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Abstract: G protein-coupled receptor (GPCR) oligomerization, while contentious, continues to attract
the attention of researchers. Numerous experimental investigations have validated the presence
of GPCR dimers, and the relevance of dimerization in the effectuation of physiological functions
intensifies the attractiveness of this concept as a potential therapeutic target. GPCRs, as a single entity,
have been the main source of scrutiny for drug design objectives for multiple diseases such as cancer,
inflammation, cardiac, and respiratory diseases. The existence of dimers broadens the research scope
of GPCR functions, revealing new signaling pathways that can be targeted for disease pathogenesis
that have not previously been reported when GPCRs were only viewed in their monomeric form.
This review will highlight several aspects of GPCR dimerization, which include a summary of the
structural elucidation of the allosteric modulation of class C GPCR activation offered through recent
solutions to the three-dimensional, full-length structures of metabotropic glutamate receptor and
γ-aminobutyric acid B receptor as well as the role of dimerization in the modification of GPCR
function and allostery. With the growing influence of computational methods in the study of GPCRs,
we will also be reviewing recent computational tools that have been utilized to map protein–protein
interactions (PPI).

Keywords: G protein-coupled receptor (GPCR); dimerization; allosteric modulation; protein dynam-
ics; receptor–receptor interaction; PPI prediction; protein dynamics; peptide design

1. Introduction

G protein-coupled receptors (GPCRs) belong to a large family of seven-transmembrane
(TM) proteins with structural topologies defined by the general presence of the extracellular
(EC) domain, the intracellular (IC) domain, and a TM domain comprising of seven helices
that connects the EC and IC domains of the receptors. The TM domain serves as a conduit
for the flow of information initiated by the binding of endogenous orthosteric ligands from
the cell’s exterior and triggering the binding of cytosolic proteins such as the heterotrimeric
guanine nucleotide-binding protein (G protein), GPCR kinases (GRKs), and β-arrestin
within the cell. This process, being allosterically driven, spurred studies that aimed to
understand the process of allosteric modulation in driving GPCR activation [1–7].

Structural studies have revealed the significance of conformational plasticity in the
allosteric regulation of GPCR activity. The structural flexibility of GPCRs empowers the
receptor family to cascade a variety of extracellular signals—spanning from photons to
neurotransmitters and hormones—across the membrane, hence equipping GPCRs with
the capacity to affect multiple signaling pathways. Depending on the G protein subtypes
(Gs, Gi/o, Gq, and G12/13) binding at the intracellular binding site, specific physiological
functions ranging from taste, vision, and synaptic transmission are set in motion [8,9]. This
versatile nature of GPCRs rendered them attractive as drug targets and opened numerous
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possibilities in the development of novel therapeutics for the treatment of a wide range of
diseases and conditions [1–5]. While numerous experimental and computational studies
have been conducted to examine the structural architecture and dynamics of GPCRs as
monomers, these studies lead to a riveting question regarding the possibility of synergistic
interactions between GPCRs to prompt specific signaling pathways. The growing number
of studies investigating the role of dimerization and oligomerization in steering GPCR
functions demonstrated the increasing interest in this topic despite its controversial status
in the GPCR community [10–13].

Studies are emerging in support of GPCR homo/heterodimers and higher order
oligomers, indicating the possibility of GPCRs to operate beyond the more congenial pos-
tulation of functional monomers [10,12,14–22]. The earliest allusive indication of GPCR
oligomerization arose from kinetic binding assays performed by Limbird et al. for β-
adrenergic receptors (β-ARs) on frog erythrocyte membranes [21]. In this study, the
negative cooperativity between β-AR monomers on the membrane was inferred based
on the different dissociation rates of 3H (-)alprenolol observed in two different conditions
set apart by the surplus of unlabeled (-)alprenolol in one. Henceforth, the collection of
indirect data from various traditional pharmacological and biochemical experiments such
as binding assay, gel electrophoresis, immunoaffinity chromatography, chemical cross-
linking, and co-immunoprecipitation studies further substantiated this phenomenon [22].
Recent explicit evidence reported the observation of various classes of GPCRs existing
as homodimers, heterodimers, and/or higher-order oligomers through a variety of bio-
physical studies—single-molecule fluorescence-based approaches, X-ray crystallography,
nuclear magnetic resonance (NMR) spectroscopy, and cryogenic electron microscopy (cryo-
EM)—as well as computational studies. These have garnered more interests for the study
of GPCR oligomerization, particularly for the potential implications to drug design and
discovery [12,14–18].

In this review, we will focus on the structural aspect of the allosteric modulation
of GPCR dimers, specifically for two well-characterized receptors, namely metabotropic
glutamate receptor (mGluR) and γ-aminobutyric acid B receptor (GABABR), both of which
have their full-length structures recently solved. This review will also highlight studies that
proposed the alteration of GPCR activity and allosteric modulation mechanism through
dimerization—an interesting phenomenon that can be exploited to further boost the po-
tential of GPCRs as a therapeutic target for new disease indications [23]. As available
three-dimensional structures of GPCR dimers are limited in comparison to the number
of dimers validated through experiments, the biophysical characterization of receptor–
receptor interactions via computational methods have gained ground as a potential tool
for the mapping of intra- and inter-subunit interactions at the receptor–receptor interface.
Therefore, we will also highlight some current computational methods that have been
or could be applied to investigate the protein–protein interface. Figure 1 illustrates an
overview of the topics discussed in this review.
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Figure 1. Summary of topics covered regarding receptor–receptor interactions in G protein-coupled
receptor (GPCR) oligomers. Structural changes afforded through the binding of an agonist (L-
quisqualate) to mGlu5 portrayed through X-ray crystal structure of mGlu5 in apo (PDB id: 6N52) and
active (PDB id: 6N51) states. Helices B and C, which are involved in the stabilization of the dimer,
are labelled. (VFT: Venus flytrap domain; CR: cysteine-rich domain).

2. Role of Receptor–Receptor Interactions in the Allosteric Modulation of
GPCR Activation

The comprehensive scrutinization of class A receptors has continuously supplied us
with information on the structures and dynamics of the proteins, albeit the disproportionate
distribution between inactive and active states solved. Nevertheless, advances in protein
engineering and biophysical characterization techniques have propelled accessibility to the
less solved active state configuration, allowing studies examining the structural disparity
between the two states. The juxtaposition of the active and inactive configurations revealed
compelling differences in highly conserved motifs known as the molecular switches that
are conveyed to be important for allosteric communication between the distal ends of the
TM domain, namely the orthosteric and intracellular protein binding sites. This forms
the main cognizance of TM domain activation in the GPCR family. However, recent
studies have established the presence of GPCR dimers across different classes of GPCRs.
This discovery opens the possibility of TM domain activation being governed not just by
long-range allosteric communication between the orthosteric and intracellular binding
sites within a single receptor (cis-activation) but also through previously unprecedented
pathways involving receptor–receptor interactions (trans-activation) [24]. This section will
discuss the structural aspect of the mechanism governing the allosteric modulation of the
trans-activation of two widely accepted GPCR dimers, namely mGluR homodimer and
GABABR heterodimer. This section will also highlight studies supporting the occurrence
of dimerization involving class A and class C GPCRs, and it will briefly discuss how
dimerization may alter the native activity of the receptor.

2.1. Class C GPCRs: A Potential Model for GPCR Trans-Activation

The concept of dimerization has been widely accepted for class C GPCRs, and coopera-
tivity between protomers of this family of receptors—both positive and negative—has been
proposed to be vital for signal transduction [25–28]. Several studies have been conducted to
understand the mechanism governing the activation of class C GPCRs, specifically mGluR
and GABABR dimers. These studies inevitably led to insights pertaining to the allosteric
regulation of signal transduction in GPCR dimers. Class C GPCRs have been proposed to
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be a potential model for the comprehension of allosteric regulation and cooperativity for
other classes of GPCRs, albeit a tendentious comparison, since their sequences and overall
structures differ from other classes. Nonetheless, several structural similarities with class A
GPCRs have been drawn that uphold this comparison.

The most significant similarity lies in the TM domains of class A and class C GPCRs.
The similar topologies of the seven TM helices lead to a shared “ionic lock” feature that
occurs between the intracellular regions of TM3 and TM6—a conserved “molecular switch”
that when formed maintains the inactive conformation of class A GPCRs [26,29,30]. While
a salt bridge between a conserved Arg3.50 and Glu(Asp)6.30 defines the ionic lock present
in class A, this feature occurs via Lys3.50 and Glu6.35 in class C [31,32]. The numbers
in superscript represent the Ballesteros–Weinstein numbering system in which the first
digit indicates the TM helices 1 to 7 and the digits following the decimal (a separator)
denote the residue position relative to a highly conserved residue within a single TM
helix, which is assigned as residue 50 [33]. Site-directed mutagenesis performed at the
aforementioned residues and a neighboring Ser613, in IC loop 1 (interacts with Lys3.50), to
either stabilize or destabilize the ionic lock in class C GPCRs afforded a decrease or increase
in the constitutive activation of their TM domains compared to wild type, respectively.
This corroborated the analogous behavior of this motif in both GPCR classes [32]. Residues
Lys3.50, Glu6.35, and Ser613 are also highly conserved in mGluR, GABABR, calcium-sensing
receptor, and T1R taste receptor, and mutations of these residues or others near the ionic
lock reportedly altered the signaling pathways of class C GPCRs [31,32,34]. For instance,
the point mutation of Glu6.35 to Lys in mGlu6 was reported to be the cause of congenital
night blindness. This phenotype was expressed due to altered G protein signaling, causing
the receptor to prefer Gi coupling over native Go coupling [32,35]. The comparable TM
topologies of the two classes of GPCRs was further evinced through homology models of
class C GPCRs generated using the crystal structure of bovine rhodopsin [30,36,37]. These
studies conducted afforded reliable observations that provided insights on the allosteric
modulations of class C receptors [30,36–38].

MGluRs have also exhibited similar activation activity as rhodopsin-like receptors.
Goudet et al. demonstrated this characteristic by examining the activity of the TM domain
of a truncated mGlu5 (no Venus flytrap (VFT) and cysteine-rich (CR) domains) in the
presence of a negative allosteric modulator (NAM) (MPEP; 2-methyl-6-(phenylethynyl)-
pyridine hydrochloride) and a positive allosteric modulator (PAM) (DFB;
3,3′-difluorobenzaldazine) [39]. The binding of MPEP to the TM domain of the trun-
cated mGlu5 led to the inhibition of the constitutive activity of the receptor relative to
wild type. On the other hand, DFB binding resulted in the direct activation of the TM
domain. While DFB has been classified as selective PAM with no agonistic effect on wild-
type mGlu5, the absence of the VFT and CR domains permitted the ligand to behave
as a full agonist, thus enabling receptor activation through a signaling pathway akin to
that of a rhodopsin-like receptor [39,40]. A comprehensive analysis of the binding site of
MPEP through site-directed mutagenesis and homology modeling of mGlu5 also discerned
a binding pocket at the TM domain that coincides with the orthosteric binding site of
rhodopsin [39]. Analysis of the three-dimensional structures of class C GPCRs solved in
the presence of allosteric ligands further highlight this similarity [18,25,41]. These studies
assert the similarities in the structural build of the TM domains of class A and C GPCRs,
validating the potential of class C GPCRs to be a model system for the mechanistic study
of TM domain activation of GPCR dimers in general.

2.2. Elucidation of Allosteric Modulation via Full-Length Structures of Class C GPCR Dimers

A structural feature that distinguished class C GPCRs from other classes is a large
N-terminal EC domain that comprised of approximately 400 to 600 amino acids [26,28].
This domain encompasses a bilobed ligand-binding region that resembles a Venus flytrap;
hence, it is also known as the VFT domain. The VFT domain comprises of two lobes, lobe
I (N-terminal lobe) and lobe II, with a cleft in between that accommodates an agonist or
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an antagonist [25,28,42]. This large domain, with the exception of GABABR, is connected
to the TM domain via a CR domain [17,26–28]. Associations between lobes I of the VFT
domains of partnering receptors in both inactive and active states engendered most class
C GPCRs as obligate dimers, and this was structurally corroborated through the recently
reported full-length apo structures of mGluR homodimer and GABABR heterodimers in
the “Roo” (Rest open–open) conformation [28,43–46] (Figure 2). The type of interactions
established at this interface varies across class C GPCRs. Hydrophobic interactions and
a nonessential, conserved disulfide bridge that formed between two flexible loops of the
protomers are observed in mGluR homodimers, while GABABR heterodimers are mainly
stabilized through polar interactions [18,26,47].

Figure 2. Surface representation of two full-length class C GPCR dimers, namely mGlu5 and GABABR.
The functional domains of the GPCR dimers, namely the Venus flytrap domains, the cysteine-rich
domain in mGluR, the stalk in GABABR, and the transmembrane domains, are labeled accordingly.

A recent study by Koehl et al. combined data from X-ray crystallography, cryo-EM,
and biochemical assays to examine the activation pathway of mGlu5 [28]. This study
provided the first complete, three-dimensional structures of mGluR in both active and
inactive states, thus allowing the scrutinization of the conformational plasticity of mGluR
during activation. Ligand binding at both the VFT domains of the mGluR homodimer
prompted a configurational change dictated by a less compact packing of two helices—
named helices B and C (Figure 1)—in comparison to the apo structure. These helices
bordered the interface between adjacent protomers at lobe I, and hydrophobic interactions
are mainly established between conserved residues of these helices [26,28]. The more
relaxed lobe I–lobe I interface promoted the formation of polar interactions near the apices
of helices B leading to the stabilization of the “Acc” (Active close–close) conformation [28].
The concurrent activation of both VFT domains of mGluR homodimers is noted to be
essential for optimal receptor activity, although the binding of an agonist at one of the
VFT domains has been shown to partially activate mGlu5 receptor via an “Aco” (Active
close–open) conformation [18,47].
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The comparison of the active and inactive states of mGlu5 revealed that the TM do-
mains moved closer together and undergo a 20◦ rotation to adopt an active conformation
characterized by a TM6–TM6 interface [28,43]. This maneuver, mediated by interactions
established between the CR domain and EC loop 2 (ECL2) of the TM domain, was specu-
lated to be vital, as it aids in the translation and rotation of the TM domains that enabled
the formation of specific inter-subunit interactions that could ameliorate the activity of
mGluR [28,29,48,49]. Observations revealed through the three-dimensional structure of
mGlu5 were also congruent with earlier experimental studies, all of which emphasized
the importance of both intra- and inter-subunit in modulating allosteric communication
between the VFT and the TM domains [25,29,49–51].

In addition to the mGlu5 homodimer, several structures of the full-length metabotropic
GABABR heterodimer have also been solved [43–46]. Shaye et al. reported the structures
of four full-length GABABR in the active and inactive states as well as two intermediate
states. In this study, they have combined the use of cryo-EM as well as molecular dynamics
(MD) simulations to elucidate the intricate dynamics of GABABR activation [45]. GABABR
forms an obligate heterodimer comprising of two different subunits, namely the GABAB1R
(GB1) and the GABAB2R (GB2). In addition to association at the VFT domains, stabilization
of the heterodimeric apo form was also assisted through polar interactions established
at the intracellular segments of TM3 and TM5 of GB2 and GB1, respectively. Similar
to mGluR, allosteric modulation originates from the orthosteric binding site of the VFT
domain and engenders a cascade of conformational changes leading to the activation of
the TM domain. In other respects, the GABABR heterodimer follows a distinctive signal
transduction mechanism in which the agonist only binds to the VFT domain of GB1, and G
protein activation proceeds via the activation of the TM domain of GB2 [45,52–56].

The contrasting ligand-binding competence of the subunits rendered GABABR an
attractive model for the study of asymmetric trans-activation [53,57]. With the availability
of the three-dimensional structures of the intermediate states of GABABR, the allosteric
pathway leading to the initiation of downstream signaling via GB2 could be harnessed. The
two intermediate states solved for GABABR also evinced the dynamic nature of receptor
activation. Ligand-binding at GB1 was proposed to have created an equilibrium between
the partially (Int-1) and fully closed (Int-2) conformations of its VFT domain [45]. The
partially closed conformation of the VFT domain of GB1 induced the rotation of both
GB1 and GB2, which brings the two protomers closer together, while keeping lobes II
of GB1 and GB2 far apart. In this state, the TM domains were oriented in the inactive
TM5–TM5 topology, albeit no interaction was established between the two helices. As GB1
transitions to the fully closed configuration at the VFT domain, lobes II of the GB1 and the
GB2 subunits gravitated toward each other. This conformational change induced signals
that descend a connecting “stalk” (Figure 2), leading to the characteristic active TM6–TM6
topology necessary for class C GPCR activation [26,28,43,45,58]. With available crystal
structures, further computational studies of GABABR could furnish us with insights related
to the dynamics of negative cooperativity in driving asymmetric G protein signaling, which
is a characteristic that has been commonly reported in GPCR dimers [59–61].

2.3. Altered GPCR Activities Induced through Heterodimerization

Even though the homodimerization of mGluR has been widely acknowledged to
regulate neuronal function, the existence of mGluR heterodimers is still as debatable as the
concept of dimerization for other GPCR families. Even so, the presence of several mGluR
heterodimers has been alluded through experimental studies [51,62]. The formation of
the heterodimeric complex between Group I mGluRs, namely mGlu1 and mGlu5, at the
hippocampal neurons has been verified by Pandya et al. through a series of immunoprecipi-
tation experiments [62]. The tendency of this dimer to exist as a functional heterodimer and
contribute to signal transduction was subsequently verified by Werthmann et al. through
functional complementation experiments in HEK293 cells [51]. Additionally, the mGlu1/5
dimer was also proposed to afford a distinct allosteric modulation pathway in comparison
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to their homodimeric counterparts. The MGlu1/5 dimer follows the symmetric signaling
(equal probability for both protomers to engage G protein) exhibited by their respective
homodimers. However, the receptor’s response to G protein coupling is dependent on the
protomer that the intracellular protein engages, and the activation of both protomers is
necessary for G protein activation. This observation contradicts the activation pathway
observed in their respective homodimers, whereby the inhibition of one protomer did not
curtail G protein activation [63].

The MGlu2/4 dimer has also been identified in vivo and is one of the most studied
mGluR heterodimers [59,64]. Unlike their respective homodimers and mGlu1/5 dimer, the
mGlu2/4 heterodimer follows an asymmetric activation pathway, which entails selective G
protein binding to mGlu4 [59]. However, when mGlu4 is stabilized in its inactive state via
NAM binding or when a PAM is bound to the TM domain of mGlu2, the mGlu2/4 dimer
adopted an alternative activation profile via G protein coupling at mGlu2. Asymmetric
cooperativity has also been found to be ubiquitous for heterodimeric pairs comprising of
mGlu2 and other Group II (mGlu3) and Group III (mGlu4, mGlu6-8) mGluRs [59–61]. The
binding of G protein to only one protomer is also a mechanism that has been evidently
adopted by most GPCR homodimers and heterodimers despite differences in the allosteric
modulation pathway. This observation iterates the importance of negative cooperativity
between the TM domains of GPCR dimers through which the activation of one protomer
blocks the signaling capability of the other, directing G protein coupling to a single protomer.
Positive cooperativity between TM domains was also observed in mGlu2/4 and mGlu1/5
dimers. In this case, the inactive state of one protomer initiated the activation of the other
through positive allosteric effects [51,63,65].

While the structures of class A and C GPCRs differ considerably as a whole, the TM
domains of these receptors share similar topologies (vide supra) leading to the possibility
of class A GPCRs existing as dimers. The acquiescence of class A GPCR dimerization is also
stimulated through experimental evidence of their physical interactions with mGluRs and
other class A receptors. Numerous studies conducted to understand the physiological as-
pect of class A/class C GPCR heterodimers have associated heterodimerization to the mod-
ification of the receptor’s function, trafficking, and pharmacology [12,19,26,66]. While the
mechanism controlling the dimerization process is still unclear and research have afforded
diverse explanations for their assemblies, physical interactions between class A and class C
GPRCs have been reported, evincing the formation of heterodimers. These heterodimers
include mGluR/serotonin 5-HT2A receptor (5-HT2AR), mGlu5/adenosine A2A R (A2AR),
Glu5/dopamine D1 receptor (D1R), and mGlu5/mu-opioid receptor (MOR) [26,67–72].
Among these heterodimers, mGlu2/5-HT2AR is the most widely investigated and associa-
tion to the pathophysiology of psychosis in schizophrenia and Parkinson’s disease, as well
as dyskinesia in the latter rendered this heterodimer an attractive target for the treatment
of these diseases [68–70,73].

3. Computational Methods Utilized for the Understanding of Receptor–Receptor
Interactions in GPCR Dimers

Over the recent years, the three-dimensional structures of GPCRs have become more
accessible in conjunction with the continuous improvements in structural biology [11,25,74].
Through the application of modern computational tools, the conformational plasticity of
GPCRs can be investigated in an environment that replicates their native surroundings,
hence providing a more realistic representation of the receptor [75–77]. Access to the
structures of GPCR dimers, especially class C GPCR obligate dimers, has empowered
researchers to explicate the conformational transitions critical for the allosteric modulation
of GPCR trans-activation (vide supra) and to resolve protein–protein interactions (PPIs)
that aid in their stabilization in the active and inactive states. However, the structural and
mechanistic information available for GPCR dimers are still limited due to the smaller
number of solved GPCR dimers in the Protein Data Bank as compared to the aggregate
of dimers uncovered through experimental studies. This shortcoming has led to the
development of modern computational tools that permitted the mapping of receptor–
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receptor interactions through computer algorithms and the use of protein models to predict
hotspots and inter-residue interactions at the protein–protein interface. These tools could
provide information to experimentalists for the design of GPCR variants that are stabilized
in their dimeric form, allowing their crystallization. In this section, we will highlight
some current computational methods that have been or may be applied to investigate the
receptor–receptor interface of GPCR dimers.

3.1. Hot-Spot and Interface Interaction Discovery Using Computational Methods

To identify the “hotspots” at the protein–protein interface and measure the binding
affinity, alanine scanning mutagenesis combined with binding free energy calculations
can be utilized [78]. Since verifying key residues at the interface can be immediately
fruitful with fast-developing protein engineering technologies, elucidating “hotspots” at
the binding site has become more attractive [79]. Alanine scanning mutagenesis, a site-
directed mutagenesis into chemically inert alanine, has been extensively used to gauge the
importance of specific residues upon protein function and stability [80]. Then, the method
started to be used computationally (CAS, computational alanine scanning) to reduce time
and cost [81]. To compensate for the loss in the accuracy compared to the experimental
counterpart, free energy methodologies have been applied to CAS (Figure 3). A number of
free energy methods to determine the binding affinity of two bodies are available with the
trade-off between computational efficiency and accuracy [82]. The rigorous yet expensive
methods are long-timescale MD simulations with kinetic/thermodynamic analysis using
machine learning applications, and free energy perturbation and thermodynamic integra-
tion with biasing potentials [83,84]. Relatively cheaper ones include molecular mechanics
combined with Poisson–Boltzmann or generalized Born surface area solvation (MM/PBSA
or MM/GBSA), Monte Carlo sampling, knowledge-based potential models, and these
methods with machine learning implementation [85–87]. The latter methods with low cost
and high throughput are more suitable for virtual screening and drug design purpose,
and several CAS applications have been developed using these methods. Barlow et al.
implemented the “flex ddG” method in Rosetta macromolecular modeling suite, combining
Monte Carlo sampling, torsion minimization, ensemble averaging, and advanced energy
functions to achieve higher prediction accuracy [88]. The “backrub” implementation in the
flex ddG method considers the conformational flexibility of proteins through sampling
rotamers of backbone and sidechain [89]. BudeAlaScan, another advanced CAS application
recently developed by Ibarra et al., allows processing structure ensembles (single X-ray
and cryo-EM structures, NMR ensembles, and MD trajectories) and considers structural
heterogeneity [90]. The authors compared the performance of CAS tools, showing good
agreements with experimental values as well as reproducibility among the CAS tools
available. Machine learning applications of CAS tools are also developed [91]. mCSM
relies on graph-based signatures where predictive models are trained based on encoded
distance patterns between atom pairs [92].

All these tools have been great resources when one tries to find key residues on the
protein surface for oligomerization where GPCR is no exception. More computational
studies for GPCR oligomerization were focused on predicting and targeting interaction
surfaces. The following examples utilized MD simulation that is based on force field
derived from the nature of physics, granting detailed insights. Shan et al. investigated
the ligand-specific oligomerization of GPCR by simulating different types of ligands
bound to the GPCR monomer with all-atom MD simulation [93]. The conformational
rearrangement of 5-HT2AR with various ligands was analyzed, and they concluded that
inverse agonist Ketanserin would yield the hydrophobic mismatch-driven oligomerization.
Since all-atom MD simulation is too expensive for direct PPI such as oligomerization,
other groups utilized coarse-grained MD (CG-MD) allowing long-timescale and rare-event
observation. Baltoumas et al. studied GPCR dimer interactions using coarse-grained MD
(CG-MD) simulation followed by CAS for interface classification, allowing the detection of
hotspots [94]. They investigated a few theoretical dimers based on biophysical evidence,
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distinguished stable ones with a certain interface from CG-MD, and rationalized the result
using CAS and network analysis. Johnston et al. utilized metadynamics, an enhanced
sampling method gradually modifying the underlying potential energy, with CG-MD for
predicting a more probable dimer interface for two homodimers, β1 and β2-adrenergic
receptors [95]. From a total of 160 microseconds of simulation, the authors concluded that
the TM1/H8 interface is more favorable than the TM4/3 interface for both dimers.

Figure 3. General workflow for computational alanine scanning (CAS).

3.2. Application of Artificial Intelligence to Predict PPIs

Identifying a set of amino acids, including conserved residues such as Trp and Arg,
at the receptor–receptor interface that may assist the oligomerization process is crucial.
Receptor oligomerization has been considered a fundamental molecular mechanism which
controls redundancy among GPCRs in various cell types [96]. To clarify the functional and
evolutionary mechanisms of oligomerization, primary and tertiary structures of proteins,
aggregation propensities of receptors, and free energies of dissociation of complexes
have been analyzed [97]. The conservation propensity of Trp is the highest, and Arg
has the second highest conservation propensity at binding sites, proving the consistency
to experimental data in general [98]. The triplet puzzle theory determines the tendency
of GPCRs to form receptor heterodimers. This theory incorporated a common consensus
established through experimental and computational works, which demonstrated the
tendency of hotspot residues at the protein–protein interface to be protected from the
surrounding solvent [78,98]. Exploiting this hypothesis, the triplet puzzle theory gave
rise to a series of triplet homologies that were successfully used to infer the propensity
of a receptor pair to form GPCR heterodimers [99,100]. These triplet homologies are
generally comprised of residues located at the receptor–receptor interface with one residue
homology corresponding to a hotspot amino acid pair at the binding interface, and the other
residue homologies correspond to neighboring amino acids responsible for obstructing
solvent access to the binding hotspot [99]. Therefore, the extraction of a set of deduced
triplet homologies assisting receptor–receptor interactions can define a kind of code to
predict which receptors should or should not form heterodimers. Based on mathematically
rigorous approaches, several triplet homologies located at the receptor–receptor interface
were demonstrated to be responsible for GPCR oligomerization [99]. The contact map space
consists of residue–residue contacts at the interface between a receptor and a ligand [99].
Thus, machine learning or deep learning applications are required to better understand the
contact map space with residue–residue contacts.

There exist various machine learning and deep learning approaches to identify contact
mapping of PPIs [101]. A two-step approach combining Support Vector Machine (SVM)
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and Mixed Integer Linear Programming (MILP) is utilized; SVM detects contacts, which
have higher confidence scores than optimized threshold, and if there are no contacts
identified by SVM, MILP is used for protein contact prediction [102]. The random forest
method is applied to the recognition of patterns of secondary structure in contact maps by
iteratively improving the previous prediction. This method is based on the assumption
that the observed residue–residue contacts are clustered with other contacts [103]. Deep
convolution neural networks can be utilized to identify more contacts considering distance
thresholds to classify contacts and non-contacts. The application of convolution neural
networks can predict overall contact maps using multi-layer approaches. These machine
learning and deep learning methods help to discover significant patterns in protein data
when residue pairs are in contact.

To efficiently and effectively predict sequence-based and/or structure-based PPI
interaction to be specifically applicable to the analysis of GPCR oligomeric complexes,
deep learning and machine learning algorithms or methods such as maximum likelihood
estimation, support vector machine, structural matching, naive Bayesian prediction, and
co-evolution can be utilized. BindML, Binding site prediction by Maximum Likelihood,
is a method for predicting protein–protein interface residues of a given protein structure
using information extracted from its protein family multiple sequence alignment (MSA).
Protein residue positions along the MSA with the strongest scoring mutation pattern are
predicted as protein interface residues [104]. PPI-Detect, a support vector machine model
for the sequence-based prediction of protein–protein interactions, numerically encodes a
procedure for the development of a support vector machine model, predicting whether two
proteins will interact [105]. PRISM, protein interactions by structural matching, is a tool for
large-scale prediction of PPIs and assembly of protein complex structures by conducting
structural comparisons of target proteins to known template protein–protein interfaces and
processing flexible refinement using a docking energy function [106]. Meta-PPISP, an online
tool for the site prediction of PPI, implements linear regression methods, training the linear
regression model on a set of 35 non-homologous proteins with cross-validation [107]. The
Coev2Net algorithm evaluates the conservation of residues in and around the interface by
seeding the co-evolution, simulating co-evolution, constructing a probabilistic graph, and
implementing the PPI prediction [108]. SPRINT, an ultrafast PPI prediction of the entire
human interactome Scoring PRotein INTeractions, is a new sequence-based algorithm
and tool for predicting PPIs by calculating the contribution of similar subsequences to
the likelihood of interaction [109]. All these methods include deep learning/machine
learning algorithms, which can be applied to analyze PPIs in general and be used to detect
a specific set of amino acids in the receptor–receptor interface assisting the oligomerization
process (Table 1).

Table 1. List of methods that implement deep learning or machine learning algorithms to predict protein–protein interactions
(PPIs).

Method Description Website

PPI-Detect

Sequence-based prediction.
Based on a support vector machine model trained using
pairwise descriptors derived via numerical encoding of

the primary sequences of protein pairs embedded as
vectors.

https://ppi-detect.zmb.uni-due.de/
(accessed on 22 March 2021)

SPRINT

Sequence-based prediction.
Developed based on the assumption that a target protein
pair is likely to interact if their subsequence pairs exhibit

high degree of similarity with a known interacting
protein pair.

https://github.com/lucian-ilie/SPRINT/
(accessed on 22 March 2021)

https://ppi-detect.zmb.uni-due.de/
https://github.com/lucian-ilie/SPRINT/
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Table 1. Cont.

Method Description Website

Coev2Net

Structure-based prediction.
Prediction and assessment of individual interactions

from a high-throughput experiment. Uses protein
threading to generate a homology model of the target,

from which extent of co-evolution is calculated.

http://cb.csail.mit.edu/cb/coev2net/
(accessed on 22 March 2021)

PRISM
Structure-based prediction.

Uses evolutionary conservation of hotspot PPI residues
and considers shape complementarities of protein pairs.

http://cosbi.ku.edu.tr/prism/
(accessed on 22 March 2021)

meta-PPISP

Structure-based prediction of PPI interface residues.
Uses scores from three webservers—cons-PPISP,

Promate, and PINUP—train a linear regression to
predict residues located at protein–protein interface.

https://pipe.rcc.fsu.edu/meta-ppisp.html
(accessed on 22 March 2021)

Cons-PPISP

Consensus-based neural network approach for the
prediction of residues making up the binding site at the

protein interface. Features used to train the neural
network include sequence profile and solvent

accessibility of neighboring residues.

https://pipe.rcc.fsu.edu/ppisp.html
(accessed on 22 March 2021)

Promate

Structure-based prediction of PPI binding sites.
Constructed based on quantitative comparison between
the PPI interface and other parts of the protein surface in

terms of amino acid composition, type of secondary
structure, evolutionary conservation, atomic fluctuation,

and crystallographic waters.

http://bioportal.weizmann.ac.il/promate/
(accessed on 22 March 2021)

4. Design of Interface Interfering Peptides (IPs) to Prevent GPCR Dimerization

Generally, PPI modulators are classified based on (i) their effects on the signaling
pathway—antagonist or agonist [101–103], or (ii) their binding position—orthosteric or al-
losteric [104,110–112]. Orthosteric modulators are easier to rationalize and predict, whereas
allosteric modulation is considered more selective, as these sites are more diversified and
less conserved compared to the former [112]. Current approaches of PPI modulator design
include small molecules, antibodies, and peptides. However, small molecules—a go-to
approach for the design of orthosteric and allosteric ligands—are not considered ideal PPI
modulators. This is due to the following characteristics of the protein–protein interface,
namely (i) a large binding interface, which is approximately 1500–3000 Å

2
in area as com-

pared to the smaller sizes of orthosteric and allosteric binding pockets (≈300–1000 Å
2
),

(ii) the flatness of the protein–protein interface, and (iii) the involvement of hotspot residues
that are distributed over a wide region [101]. Therefore, to cover the large and flat protein–
protein interface, the design of peptide inhibitors are preferred, as they are less likely to
cause immune reactions and are of acceptable size compared to antibodies. Additionally,
peptide-based inhibitors have been shown to provide considerable affinity and specificity
to targeted PPIs [101].

4.1. Interfering Peptide (IP) Identification

Peptides have long been used to understand the biological roles of PPIs [113] and have
now emerged as potential PPI modulators thanks to their unfavorable pharmacokinetics
being improved. Those improvements include improving the proteolytic stability, solubility,
cell permeability, and reducing the high level of clearance. The design of interfering
peptides (IPs) depends on the availability of the structures of the targeted PPI complexes.
Some of the structure-based methods currently used to identify IPs are shown in Figure 4.
Advances in in silico tools enabled the comprehensive analysis of the three-dimensional
structures of target protein–protein complexes, hence permitting the better understanding

http://cb.csail.mit.edu/cb/coev2net/
http://cosbi.ku.edu.tr/prism/
https://pipe.rcc.fsu.edu/meta-ppisp.html
https://pipe.rcc.fsu.edu/ppisp.html
http://bioportal.weizmann.ac.il/promate/
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of the binding landscape of the protein–protein interface. Additionally, the accessibility
to the crystal structure of a protein–protein complex could also assist in the identification
of “hotspot residues”—amino acids at the protein–protein interface that predominantly
contribute to the interactions between the partnering proteins [114]. Some hotspots at
the protein–protein interface have been linked to disease-causing non-synonymous single
nucleotide polymorphism (nsSNPs), which is characterized by a point mutation that
changes the sequence of encoded protein [104].

Figure 4. Approaches and applications for interfering peptides (IPs) identification. The arrow on
the upper left-hand corner of the figure represents the increasing accuracy of prediction as structure
information becomes more accessible.

There are some sequence motifs in GPCRs that could be utilized for the design of IPs,
namely Arg-rich motifs and serine-phosphate-containing motif, Small-xxx-Small motifs,
and triplet homologies [115]. However, these sequences usually do not show an interfering
effect on its own, and chemical modifications such as disulfide bridges, helical modification,
and peptide cyclization may be required. The modifications performed are specific to the
type of peptides being altered, and this process is made facile through the introduction
of IP identification tools. Some examples of these tools include (i) PeptiDerive—a free
webserver identifying and evaluating peptide candidates for cyclization using a disulfide
bridge [116], (ii) a dataset of helix interfaces in protein–protein interactions as a guide
for helix mimetics development [117], and (iii) LoopFinder—a program facilitating the
identification of “hot peptide loops” at PPI interfaces [118].
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The availability of computational prediction tools has also facilitated the design of
IPs for protein–protein complexes whereby information are only available for one of the
protomers, or only PPIs between the partnering proteins are known [119]. The availability
of computational prediction tools, such as protein–protein docking [120–122], has also
facilitated the design of IPs for protein–protein complexes by allowing the modeling of these
complexes even when structures are only available for the protomers individually [123].
When the structure of only one of the protomers with information of the binding site
are known, a pipeline named PepComposer can help identify the appropriate sequences
in contact with the binding region by analyzing a preexisting contact graph and contact
density; then, it can perform the sequence design to propose the potential IPs [124].

IPs can be identified with off-structure approaches using in vitro methods, especially
when no information of the structure is available. Screening methods have often been
applied, using dramatically growing libraries covering both natural and artificial peptides,
with the latter generated by scanning the sequence of one of the protein partners or using
randomly mixed codons at the interfaces. Some techniques that have been applied for pep-
tides screening could be divided into phenotype-oriented and target-oriented approaches
(Figure 4). The former approach includes screening preexisting peptide libraries with dis-
play techniques using phase, ribosomal, or mRNA methods with suitable modifications in
experiment design with respect to membrane’s effects on GPCRs oligomerization [125]. A
target-oriented approach is demonstrated in a technology named PEPscan, which generates
a series of overlapping peptides from scanning the sequence of the partner protein. Then,
these peptides’ interfering ability are tested in peptide arrays, for which “SPOT synthesis”
is considered one of the most popular techniques [123]. Those techniques are now being
developed to access millions of sequences for high-throughput screening with improved
efficiency [126].

4.2. IP Optimization

It is noteworthy that the optimization method highlighted here is unconventionally
rigorous. The subject of modification is peptides with a larger degree of freedom and
complexity compared to small molecules. The goal is to optimize peptides’ physiochemical
properties and ultimately their modulating effects on protein–protein complexes, whose
conformational heterogeneity is more frequent compared to one single protein [123]. The
objective of optimization is generally to improve both the pharmacokinetics (proteolytic
stability, cell permeability) and pharmacodynamics (affinity, selectivity) of the peptides.
First, the identification of a minimum active sequence and critical residues is needed to set
the starting point for further modification, ensuring that the potency of the parent peptide
is optimally retained. Proteolytic instability, one of the major obstacles in IP design, can be
tackled by protecting the extremities of the peptide chain, modifying labile amide bonds
in the backbone, and substituting key binding residues with analogues containing non-
natural sidechains. Sidechain modification can also be conducted on non-critical residues to
enhance the solubility of the designed peptides, facilitate conjugation or cyclization [125].

One of the most promising approaches in peptide optimization is cyclization. When
the linear conformation is no longer accessible, the compound becomes more proteolytic-
resistant. Furthermore, cyclized conformations, aiming to mimic bioactive conformations
with reduced entropic cost when bound to the target protein, acquire increased bind-
ing affinity and selectivity [123]. Cyclization typically on alpha-helical peptides can be
conducted using the most established method named peptide stapling, which involved
the formation of covalent linkage between the sidechains of two amino acids [127]. The
amino acids recruited can be natural or non-natural, and the covalently linked amino acid
sidechains can be incorporated through several techniques such as the use of lactam scan-
ning to link lysine and glutamic acid sidechains, ring-closing metathesis connecting alkenyl
sidechains, and disulfide bridging between two cysteine residues (Figure 5) [123,127]. Even
though IP designs mainly target α-helices, designing β-strands, or further, mimicking
β-sheet formation from two or more β-strands have been used to interfere with the protein–
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protein interface [123,125,128]. However, a β-strand is not an ideal motif to mimic due
to their high susceptibility to protease degradation. One solution for stabilizing a β-
strand motif is the usage of nonpeptidic amino acid analogs [123] as demonstrated in
the design of conformationally constraint and stable β-strand using R- and S-bridgehead-
substituted β-proline analogues [128]. β-sheet mimetic can be promoted using different
strategies, namely the use of turn mimetic, β-strand-enforcing amino acids and macrocy-
clization [114]. One successful example of a macrocyclic β-sheet peptide is reported in the
study of Zheng et al. [129].

Figure 5. Schematic illustration of some strategies applied for the design of stabilized stapled
α-helical peptides.

Poor cell permeability is another challenge for the design of peptide modulators,
including those targeting GPCRs—transmembrane receptors with interactions possibly
occurring on both extra- and intracellular interfaces [111,115]. The cell permeability of
peptides can be improved by increasing the passive uptake by modulating the hydropho-
bicity and electrostatic charges of designed peptides (provided that reasonable solubility
is maintained) or by increasing its active transport with conjugation to cell-permeable
peptides (CPPs). CPPs are generally short, water-soluble peptides that could be linear
(majority) or cyclic and are fused to cargoes by covalent or non-covalent bonds [130]. One
big challenge for CPP application is the requirement of a high extracellular concentration
to ameliorate intracellular uptake level as CPP–cargo fusions are reported to remain within
the endosomes [131]. Nonetheless, this is still a useful modification considering its high
transduction efficiency and low cytotoxicity [132]. One demonstration for this method
is the peptide sequences derived from the D2 dopamine receptor fused with human im-
munodeficiency virus-type 1 Tat protein (HIV-Tat), which is the most frequently used
CPP. These peptides show the antidepressant effect by interfering with the interaction
between D1–D2 dopamine receptors [133]. Some bioinformatics tools, namely CPPpred-RF,
KELM-CPPpred, and CellPPD, together with CPP libraries such as CPPsite 2.0 are available
for in silico prediction and optimization of designed peptides [134].

An interesting example of a peptide modulator designed to disrupt heterodimeriza-
tion is a stapled peptide comprised of the amino acid sequence of a truncated TM5 of
the cannabinoid 1 receptor (CB1R) fused to HIV-Tat. This peptide showed a promising
disrupting effect on the heteromerization of two GPCRs: CB1R and 5-HT2AR. The inhibiting
effect is dose-dependent, with low micromolar potency (pIC50 = 5.47 ± 0.01) and maximal
effect reaching over the order of minutes (about 5 min) [135]. This study exemplifies the
effect of combining different methods to design an effective and drug-like peptide.



Int. J. Mol. Sci. 2021, 22, 3241 15 of 20

5. Concluding Remarks

Recent findings in GPCR oligomerization resulting from protein–protein orthosteric
and allosteric interactions further raises GPCRs as attractive therapeutic targets. We have
discussed the allosteric modulation mechanism of class C GPCR dimers as well as the dimer-
ization characteristics of class A and C. The trans-activation of well-studied GPCR dimers,
the mGluR homodimer and GABABR heterodimer, was explained in detail. The process of
understanding GPCR oligomerization with computational aids has been expediated with
burgeoning method developments including computational alanine scanning, multi-scale
MD simulations, and machine learning applications. Using computational methods of
different scales varying from the all-atomistic or coarse-grained level to a knowledge-
based model, valuable insights were provided for finding key residues at the G-protein
interface, a probable GPCR oligomer when the crystal structure is unavailable, ligands
promoting GPCR oligomerization, PPI prediction derived from the protein sequence, etc.
With thorough understanding of the interaction between GPCR monomers, attempts were
made to develop PPI modulators to hamper the disease pathogenesis by inhibiting GPCR
oligomerization. Utilizing a mixture of in silico and in vitro methods, interfering peptides
are designed and optimized to increase the pharmacokinetic and pharmacodynamic prop-
erties. Since symmetric dimers were mainly observed in crystal structures, the previous
studies mainly focused on the homodimers, especially with the same TM domain interfaces.
However, the structures of asymmetric dimers and hetero-oligomeric complexes, which
existed only as hypothetical computational models with biophysical evidence before, just
started to get revealed with enhanced experimental techniques such as Cryo-EM. Benefit-
ting from both experimental and computational advancements, unveiling the oligomeric
nature of GPCRs and their functions will take place inexorably.
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