotion of histone acetylation
and deacetylation is another mechanism of HBx to alter the expression of cancer-related
genes, microRNAs, and non-coding RNAs. Several miRNAs are downregulated by HBx,
and among them is miR-122, a liver-specific miRNA with an anti-tumorigenic role [58].
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Quite the opposite, but with the same result, HBx induces expression of long non-coding
RNAs: LINE1, which upregulates Wnt/B-Catenin, HULC, UCA1 (with inhibition of tumor
suppressors p18 and p27), and DBH-AS1 (activation of extracellular signal-regulated kinase
[ERK]/p38/MAPK) [59].
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4.3. Intracellular Oxidative Stress in HBV-Infected Hepatocytes

Oxidative stress results from a higher presence of elements or reactions as lipid per-
oxidation, 8-oxoguanine DNA products, and decreased levels of anti-oxidant enzyme
glutathione and oxidation of proteins. CHB patients have 1.5–4 times higher levels of
these findings in the liver and blood compared to HBV-negative individuals [60]. Fur-
thermore, HBx has a main role in increasing the oxidative stress, firstly interacting with
cytochrome c oxidase subunit 3 (COXIII), a protein related to mitochondrial respiratory
chains, causing an increase in mitochondrial reactive oxygen species (mitoROS) levels,
which results in mitochondrial dysfunction [61]. Analysis of HCC tissue of HBV patients
showed that HBx activated NLRP3 in normal hepatocytes under conditions of oxidative
stress and promoted pyroptosis via the mitoROS pathway, causing an increase of levels
of ASC, IL-1β, IL-18, and HMGB1 [62]. Moreover, HBx also localizes on the outer mi-
tochondrial membrane, as abovementioned, causing reduced expression and activity of
respiratory complex proteins I, II, IV, and V in the electron transport. As a consequence,
cellular respiration reduces, and the altered mitochondrial function increases production of
superoxide anions and 8-oxoguanine DNA [63,64]. During the HBV lifecycle, HBsAg and
HBeAg are folded and assembled in the ER and transported through the Golgi [65]. When
high levels of these proteins or mutant HBV proteins are misfolded, they can accumulate in
the ER and cause activation of an unfolded protein response (UPR), which causes release of
hydrogen peroxide and calcium ions into the cytoplasm, enhancing ROS production [66].
Furthermore, mutations in HBcAg in CHB genotype C individuals seem able to increase
ER stress, resulting in ROS, increased intracellular calcium (Ca2+), and higher level of
proinflammatory cytokines [67]. HBV infection also decrease antioxidative stress response
pathways, with the result of concurrently increasing total oxidative stress [68].
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5. HBV Oncogenic Mechanisms: What We Know from Literature

HBV possesses different associated mechanisms to promote tumorigenesis, specifi-
cally through the activation and/or deactivation of various pathways, causing HCC [69].
Moreover, HBV has the unique finding among the hepatotropic viruses of being able to
generate HCC in the absence of cirrhosis, although most cases of HBV-related HCC (about
70–90%) occur in cirrhotic patients [70]. Several steps of the viral and hepatocyte life cycle
are directly and indirectly involved, as much as the alteration of the microenvironment
homeostasis. Several mutations of the HBV genome are associated with a higher risk of
HCC, and they can affect any of the HBV genes (PreS/S, P, PreC/C, X) [71]. Therefore,
studies including review and meta-analysis explored the role of these mutations, and the
resulting HBV mutants showed differences in the frequency between HCC vs. non-HCC
patients, with a risk of HCC ranging from 1.83- to 5.34-fold [72–77]. In addition, a proteoge-
nomic characterization of HBV-related HCC using paired tumor and adjacent liver tissues
from 159 Chinese patients provided a comprehensive and integrated analysis. Among the
159 HBV-HCCs, five significantly mutated genes were identified, including TP53 (58%),
CTNNB1 (19%), AXIN1 (18%), KEAP1 (7%), and RB1 (6%), two of which (CTNNB1 and
AXIN1) were mutually exclusive. Furthermore, this study identified PYCR2 (a crucial
enzyme in proline biosynthesis) and ADH1A (enzyme metabolizing a wide variety of
zenobiotic compounds) as prognostic biomarkers (confirmed by multivariate analysis:
PYCR2 high versus low, HR 1.792; ADH1A low versus high, HR 2.703) involved in HCC
metabolic reprogramming [78]. Moreover, other genes including TERT (its resulting protein
is a subunit of telomerase and maintains genomic integrity) and RPS6KA3 hold frequently
somatic mutations in HBV-associated HCC [79–81], while alterations in genes such as
ARID1A and ARID2 (chromatin regulator genes, encoding for chromatin remodeling fac-
tors) can cause epigenetic modifications leading to HCC development in these patients [82].
Actually, even if HBV-associated HCCs hold the latter mutations, they are more frequent
in HCV-associated HCC (TERT, 60–80% in HCV-HCC vs. 30–40% in HBV-HCC [83–85];
ARID2, 18% in HCV-HCC vs. 2% in HBV-HCC [86]).

6. Immune System and Microenvironment in HBV–HCC

The immunosuppressive activity of regulatory T cells (TREG) and their role in tumour
progression has been well documented in different cancers, including HCC [87,88]. CD8+
resident memory T cells (TRM) were suggested to show a partial immune response in
chronic HBV infection [89]. In 2019, Tim et al. showed that TREG and TRM were enriched
in the tumour microenvironment (TME) of HBV-related HCC through a transcriptome anal-
ysis. According to their results, TREG from HBV-related HCC showed higher expression of
FOXP3 (as already known [90]) and other genes involved in the IL-10 pathways, indicating
a more immunosuppressive phenotype of TREG compared with non-viral-related HCC. On
the other hand, genes enriched in TRM (CD8+CD103+) from HBV-related HCC exhibited
a state of exhaustion, as demonstrated by the higher expression of exhaustion marker
genes such as PD-1, LAG3, HAVCR2 (Tim-3), and CTLA4. Survival analysis showed a
poorer overall survival (OS) in HBV-related HCC with high levels of tumour-infiltrating
TREG, whereas a higher number of tumour-infiltrating TRM was associated with a better
survival profile. Authors further validated that the TME of HBV-related HCC is more
immunosuppressive/exhausted than non-viral HCC [91]. Moreover, the expression of PD-1
is increased on these TREG and TRM, supposing to have a higher response of HBV-related
HCC to immunotherapy as PD-1 inhibitors [92].

7. Clinical Aspect of HBV Infection and Its Progression to HCC

HBV patients may present various clinical manifestations, moving from an asymp-
tomatic infection and arriving at acute liver disease with jaundice and liver failure. More-
over, this virus gives chronic infection more commonly in children than in adult; in fact,
they are usually in the high-replication, low-inflammation phase of infection. Furthermore,
liver cirrhosis and hepatocellular carcinoma are rare in children [93]. When infection arises
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that is chronic and asymptomatic, it may be unacknowledged for years, despite the produc-
tion of high levels of virus antigens and viral particles by the liver. Nonetheless, HBV can
trigger an immune response after decades of infection, but it is generally insufficient to clear
all HBV-infected liver cells, causing subsequently chronic inflammation and liver damage
progression. The European clinical guidelines on chronic HBV infection [94] classified
patients at presentation into four classes (which corresponds to the four phases of HBV
natural history) depending on the identification of the virological markers (HBsAg and
HBeAg), viral load (HBV-DNA), and the seroconversion of antibodies against HBeAg
(Anti-HBe antibodies). In general, CHB leads to a repeated cycle of liver damage and
regeneration, which promotes tumorigenesis [95]. The ultimate step of the progression of
the HBV-related liver disease is liver cirrhosis, which is undoubtedly the main risk factor
for HCC development. Antiviral therapies aim to suppress viral replication, whose sup-
pression interrupts liver disease progression and decreases risk of cirrhosis complications,
such as decompensation and HCC.

8. Impact of HDV Infection on Liver Disease and HCC Development

HDV is a hybrid and defective virus of a 36 nm particle, containing a single-stranded
circular RNA genome of about 1.7 Kb, and needs HBV to infect, so this unusual nature is also
confounding in assigning a clear role in hepatocarcinogenesis [14]. Consequently, HDV can
be disseminated from the individuals who HBV simultaneously infects (i.e., superinfection).
Over 90% of HBV-superinfected individuals develop a chronic infection, and liver cirrho-
sis develops in 70% to 80% of the cases within 5 to 10 years after infection [96]. Liver
HDV-related cirrhosis decompensates with an estimated annual incidence of 2.6–3.6%,
and an incidence of HCC between 2.6% and 2.8%. HCC might be a consequence of the
cumulative effect of both HBV and HDV, an effect of the underlying cirrhosis, or a direct
oncogenic effect of HDV, but it is still unclear [97]. A meta-analysis showed a significantly
increased risk of HCC in patients with chronic HDV hepatitis (CHD), with a pooled OR of
1.28 (95% CI 1.05–1.57; I2 = 67.0%), which increased to 2.77 in the absence of heterogeneity
for prospective cohort studies (95% CI 1.79–4.28; I2 = 0%), compared to HBV monoinfec-
tion [98]. Nonetheless, data on the genomic signature of HDV or on the levels of HDV
replication into the tumor are still lacking [99]. In a study conducted in Caucasian patients
with HDV-HCC, gene expression was performed comparing malignant and non-malignant
hepatocytes, reporting a molecular profile, which suggest that the molecular signature of
HDV-HCC is different from HBV-HCC [100].

9. Surveillance and Scoring Predictive Systems for HBV Patients

HCC surveillance is fundamental to improving early detection, curative treatment
receipt, and survival in patients with cirrhosis [101]. In general, HCC surveillance is based
on transabdominal ultrasound (US) every 6 months, while the role of alpha-fetoprotein
(AFP) is still a debated issue during surveillance, showing slight differences in the recom-
mendations among the main guidelines (Table 1) [102,103]. In general, among patients with
HBV infection, HCC surveillance is recommended for all patients with cirrhosis (with or
without HBsAg seroclearance), or, among those without cirrhosis, depending on the pres-
ence of family history of HCC, age, and ethnicity. There is a certain grade of concordance
among guidelines regarding the role of surveillance in cirrhotic HBV patients, while in
non-cirrhotic HBsAg-positive patients, they show some difference in the recommendations.
Americans guidelines suggest keeping surveillance on Asiatic HBsAg-positive males older
than 40 years and females older than 50 years, and younger ages for Africans and African
Americans (Africans with HBV could develop HCC at an age < 40 years) [104,105]. Euro-
peans apply surveillance on HBsAg-positive patients at high risk of HCC after stratification
according to scores and grade of fibrosis, while Asians have recommendation similar to
those of Americans.
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Table 1. Differences regarding surveillance among the major guidelines.

AASLD [104,106] EASL [94,103] APASL [102]

Modality

AFP Yes * No
Yes—biannually
(in combination

with US)

US

Liver Cirrhosis Yes—every 6 months Yes—every
6 months

Yes—every
6 months

Hepatitis Yes—every 6 months in high-risk
patients

Yes—every
6 months in high

risk patients §

Yes—in high-risk
patients (timing

not specified)

High-risk patients

Cirrhotic patients Cirrhosis HBsAg-positive and
also with HBsAg seroclearance

Child–Pugh stage
A and B

Child–Pugh stage
C awaiting liver
transplantation

HBV-related

Non-cirrhotic
patients

With HBsAg seroclearance:
a first degree family member with

HCC, or a long duration of
infection (>40 years for males and
>50 years for females who have
been infected with HBV from a

young age)
HBsAg-positive adults:

-Asian or black men > 40 years
-Asian women > 50 years

-Persons with a first-degree family
member with a history of HCC

-Persons with HDV

-HBsAg-positive
patients:

according to
PAGE-B classes for
Caucasian subjects,
respectively 10–17

and ≥18 score
points

-F3 patients,
regardless of

etiology may be
considered for

surveillance based
on an individual
risk assessment

Chronic HBV
carriers:

-Asian female >
50 years,

-Asian males >
40 years,

-Africans aged >
20 years,

-History of HCC in
the family

* Optional, but always in combination with US. § Patients at low HCC risk left untreated for HBV and
without regular six months of surveillance must be reassessed at least yearly to verify progression of HCC
risk. APASL = Asian Pacific Association for the Study of the Liver; AASLD = American Association for the
Study of Liver Diseases; EASL = European Association for the Study of the Liver; HCC = hepatocellular
carcinoma; AFP = alpha-fetoprotein; US = ultrasonography; HBV = hepatitis B virus; HDV = hepatitis D virus.

Several scoring systems were set up and also externally validated to predict the
risk of HCC among CHB patients [107]. Despite their high negative predictive values
(above 95%) for HCC occurrence over a 3- to 10-year period, some of them (CU-HCC,
GAG-HCC, REACH-B, REACH-B II, LSM-HCC, RWS-HCC, D2AS RISK SCORE, HCC-ESC,
and AGED) [108–116] were developed for untreated patients but were inadequate in pa-
tients receiving NUCs, which are the majority of the CHB cases nowadays. Regarding
the latter setting of patients, many different scores have been developed in different pop-
ulations [117–123], such as the CAMD score (cirrhosis, age, male sex, diabetes), which
aimed to predict risk of HCC during the first few years of NUC treatment [124]. Previously,
the PAGE-B model was developed and validated for Caucasian CHB patients receiving
NUCs for the prediction of HCC development by 5 years [125,126], but only in 2018 was a
modified PAGE-B score (including additional albumin levels) developed in eastern cohorts,
showing to better predict the risk of HCC in CHB Asians under NUCs compared to the
PAGE-B score [127]. In general, these models confirm that HCC incidence decreases with
cumulative NA treatment, but data from a 10-center Caucasian cohort reported that a sub-
stantial risk of HCC remains beyond 5 years of entecavir or tenofovir treatment, especially
in those patients with older age, lower platelets (both at baseline and year 5), and liver
stiffness ≥ 12 kPa at year 5 [128]. These scores may have an important role in the identifica-
tion of differences among intervals of surveillance, but no data in the literature indicate
timings depending on them. Moreover, the feasibility of each of them in clinical practice
depends on many factors, especially the ethnicity of the validation/derivation cohort, the
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staging of liver disease, and the antiviral treatment. We summarize the characteristics and
the performances of the available scores in Table 2.

Table 2. Scoring system predictive for hepatocellular carcinoma in HBV patients.

Derivation Cohort Validation Cohort

Score,
Year

Predictive
Time Variables

c-
Index/
AUC

N of
Pts;

Ethnic-
ity

Age
(Mean
± DS)

Male
(%)

Cirrhosis, n
(%)

NUCs,
% (n)

c-
Index/
AUC

N of
Pts;

Ethnic-
ity

Age
(Mean
± DS)

Male
(%)

Cirrhosis,
n (%)

NUCs,
% (n)

Untreated patients (Non-NUCs)

CU-
HCC,
2009
[108]

10 years

Age,
Albumin

(g/L),
Bilirubin

(µmol/L),
HBV-DNA

(log
copies/mL),

Cirrhosis

NA 1005,
Asians 48 ± 7 67.8 383 (38.1)

15.1
*

(152)

0.76,
0.78

424,
Asians

41 ±
13

276
(65) 69 (16) 25

(106)

GAG-
HCC,
2008
[109]

5 and 10
years

Gender,
Age,

HBV-DNA
(log

copies/mL),
core

promoter
Mutations,
Cirrhosis

0.88,
0.89

820,
Asians 40.6 69.9 124 (15.1) 0 - - - - - -

REACH-
B, 2011
[110]

3, 5, and
10 years

Gender,
ALT (U/L),

HBeAg
(+/−), HBV
DNA level
(copies per

mL)

NA 3584,
Asians

45.7 ±
9.8 NA 0 0

0.811,
0.796,
0.769

1505,
Asians

41.9 ±
13.5 NA 277

(18.4) 0

REACH-
B II,
2013
[111]

5, 10,
and 15
years

Gender,
ALT (U/L),

family
history of

HCC (+/−),
HBeAg

(+/−), HBV
DNA level
(copies per

mL),
HBsAg
(+/−),

genotype

0.89,
0.85,
0.86

2227,
Asians 30–65 NA 0 0

0.84,
0.86,
0.87

1113,
Asians NA NA 0 0

LSM-
HCC,
2014
[112]

3 and 5
years

LSM (kPa),
Age,

Albumin
(g/L), and
HBV DNA

level
(copies per

mL)

0.83,
0.83

1035,
Asians

46 ±
12 64 331 (32) 38 *

(390)
0.89,
0.83

520,
Asians

46 ±
12 64 163

(31)
32

(165)

RWS-
HCC,
2016
[113]

10 years

Gender,
Age,

Cirrhosis
(+/−), AFP

level

0.915 538,
Asians

56.4 ±
12.1 62.6 80 (14.9) NA - - - - - -

D2AS,
2017
[114]

3 and 5
years

Gender,
Age, HBV
DNA level
(copies per

mL)

0.895,
0.884

971,
Asians

42.6 ±
10.6 58.1 0 0 0.889,

0.876
507,

Asians
42.2 ±

12.4 55.8 0 0
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Table 2. Cont.

Derivation Cohort Validation Cohort

Score,
Year

Predictive
Time Variables

c-
Index/
AUC

N of
Pts;

Ethnic-
ity

Age
(Mean
± DS)

Male
(%)

Cirrhosis, n
(%)

NUCs,
% (n)

c-
Index/
AUC

N of
Pts;

Ethnic-
ity

Age
(Mean
± DS)

Male
(%)

Cirrhosis,
n (%)

NUCs,
% (n)

HCC-
ESC,
2018
[115]

5, 10,
and 20
years

Age at ESC
(HBeAg
seroclear-

ance), male
sex,

cirrhosis,
hypoalbu-
minemia,

HBV DNA
level

(copies per
mL) and

ALT

0.95,
0.91,
0.92

723,
Asians 32 60.6 NA

59.1
*

(427)
- - - - - -

AGED,
2019
[116]

5, 10, 15,
and 20
years

Gender,
Age,

HBeAg
(+/−), HBV
DNA level
(copies per

mL)

0.76,
0.76,
0.79,
0.80

628,
Asians NA NA 0 NA 0.73,

0.74
1663,

Asians NA NA 0 NA

Treated patients (NUCs)

mREACH-
B,2014
[129,
130]

3 and 5
years

Age,
gender,

LSM (kPa),
HBeAg
(+/−),

0.805 192,
Asians 49 69.8 90 (46,9) NA 0.828,

0.806
1308,

Asians 50 67.5 233
(17.8)

64.8 *
(848)

PAGE-
B, 2015

[126]
5 years

Age,
gender,

platelets
0.82

1325,
Cau-

casians

52 ±
21

923
(70) 269 (20) 100 0.82

490,
Cau-

casian

56 ±
14 76 234

(48) 100

Modified
PAGE-
B, 2018

[127]

5 years

Age,
gender,

albumin
(g/dL),

platelets

0.82 2001,
Asians 50 1282

(64.1) 383 (19.1) 100 0.72 1000,
Asians 50 63.1 201

(20.1) 100

HCC-
RESCUE,

2017
[117]

1, 3, and
5 years

Age,
Gender,

Cirrhosis

0.798,
0.788,
0.768

990,
Asians

47.4 ±
10.5 65 389 (39.3) 100

0.817,
0.810,
0.809

1071,
Asians

46.6 ±
11.5 63 695

(65) 100

CAMD
[131,
132]

1, 2, and
3 year

Age,
Gender,

Diabetes,
Cirrhosis

0.83,
0.82,
0.82

23851,
Asians 47.5 74 6308 (26.4) 100

0.74,
0.75,
0.76

19,321,
Asians 52.1 66.05 1371

(7.1) 100

AASL,
2019
[118]

3 and 5
years

Age,
Gender,

Albumin,
Cirrhosis

0.814,
0.802

944,
Asians 50 62.1 371 (39.3) 100 0.850,

0.805
298,

Asians 53 58.7 116
(38.9) 100

REAL-
B, 2020

[119]

3, 5, and
10 years

Age,
Gender,
Alcohol,
Diabetes,
Cirrhosis,
Platelets,

AFP

0.83,
0.81,
0.81

5365,
Cau-

casians
and

Asians

48.4 ±
12.7 69.2 1085 (20.2) 100

0.74,
0.73,
0.74

2683,
Cau-

casians
and

Asians

48.3 ±
12.5 69.1 592

(22.1) 100

CAMPAS,
2020
[120]

7 years

Age,
Gender,

Cirrhosis,
Platelets,
Albumin,

LSM

0.874 1511,
Asians 49.7 65.5 602 (39.8) 100 0.847 252,

Asians NA NA NA NA

APA-B,
2017
[121]

2, 3, and
5 years

Age,
Platelets,
AFP at

month 12

0.877,
0.842,
0.827

883,
Asians

50 ±
17 72.7 481 (36.3) 97.3

0.939,
0.892,
0.862

442,
Asians

49 ±
18 74.2 164

(37.1) 97.3
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Table 2. Cont.

Derivation Cohort Validation Cohort

Score,
Year

Predictive
Time Variables

c-
Index/
AUC

N of
Pts;

Ethnic-
ity

Age
(Mean
± DS)

Male
(%)

Cirrhosis, n
(%)

NUCs,
% (n)

c-
Index/
AUC

N of
Pts;

Ethnic-
ity

Age
(Mean
± DS)

Male
(%)

Cirrhosis,
n (%)

NUCs,
% (n)

HCC-
ESCAVT,

2020
[122]

3, 5, and
10 years

Age,
Gender,

Cirrhosis,
ALT, AST,
Platelets

0.791,
0.770,
0790

769,
Asians 47 59.2 319 (41.5) 100

0.802,
0.774,
0.776

1061,
Asians 46 62.5 277

(26.1) 100

CAGE-
B, 2020

[123]

In years
5–12
(after

the fifth
year
from

starting
NUC)

Age and
LSM at year
5, Cirrhosis
at baseline

0.814
1427,
Cau-

casians

52.1 ±
13.1 69.5 370 (25.9) 100 - - - - - -

SAGE-
B, 2020

[123]

In years
5–12
(after

the fifth
year
from

starting
NUC)

Age and
LSM at year

5
0.809

1427,
Cau-

casians

52.1 ±
13.1 69.5 370 (25.9) 100 - - - - - -

Toronto
HCC
risk

index
(THRI),
2017 §

[133]

5 and 10
years

Age,
etiology,
gender,

platelets

0.76
§

2079,
Cau-

casians

53 ±
12.4

1251
(60.1) 2079 (100) 76 0.77 ◦

1144,
Cau-

casian

51.2 ±
11.6

575
(50.3)

1144
(100) NA

* Untreated patients started antiviral treatment during follow up. § HBV patients were only 19% in the derivation
cohort and 22.1% in the validation cohort. HBV patients showed higher 5- and 10-year cumulative incidence
among etiologies. § c-statistic was 0.72 in HBV subgroup of derivation cohort. ◦ c-statistic was confirmed to be
0.77 in the HBV subgroup of validation cohort.

10. HBV Therapies and Risk of HCC Development

HCC prevention in the contest of CHB can be primary, secondary, and tertiary. Data on
HBV treatments suggests that a significant amount of HCC cases could be avoided through
secondary prevention [134]. Secondary prevention of HCC consists of the treatment of
underlying liver diseases aiming at the prevention of disease progression [135]. The
available therapies for HBV are mainly divided into two typologies: IFNs (interferons),
and NUCs (nucleoside/nucleotide analogs). Data on the impact of IFN therapy (which
includes IFN-α and pegylated IFN-α) in HBV-related cancers are contrasting, due to the
lack of pre-treatment stratification for cancer predictors and exclusion of patients at higher
risk of developing HCC, as those unfit for IFN due to advanced liver disease. IFN-α has the
potential to target cccDNA, inducing the expression of ISG20 (interferon-stimulated gene
product of 20 kDa) and activating apolipoprotein B editing complex 3 (APOBEC3) enzymes,
which belong to APOBEC3A (A3A). Stadler et al. demonstrated that ISG20 is the nuclease
responsible for an interferon-induced decline of cccDNA, and that the co-expression of
catalytically active ISG20 and A3A can reduce cccDNA [136]. Unlike IFN-α, NUCs suppress
viral replication but have no effect on HBV cccDNA, whose persistence plays a crucial
role in chronic infection, inflammation, and cancer formation [137,138]. Nonetheless, the
current international treatment guidelines for patients with CHB recommend NUCs due
to their many benefits and considering the low response rate and poor safety of IFN-α.
Therefore, entecavir (ETV), tenofovir disoproxil fumarate (TDF), and tenofovir alafenamide
(TAF) are the first-line NUC treatments, and their indications have been expanded in the
past two decades to cover considerably more CHB patient groups [94]. Oral NUCs are
easier to prescribe and administer, and they also have higher safety compared to IFN and
high efficacy in terms of viral suppression. Long-term ETV and TDF treatment resulted in
decreased incidence rate of HCC [139,140]. In general, the risk of HCC occurrence is higher
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in those patients not achieving complete viral suppression, while HCC is better prevented
in CHB rather than in cirrhotic patients when viral load is completely suppressed. In fact,
viral load is found to be the most important factor leading to cirrhosis and its complications,
including liver cancer development [141]. Kim et al. [142] found that in patients receiving
NUCs, who with incomplete suppression, even with low levels of viremia (<2000 IU/mL),
showed a higher risk to develop HCC compared to those with complete suppression
(undetectable HBV-DNA). A re-analysis of outcomes after stratification for risk factors
of HCC showed an association between NUC therapy and a reduced HCC risk only in
younger non-cirrhotic patients, but it has to be considered that patients with cirrhosis
have an intrinsically higher risk due to their advanced liver disease itself [143]. Among
patients under antiviral treatments, cirrhosis, HBeAg-negative at baseline, and incomplete
viral suppression were associated with an increased risk of HCC [144]. Immunologically,
nucleotide analogues (TDF) were shown to induce higher serum interferon lambda-3
(IFN-k3) levels rather than nucleoside analogues (including lamivudine and ETV) [145].
IFN-k has antitumor activity in murine models with liver cancer [146], which may partly
explain the difference in the lower HCC risk in TDF-treated patients. Even if ETV is
effective to reduce incidence of HCC among CHB patients [147], the impact of TDF or
ETV in different cohorts was analyzed, as was that in a Korean cohort of 1695 consecutive
patients treated with ETV (n = 813) or TDF (n = 882) after curative-intent hepatectomy
for HBV-related HCC. In this propensity score-matched analysis, the authors found TDF
therapy to be associated with significantly higher recurrence-free (p = 0.02) and OS (p = 0.03)
rates compared with ETV, and it resulted in an independent protective factor for both early
(<2 years; HR 0.79) and late (≥2 years, HR 0.68) postoperative HCC recurrence [148]. These
results were also confirmed in a meta-analysis of 15 studies (61,787 patients in total: 26.6%
on TDF, and 73.94% on ETV), in which TDF treatment was associated with a significantly
lower risk of HCC compared to ETV (HR 0.80; p = 0.003; I2 = 13%) [149]. Furthermore,
age, cirrhosis, male sex, platelet count, liver stiffness, and diabetes are risk factors for
HCC in CHB patients receiving NUCs [150]. Finally, the RECTRACT-B study showed
that HBeAg-negative non-cirrhotic patients with low HBsAg levels are candidates for
NUC withdrawal in order to increase chances to achieve HBsAg clearance (functional
cure). These new insights in treatment strategy may expand worldwide indications for
NUC interruption [151], but it is still unclear how the risk of HCC may change after
NUC interruption.

11. Changing Perspective in HDV/HBV-Related HCC

As mentioned above, data suggest that both HDV-related liver disease and HBV–HDV-
associated HCC may be more aggressive compared to those patients with monoinfection,
showing also a higher rate of recurrence after treatment or LDLT (which will be discussed
later). These outcomes were also the result of the lack of an effective therapy for reducing
the burden of HDV so far, but new treatment options are now available with the potential
to change the natural history and outcomes of these patients [152]. In July 2020, EMA
(European Medicines Agency) approved the entry-inhibitor bulevirtide (BLV, previously
named Myrcludex B) for the treatment of chronic HDV in HDV-RNA-positive patients
with compensated liver disease, with a conditional marketing authorization after the
encouraging results in small cohorts of CHD patients [153]. BLV could be used either in
combination with peg-IFNα or as monotherapy, with differences in the dosage. Moreover,
other drugs are under investigation, such as the prenylation inhibitor lonafarnib (LNF)
or the nucleic acid polymer REP2139Ca (a molecular belonging to nucleic acid polymers,
NAPs) [154,155]. Currently, two ongoing phase III studies are assessing the efficacy and
safety of these new therapeutic regimens against HDV, namely MYR-301 (NCT03852719)
for BLV, and D-LIVR (NCT03719313) for LNF. Surely, it is the beginning of the era of anti-
HDV therapies, with important implications for the progression of liver disease and HCC
development, so robust data with long-term follow up are needed in order to explore the
new course of this disease.
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12. General Indications for Treatment of HCC

HBV-related HCC does not follow different algorithms from the main worldwide
indications, because of lack of evidence showing an HBV burden on influencing outcomes
among different HCC treatments; indeed, the decision-making process is strongly depen-
dent on the stage of tumor independently from the etiology of liver disease. In general,
treatment strategies of HCC follow the Barcelona Clinic Liver Cancer (BCLC) [156] staging
system, which was recently updated [157] and is based on disease burden presentation and
underlying hepatic function, giving recommendations regarding the best therapeutic ap-
proach [158]. Liver function and performance status (according to the Eastern Cooperative
Oncology Group (ECOG) staging system) are fundamental to stratify patients, proposing
the best option according to their global status. In the early stage of cancer, curative ther-
apies are available, and they are always more frequently able to control the progression
of cancer thanks to serial interventions performed immediately when recurrence appears
during follow up, resulting in a long OS. Depending on BCLC stage, initial curative options
may include liver transplantation, resection, and/or ablation (radiofrequency ablation—
RFA), while palliative or downstaging treatments may consider local–regional therapies
(LRT), such as transarterial chemoembolization (TACE) or transarterial radioembolization
(TARE), followed by systemic therapy in LRT-ineligible patients or those progressing on
LRT [103,106]. Moreover, in those patients with unresectable hepatocellular carcinoma
(uHCC) following TACE, the application of prognostic prediction models may help to
choose the next management [159].

13. Outcomes of HBV-Related HCC Based on Treatment Choice
13.1. Treatment of Early HCC

A wise selection of candidates and applicability of curative therapies influence patient
survival in terms of either early mortality due to liver decompensation or late mortality
caused by tumor recurrence. Despite the role of HBV in tumorigenesis, generally its
presence does not affect the decision-making process among treatments at the same HCC
stage, because no treatment has had more efficacy in HBV-related HCC. In general, the
5-year recurrence rates of HCC change among curative treatments, moving from modest
(4–18%) in selected patients treated with OLT to high (50–75%) in patients treated with
resection or local ablative techniques. Survival of patients at the early stage treated by
hepatic resection is largely conditioned by the degree of portal hypertension and serum
levels of bilirubin, which are post-operative predictors of decompensation, but nonetheless
also HBV-etiology was shown to influence patient outcomes [160]. An Asiatic study
compared the impact of etiology (metabolic and HBV) on survival and recurrence of HCC
patients undergoing hepatectomy. HBV impacted negatively on disease-free survival (DFS)
and OS at 5-year (39.8 and 49.8%, respectively) compared to Metabolic-HCCs (53 and 63%,
respectively), as also confirmed from the 5-years DFS and OS of the Met-HBV-HCC group,
where the HBV seemed to give outcomes similar to those of HBV-HCC group (DFS 40.2%
and OS 47.5%) [161]. Recurrence within 24 months after resection is defined as “early”,
and its predictive factors are microscopic vascular invasion, high pre-treatment levels of
serum AFP (alpha-fetoprotein), and non-anatomical resection. “Late” recurrence after
resection (after 24 months) is predicted by the grade of hepatitis activity and number of
HCC nodules [162]. Among ablation therapies, a single-center study of 249 HBV-related
HCCs who underwent RFA or TACE-RFA showed a 5-year OS rate of 58.3% (median OS of
66 months) and 65.46% rate of recurrence during median follow-up of 53 months. Moreover,
Child–Pugh class B was identified as an independent prognostic factor for OS among these
patients [163].

13.2. Outcomes of Liver Transplantation on HBV-Associated HCC

In recent decades, survival after orthotopic liver transplantation (OLT) in HBV-related
HCC has remained successfully stable, showing a substantially unvaried 5-year sur-
vival over time (approximately 80%). Therefore, in a recent American analysis of the
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OPTN/UNOS registry, the authors compared survivals of HCV-HCC vs. HBV-HCC in
the pre- and post-direct-acting antivirals (DAAs) era. Beyond the improved survival in
HCV-related HCC, thanks to the sustained viral response (SVR) after DAAs, HBV-related
HCCs undergoing OLT showed a stable survival between the pre-DAAs era (5-year and
10-year survival of 80.5% and 71%, respectively) and the post-DAAs era (5-year survival of
83.4%) [164,165]. These findings, even if encouraging about the efficacy of OLT, also show
few improvements in the setting of HBV-HCC undergoing LT. An explanation is the lack of
new therapeutic strategies, which may change the natural history of both HBV liver disease
and HBV-HCC, just as DAAs did for HCV. Furthermore, HDV coinfection could weigh on
HBV liver disease, even worsening the outcomes after OLT for HBV–HDV-related HCC.
Therefore, HBV recurrence after LDLT was found to be a risk factor for HCC recurrence, es-
pecially in patients with HBV–HDV coinfection, and HBV-HCC co-recurrence was 4.99-fold
higher when HDV was present (HDV was an independent risk factor for HBV-HCC co-
recurrence in the logistic regression analysis). Those findings are from a single-center study
analyzing 355 patients with HCC among 1005 living donor liver transplantations (LDLT)
for HBV-related liver disease (including HBV–HDV coinfected patients) [166]. Therefore,
HDV coinfection accelerates the progression of HBV-related liver disease, but it is also
hypothesized that HBV and HDV co-infection may cause a more aggressive tumor, whose
result is the recurrence after LDLT [167].

13.3. Efficacy of Systemic Therapies and Their Impact on HBV-Associated HCC

In 2022, oncologists and hepatologists have a bigger armory to treat advanced HCC
(aHCC) compared to that available a few years ago. Based on the new insights into systemic
therapies for advanced HCC (aHCC), the American and European guidelines [168,169]
recently introduced a combination of atezolizumab plus bevacizumab as first-line therapy,
preferring this immune-checkpoint inhibitors (ICIs)-based regimen over the TKI (tyrosine-
kinase inhibitors)-based first-line regimen (sorafenib, lenvatinib). The first drug available
for aHCC was sorafenib, in 2008, after the publication of results from the SHARP trial,
where only 19% of patients had HBV-related HCC in the sorafenib arm [170]. Later, the
ASIAN-PACIFIC trial [171] explored sorafenib efficacy on Asian HCCs in a cohort including
70.7% of patients with chronic HBV infection, and it showed an OS slightly lower compared
to the SHARP trial (median OS 6.5 vs. 10.7 months, respectively), even if other outcomes
(PFS, ORR, TTP, and safety profile) followed previous results. Moreover, the REFLECT trial
(lenvatinib vs. sorafenib for first-line in aHCC, non-inferiority trial) included half of the
patients with HBV-aHCC (53% in the lenvatinib and 48% in the sorafenib arm), showing a
similar OS (median 13.6 vs. 12.3 months, respectively) but higher PFS for the lenvatinib
arm compared to the sorafenib arm (7.4 vs. 3.7 months, respectively) [172]. Therefore,
lenvatinib could be preferred to sorafenib as first-line systemic therapy when patients
are affected by HBV-related aHCC, but further prospective clinical trials are needed to
confirm this point. Nonetheless, in the last two years, the demonstrated superior efficacy
of combination immunotherapy (atezolizumab–bevacizumab) vs. sorafenib (HR 0.58 for
OS; p < 0.001) permitted improvement in survival of advanced HCC (median OS 19.2 vs.
13.2 for sorafenib), becoming the preferred first-line systemic therapy for every etiology
of liver disease [173]. Moreover, another combination immunotherapy for aHCC (durval-
umab plus tremelimumab) recently showed better efficacy vs. aorafenib in preliminary
results (median OS 16.4 vs. 13.8 for aorafenib) [174]. Therefore, nowadays, the previous
considerations regarding the choice among TKIs for first-line in HBV-aHCC were limited
to those cases in which an ICI-based regimen is not available in routine clinical practice.
Regarding second-line therapies (regorafenib, ramucirumab, cabozantinib), the percentage
of HBV patients in the cohorts of registrative trials are similar (approximately among
35 and 38% of HBV patient in every arm of the trials—Table 3), and their choice mainly
depends on the previous first-line, patient tolerance, or tumor progression, as indicated
in the guidelines [175–177]. However, outcomes during HCC systemic treatments are
always dependent on the underlying liver function, because these treatments may damage
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the functioning liver and decompensate liver disease, which can lead to a temporary or
permanent treatment discontinuation. In fact, the maintenance of an optimal liver function
is fundamental, because it permits the best strategy of HCC treatment to be applied [178].

Table 3. RCT of registrative systemic therapies for HCC exploring the HBV patients considered in
the arm of treatments.

Study Name Arms N of Patients N of HBV
Patients (%) Median OS Median PFS ORR (%)

First-Line Therapies

IMbrave150
[173]

Atezolizumab (PD-L1) +
bevacizumab (VEGF) 336 164 (49) 19.2 6.8 27

Sorafenib (TKI) 165 76 (46) 13.2 4.3 12

SHARP [170]
Sorafenib (TKI) 299 56 (19) 10.7 - 2

Placebo 303 55 (18) 7.9 - 1

REFLECT [172]
Lenvatinib (TKI) 478 251 (53) 13.6 7.4 40.6

Sorafenib (TKI) 476 228 (48) 12.3 3.7 12.4

Second-line Therapies

RESORCE
[176]

Regorafenib (TKI) 379 143 (38) 10.6 3.1 11

Placebo 194 73 (38) 7.8 1.5 4

CELESTIAL
[175]

Cabozantinib (TKI) 470 178 (38) 10.2 5.2 4

Placebo 237 89 (38) 8 1.9 1

REACH [179]
Ramucirumab (VEGFR2) 283 100 (35) 9.2 2.8 7

Placebo 282 101 (36) 7.6 2.1 <1

REACH-2 [177]
Ramucirumab (VEGFR2) 197 71 (36) 8.5 2.8 5

Placebo 95 36 (38) 7.3 1.6 1

Under Evaluation (as First-Line)

HIMALAYA
[174]

Durvalumab (PD-L1) +
tremelimumab (CTLA-4) 393 NA 16.4 3.8 20

Durvalumab (PD-L1) 389 NA 16.6 3.7 17

Sorafenib (TKI) 389 NA 13.8 4.1 5.1

ORIENT-32
[180]

Sintilimab PLUS
bevacizumab biosimilar 380 359 (94) NR 4.6 21

Sorafenib 191 179 (94) 10.4 2.8 4

14. Specific Therapies of HBV-Related HCC

In the future, new strategies and treatments are going to be developed, and many
hypothetic pathways and proteins, which are under evaluation at the moment, will become
new targets. In the contest of HBV-related HCC, chimeric antigen receptor (CAR)- and T cell
receptor (TCR)-T cells targeting HBV antigens have shown antiviral and anti-HCC activity
in vitro [181,182]. Studies on CAR-T and TCR-T cells under different HBV-associated
pathogenic states are ongoing, with preliminary data indicating clinical benefit [183].
CAR-T is a type of treatment in which T cells are taken from a patient’s blood, and then
a gene for CAR which binds a certain protein on the patient’s cancer cells is added to the
T cells in the laboratory. Tan et al. describes a CAR-T cell technology that can recognize
HBV-specific epitopes in HCCs. Since HBV-associated HCCs seem to not contain actively
replicating viruses and only express partially integrated/truncated proteins, T-cells can
be designed to target these specific tumor-associated antigens. In one of these undergoing
studies, one patient treated with HBV-specific CAR-T cells experienced a response with
reduction of five out of six pulmonary metastases in one year [184]. Furthermore, the
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persistence of CAR-T technology in viral-related HCC could be achieved by engineering
a separate CAR-T receptor to recognize viral antigens to boost T-cells while targeting
cancer-specific lesions. In fact, as supposed in the transcriptome analysis of Lim et al. [91],
novel immunotherapeutic or a combination of therapies that target specific pathways in
etiology-related HCC could be designed for better disease management when molecular
pathways will be clearer in etiology-related HCC. Another future perspective is the appli-
cation of mucosal-associated invariant T (MAIT) cells in HBV-related HCC patients. MAIT
cells are naturally enriched in the liver and represent a critical innate-like T cell subset
with a potent intrahepatic effector [185,186]. Healy et al. investigated their TCR redirecting
MAIT cells in the context of HBV using a preclinical HCC cell model, with the limit of using
healthy donor peripheral blood mononuclear cells (PBMCs) when performing all functional
experiments. Despite the limits, their findings support future applications of MAIT cells for
liver-directed immunotherapies in HBV-related HCC [187]. Furthermore, a single-clonal
origin of HBV-related HCC is also debated due to data based on deep-sequencing studies
indicating multifocal HCC as a totality of independent tumors or as intrahepatic metas-
tases, even if confined within a tumor mass [188–190]. Whether multinodular HCC derives
from multiple carcinogenesis events under chronic hepatitis/cirrhosis, maybe it could
explain better outcomes of combination systemic therapies, even if it remains unclear at
the moment.

15. Conclusions

Persistent viral infection and immune-mediated damage cause significant and compli-
cated changes over time in the liver microenvironment and are undoubtedly risk factors
for the development of HCC in those patients with HBV infection. Many different genetic
and molecular pathways are involved in the development of HBV-related HCC and are
still under investigation. Current treatment options for HBV reduce HCC risk but do not
completely eliminate it. Moreover, HDV coinfection increases the risk of HCC, but new
treatment options have just been approved, so their efficacy may help to reduce this risk
and reduce progression of liver disease in the next years. Regarding future approaches
to systemic therapy, evidence of the increased expression of PD-1 on TREG and TRM
in HBV-related HCC is congruent with a virus-induced immunosuppressive/exhausted
TME, as abovementioned [91]. Therefore, treatments with PD-1 inhibitor may give a sur-
vival benefit, even if the results of CheckMate 040 (nivolumab) did not find a significant
difference in response rate for patients with HBV-related or non-viral-related HCC [191].
Nonetheless, nowadays, ICIs are the preferred choice in first-line systemic therapy thanks
to the results of IMbrave150, in which half of patients had HBV-related HCC. In the wake of
these results, many RCTs (i.e., HIMALAYA, ORIENT-32) are evaluating other immunother-
apies, trying to find the best regimen [174]. Chinese patients with previously untreated
HBV-related HCC (94% of entire cohort) are enrolled in ORIENT-32, which compares
sintilimab (PD-1 inhibitor) plus bevacizumab biosimilar (IBI305) vs. sorafenib, showing
a significant overall survival, progression-free survival, and safety profile in preliminary
analysis [180]. However, if the best sequential first- and second-line systemic treatments of
HCC remain elusive [192], the maintenance of optimal liver function is absolutely crucial
at any stage [178].

In conclusion, HBV-related HCC is a typical example of how the etiology and the
management of underlying liver disease can influence the risk of HCC in terms of ade-
quate modality of surveillance and progression of disease. In fact, the etiologic therapy
(e.g., antivirals in the case of HBV-related disease) significantly improves all of the out-
comes of liver cirrhosis, without and with HCC, and also in other settings [193]. Scientists
and clinicians are extremely interested in knowing how the new therapies for HDV will
influence in the future the long-term outcomes of HDV-associated liver disease and HCC.
Furthermore, the maintenance of liver function in cirrhotic patients is fundamental for
reducing the risk of HCC, improving outcomes, and permitting a proper treatment of
HCC itself [178]. Considering all of these points, the hepatologist has unavoidably the
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central role in the journey of patients with HCC of any etiology, even if particular cases
can take advantages from a multidisciplinary approach including surgeon, infectivologist,
radiologist, and oncologist.
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