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Background
OG are genes that lack homologs in other lineages [1]. Thus, genes are generally clas-
sified as orphans if they lack coding-sequence similarity outside of their own species 
[2]. OG appear to be present in all species and make up 10% to 30% of all genes in a 
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genome [3]. Currently, a growing number of OG are being identified in plants, includ-
ing taxa such as Arabidopsis, Populus, Oryza sativa and sweet orange [4–7]. Many 
annotated OG are often differentially expressed in response to stresses and are con-
sidered to be determinant of species characteristics [8–10]. Hence, the identification 
of OG may provide a better understand for OG adaptation.

Moso bamboo (Phyllostachys edulis) belongs to the subfamily Bambusoideae of the 
Poaceae family; it shows characteristics of fast growth and excellent material pro-
duction and can therefore be used to produce cloths, artwork, paper and food [11]. 
Recent studies have revealed that stresses such as drought and high temperature can 
affect the growth of moso bamboo as well as the yield and quality of moso bamboo 
shoots [12, 13]. Although the identification of OG has been widely carried out in 
many plant species, a comprehensive understanding of OG is lacking in moso bam-
boo. Therefore, the discovery of OG is of great significance for subsequent research in 
this species.

Currently, orphan genes are generally obtained through BLAST sequence alignment, 
which compares the sequencing sequence (genome sequence, transcriptome sequence, 
etc.) of the studied species with other species, BLAST is a relatively reliable tool for 
identifying orphan genes [2]. BLAST, including BLASTP and tBLASTn, are often used 
as the alignment tools [14–16]. However, the use of these methods to identify OG 
requires considerable server and time resources and is greatly affected by the computa-
tional approach applied [17]. Orphan genes are widely distributed in plant species and 
generally exhibit significant differences in gene length, the number of exons, GC con-
tent, and expression level compared to protein-coding genes [3, 6, 10, 16, 18]. Therefore, 
orphan genes and non-orphan genes are distinguishable in terms of protein features. In 
traditional machine learning methods, features are often selected and extracted manu-
ally, which requires researchers to have prior domain knowledge and keen insight into 
the relationships between gene essentiality and types of biological data to obtain inform-
ative features to train the models. For example, Ying et  al. [19] employed a machine 
learning-based approach to predict autism spectrum disorder (ASD) risk genes using 
human brain spatiotemporal gene expression signatures, gene-level constraint metrics, 
and other gene variation features. Recent study shows that using deep learning to extract 
features often achieves better results compared to its closest machine learning competi-
tors, the majority of these deep learning algorithms rely on features extracted from raw 
sequences [20]. Hence, it would be significant to develop an efficient method that uses 
only protein sequences to train such models and produces credible predictive results.

As deep learning has gained popularity, it has been applied successfully in many bio-
informatics fields, such as gene prediction [21] and medical image segmentation [22]. In 
particular, deep learning technology is used to automatically extract and learn abstract 
information from data to train a model; this approach shows superior performance and 
high adaptability and avoids complex feature engineering in natural language process-
ing [23]. Moreover, protein sequences are very similar to natural language; the amino 
acids in proteins are similar to the words in natural language, and the same contextual 
relationship exists between amino acids in a protein sequence and as between words in 
a sentence. In this context, the prediction of OG can be considered a natural language 
processing problem.
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Recently, transformer models have been widely used to address sequence problems. 
Zheng et  al. [24] proposed the Segmentation Transformer (SETR) model, which regards 
semantic segmentation as a sequence-to-sequence prediction task. Zou et al. [25] proposed 
a transformer model for end-to-end target detection.

In this paper, OG are predicted by using hybrid deep learning based on convolutional 
neural networks and transformer neural networks. The raw protein sequences are first 
encoded as vectors or matrices by encoder or word2vec encoding, respectively. Then, pro-
tein features are extracted by CNN and transformer model. Finally, the extracted features 
are input into the fully connected neural network to generate the final recognition result. 
CNN + Transformer only uses protein sequences to train the models to predict moso bam-
boo OG. It uses two multicore convolution layers to capture high-frequency k-mer features 
in protein sequences. The extracted k-mer features are provided to the transformer layer, 
which captures the long-term interaction information between k-mer features through a 
multi-head self-attention mechanism.

Methods
Dataset

BLAST (2.11.0+) [26] was used to identify OG based on previous studies [6, 27–29]. Moso 
bamboo protein sequences were downloaded from Bamboo GDB [30]. First, we used 
BLASTp to search for homologs of all 31,987 proteins annotated in moso bamboo in each 
of the other 136 plant species released in Phytozome v12.1 [31] with an e-value cutoff of 
1e−5. A total of 30,443 moso bamboo genes showed significant similarity to at least one 
sequence, which were defined as Evolutionarily Conserved genes (ECs) [32] and removed 
from further analysis (Fig. 1). Second, the remaining 1936 moso bamboo proteins for which 
no homologs could be found in any of the genomes were used for the next step of searches, 
which was performed by tBLASTn analysis. In this step, 392 moso bamboo genes were clas-
sified as ECs. The final sets of ECs and OG contained 30,443 and 1,544 genes (Additional 
file 1: Table S1), respectively (Fig. 1).

To adequately train the deep learning model, the 1544 obtained OG were identified with 
label 1, and 30,443 ECs were identified with label 0. These genes were combined to form the 
moso bamboo orphan gene dataset.

Protein embedding

Protein sequences consist of possible 20 amino acids, each of which is represented by a 
capital letter. To make the protein sequence recognizable by a computer, the first step is to 
encode each amino acid in the protein according to Table 1, mapping each amino acid to 
a specific real number, where values of 1–20 represent the amino acid types, and unspeci-
fied or unknown amino acids are denoted as 21 [33, 34]. The amino acid coding sequence 
in the table does not affect the experimental results. The sequence profiles thus obtained 
for each sequence search were processed by truncating the profiles of long sequences to 
a fixed length (L) and zero padding short sequences, a method that is widely used for data 
preprocessing and effective training [35]. As a result, we obtained a one-dimensional vector 
for each protein.

(1)s = (s1, s2, . . . , sL)si ∈ {0, 1, . . . , 21}
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For protein sequences, by learning the dense continuous feature representation of 
each amino acid in the sequence, a distributional representation can be learned for the 
amino acids. When these embedding vectors are projected in 2D, it can be shown that 
amino acids with similarities in hydrophobicity, polarity and net charge, which are fac-
tors important for covalent chemical bonding, form visually distinguishable groups [36]. 
This validates the used of distributed representation as an effective method for encoding 
amino acids that also helps to preserve important physiochemical properties.

Hence, the sparse feature vectors (S) of a given protein sequence are transformed to 
dense continuous feature representations using word embedding transformation as 

Fig. 1  Flow chart of data acquisition for moso bamboo OG

Table 1  Amino acid embedding cross-reference table

Amino acids Letters Code Amino acids Letters Code

Histidine H 1 Methionine M 2

Alanine A 3 Lysine K 4

Cysteine C 5 Arginine R 6

Lucine L 7 Tyrosine Y 8

Serine S 9 Aspartic D 10

Glycine G 11 Valine V 12

Isoleucine I 13 Glutamic E 14

Asparagine N 15 Tryptophan W 16

Phenylalanine F 17 Threonine T 18

Glutamine Q 19 Proline P 20

Illegal Amino acids B,J,O,U,X,Z 21
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follows:F1
e ∈ R

L×e , where e corresponds to the embedding dimension. The self-atten-
tion mechanism in the transformer cannot distinguish between words at different 
positions, so the input sequence needs to be position-encoded to incorporate the posi-
tional information into the input sequence. The input sequence is then encoded with 
a two-dimensional matrix, F2

e ∈ R
L×e . F1

e  and F2
e  are added together as the input of 

CNN + Transformer, as follows:

Here, Si,j corresponds to the jth word embedding number of the ith amino acid of the 
protein sequence after preprocessing.

Transformer model

The canonicalization model used in this work was based on a transformer architecture 
consisting of two separate stacks of layers for the encoder and decoder, respectively [37]. 
The structure of the encoder and decoder, as shown in Fig. 2, mainly includes a multi-
head attention mechanism layer, a feed-forward fully connected layer and normalization 
and residual connections [37, 38].

The multi-head attention mechanism incorporates some portion of knowledge 
written in its internal memory (V) with indexed access by keys (K). When new data 

(2)Fe = F1
e + F2

e =








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Fig. 2  The structure of the encoder and decoder in the transformer model
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arrive (Q), the layer calculates attention and modifies the input accordingly, thus 
generating the output of the self-attention layer and weighting the parts that carry 
the essential information. The formulas of Q, K, and V are as follows:

Fc is the input matrix of the transformer model, WQ
i  is the query transformation matrix 

weight vector, WK
i  is the keyword transformation matrix weight vector, and WV

i  is the 
value transformation matrix weight vector.

Q and V perform dot product operations, and the result is divided by the scaling 
factor 

√
d  The result is divided by the scaling factor and then multiplied by V follow-

ing the application of the softmax function to obtain the result after self-attention. 
The output (H) of multi-head self-attention is obtained by splicing the self-attention 
N-head times, and the formula for multi-head self-attention is as follows.

where headi denotes the i-th self-attention mechanism (1 <  = i <  = N-head). LayerNorm 
[39] indicates layer normalization, which mainly serves to speed up the convergence of 
the model, while the residual network structure is used to reduce the learning load of the 
model with the following equation.

Dropout [40] is a stochastic deactivation strategy to prevent overfitting in mod-
els with a large number of parameters. The feed-forward layer enhances the nonlin-
ear capability of the model with two layers of neural networks, and the transformer 
structure continues after the feed-forward layer with a normalization and residual 
layer, according to the following equation.

where O is the output vector of the transformer layer in the model, H′ is the normalized 
vector, and W (1) , W (2) , b(1) , and b(2) are the weight coefficients and bias of the 2-layer 
neural network, respectively.

(3)Q = FcW
Q
i

(4)K = FcW
K
i

(5)V = FcW
V
i

(6)headi = Multihead(FcW
Q
i , FcW

K
i , FcW

V
i )

(7)Attention(Q,K ,V ) = softmax

(

QKT

√
d

)

V

(8)H = Concat(head1, head2, ..., headN−head)

(9)H
′
= LayerNorm(H + Dropout(H))

(10)O = LayerNorm(H
′
+ Dropout(Relu(H

′
W (1) + b(1))W (2) + b(2)))



Page 7 of 19Zhang et al. BMC Bioinformatics          (2022) 23:162 	

CNN + Transformer model

An important disadvantage of the transformer model is its inefficiency in processing 
long sequences, mainly due to the computation and memory complexity of the self-
attention module [41]. CNN can extract local features in the sequence to shorten the 
length of the sequence [42, 43]. Therefore, this research proposes the CNN + Trans-
former model structure, which combines a CNN and a transformer model. As shown in 
Fig. 3, the proposed CNN + Transformer model structure is composed of two multicore 
convolution layers: a transformer layer and a fully connected layer.

After protein embedding, the protein sequences are encoded as dense, continuous 
vectors ( Fe ) as the input of the CNN layer. The CNN layer in the model consists of two 
convolutional layers, with the first convolutional layer containing six convolution ker-
nels, as shown in Fig. 3. The variable size of the filter in the convolution is designed to 
capture k-mer amino acid fragments, where k ranges from 2 (2 peptides) to 7 (7 pep-
tides). The second layer consists of three convolution kernels, denoted as 
{

knj

}

n=1,2,3j=3,6,9
 , where n represents the first few kernels, and j represents the size of 

the corresponding kernel. The kernel size is equal to the size of a convolutional window 
across j characters, and the parameters are tuned according to the training and valida-
tion step. The intermediate feature map of the i-th CNN layer is extracted as 
Fi
m = Conv(Fe,K

i).
After obtaining the intermediate convolutional feature map ( Fi

m ), downsampling is 
performed using AvgPooling by taking the average of the output subregions of the CNN 
layer, which helps maintain the integrity of the information and facilitates subsequent 

Fig. 3  CNN + Transformer model structure. The discrete raw sequence is transformed into a dense, 
continuous vector Fe through feature embedding and then fed into the CNN layer with multi-scale 
convolution kernels to capture local amino acid k-mers features. The extracted characteristic map of the CNN 
layer is passed to Transformer neural network. According the multi-head self attention mechanism to capture 
the long-range interaction characteristics between k-mers. Finally, the Transformer outputs are passed to the 
fully connected layers to produce identification result
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global feature extraction. After average pooling, the output from all kernels is concat-
enated for another average pooling operation, which is used to generate the next layer of 
the feature maps ( Fc ), with the following equation:

where AvgPooling and Concat are average pooling operations and connection opera-
tions, respectively.

The transformer layer in the CNN + Transformer model is composed of three trans-
former encoder-decoder layers. In the transformer layer, the feature representation of 
long-range interaction information between amino acids is obtained by introducing 
a multi-head self-attention mechanism, and the values of two hyperparameters in the 
transformer layer, the number of self-attention heads (N-head) and the number of trans-
former layers (Num-layer), are discussed and explained in the “Results”.

The output of the transformer layer is flattened to one dimension. The number of 
output hidden vectors in the fully connected layer is 2, which indicates the binary clas-
sification predicted by the model, and the output vector of the binary classification is 
transformed into the probability (p) by the ReLU activation function.

where σ is the activation function, l >= 1 is the number of layers of the multiconnected 
neural network, and Wl and bl are the connection weights and biases of the hidden 
nodes from layer l − 1 to layer l in the fully connected layer, respectively.Wl ∈ R

nl−1×nl , 
nl−1 and nl are the numbers of hidden nodes in layers l − 1 and l , respectively. T (l) is the 
output hidden vector of layer l . Ws and bs are the weights and biases, respectively, of the 
penultimate layer of the fully connected neural network, and Ws ∈ R

nl×2.

Implementation details

The loss function is cross-entropy loss function and using the Adam optimizer [44]. In 
the training set, there were approximately 20 times more moso bamboo OG than moso 
bamboo non-OG, which led to an imbalance problem during training. We explored a 
cost-sensitive technique for addressing the imbalance problem when training the clas-
sifier. The experiments were conducted by adding weights to the different categories of 
data during training according to the number ratio and using the category weights to 
train the model. CNN + Transformer involved multiple hyperparameters. These hyper-
parameters were tuned on the validation set using agrid search procedure. Their optimal 
values are mentioned below:

1.	 Embedding dimension: we tested for e ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100} and 
found that the optimal model performance was obtained at e = 50.

2.	 Convolution filters: at the first convolution layer, we chose six convolution filters, 
s.t. f 1k ∈ {2, 3, 4, 5, 6, 7} . This allowed us to capture amino acid k-mer frequencies 
for k-mers of lengths, k = 2 to k = 7. These k-mers represent the local contextual 

(11)Fc = AvgPooling(Concat(AvgPooling(Fi
m)))

(12)T (1) = σ(WlT (l−1) + bl)

(13)p = σ(WsT (l) + bs)
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‘biological’ words. For the second convolution layer, the optimal filter sizes were 
f 2k ∈ {3, 6, 9} . This led to inference of interactions between amino acid k-mers i.e. 
detect frequencies of local contextual biological phrases consisting of two k-mers 
having same or different k. For example, the second convolution layer could appre-
hend interactions between two different dipeptides as well asestimate frequency of a 
biological phrase comprising a dipeptide and a tripeptide.

3.	 Transformer encoder-decoder layer number L and self-attention mechanism number 
H: We took {2, 3, 4} for L and {5, 10} for H, and formed six combinations of L and 
H, { (2, 5), (2, 10), (3, 5), (3,10), (4,5), (4,10)}. The optimal model performance was 
attained for L = 3 and H = 10.

4.	 Fully connected layer dimension: we tested for fc ∈ {64, 128, 256, 512} and for opti-
mal model fc was 256.

5.	 Learning rate: the learning rate for the Adam optimizer was 0.001.
6.	 Number of epochs: the maximum number of epochs was set to 100 but we enforced 

early stoppage if the validation loss function stopped improving for two consecutive 
epochs.

7.	 Batch size: we tested for batch sizes {64, 128, 256}. The optimal model performance 
was attained for batch size = 128.

All deep learning models were implemented in Pytorch (1.7.1) [45]. To speed up the 
training process, a GPU version of PyTorch on an NVIDIA Tesla P100 PCIe 16 GB sys-
tem was used for the experiments.

Evaluation strategies

The identification of OG is an imbalance problem, and the number of non-OG in the 
moso bamboo orphan gene dataset is approximately 20 times greater than the number 
of OG. Although accuracy and F1 scores are very popular classification evaluation met-
rics, they can produce misleading results for unbalanced datasets because they do not 
take into account the ratio between positive and negative samples, and classifiers can 
achieve good results in terms of specificity but show a large number of false positives. 
An effective solution for overcoming the class imbalance issue comes from the MCC and 
BA [46]. When dealing with an unbalanced dataset, GM and BM are better performance 
metrics if the classification success rate is of concern [47]. Therefore, BA, BM, GM, and 
MCC were selected as the evaluation metrics in the experiment. The evaluation indica-
tors used in the article are summarized as follows:

(14)BA =
1

2
×

(

TP

TP + FP
+

TN

TN + FN

)

(15)GM =

√

TP

TP + FN
×

TN

TN + FP

(16)BM =
TP

TP + FN
+

TN

TN + FP
− 1
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Here, TP is the number of OG identified as OG, FN is the number of OG identified 
as non-OG, FP is the number of non-OG identified as OG, and TN is the number of 
non-OG identified as non-OG.

Results and discussion
Dataset division

We use 70% of the data for training, 15% of the data for validation, and the remain-
ing 15% of the data as holdout data for testing. We maintain the same ratio between 
the number of OG and non-OG during the training, validation, and testing of data. 
Each experiment is executed 10 times to obtain the average performance (i.e., tenfold 
cross-validation with 15% independent data as testing data for each run). The average 
performance for the independent holdout testing datasets is reported. The datasets 
that we use in the experiment are shown in Table 2.

Orphan genes are widely distributed in plant species and generally exhibit signifi-
cant differences in gene length [2, 10]. As can be seen from Fig. 4, the sequence length 
distribution of the Original Set, Training Set, Validation Set and Testing Set is similar, 
indicating that four data sets are comparable.

(17)MCC =
TP× TN - FP× FN

√

(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)

Table 2  Division and construction of datasets

Data OG Non-OG Total

Original set 1544 30,443 31,987

Training set 1071 21,317 22,388

Validation set 235 4566 4801

Testing set 238 4560 4798

Fig. 4  Sequence length distribution in original set, training set, validation set, and testing set
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Performance comparison of different CNN + Transformer architectures

The CNN + Transformer model structure proposed in this study includes an embed-
ding layer and two multicore convolutional layers: a transformer layer and a fully con-
nected layer. Table 3 shows the performance comparison of CNN + Transformer under 
different model structures. From the table, we can see that the average BA value and 
GM value of the proposed CNN + Transformer architecture for the testing set can reach 
0.877 and 0.881, respectively. Reducing the CNN layer or transformer layer in this struc-
ture will result in a decrease in model recognition performance. Specifically, when the 
transformer layer is removed from the original structure, the average total BA value and 
GM value are 0.773 and 0.784, respectively. When two multicore convolutional layers are 
removed from the original structure, the average total BA value and GM value are 0.844 
and 0.832, respectively. In contrast, removing one 3-core convolutional layer or two mul-
ticore convolutional layers from the original structure will result in a slight decrease in 
the recognition performance of the model. After adding a fully connected layer of 256 
neurons on the basis of the original framework, the recognition performance of the 
model is basically the same as that of the original framework, but the complexity of the 
model structure increases. When a 3-core convolutional layer is added on the basis of 
the original model structure, the average BA value and GM value are 0.853 and 0.837, 
respectively, and the recognition performance of the model declines.

The effect of hyperparameters on model performance

We evaluated the robustness of CNN + Transformer and elucidated the effect of two 
hyperparameters on the model: Max_len and Embedding_dim. The MCC values and 
balance accuracy were used to evaluate the model as the hyperparameters were adjusted. 
The first hyperparameter is the maximum sequence length, Max_len. From Fig.  5, it 
can be seen that when the value of Max_len is less than 1200, the values of MCC and 
BA are positively correlated with Max_len as a whole. At 1200, the average values of 
MCC and BA in the model are as high as 0.469 and 0.876, respectively, because some 
sequences with longer inputs are truncated at shorter lengths, which results in the loss 
of information contained in the sequences. However, when the sequence length contin-
ues to increase, the MCC value and BA value show a slight downward trend, indicating 
that simply increasing Max_len does not improve the recognition performance of the 

Table 3  The average BA and GM values under different CNN + Transformer structures

Bold values indicate the highest values of different evaluation indicators

E: word embedding coding. CNN_6: multiscale convolution layer, with a convolution kernel size of {2, 3, 4, 5, 6, 7} for each 
scale. CNN_3: multiscale convolution layer, the convolution kernel size of each scale is {3, 6, 9}. Transformer: three-layer 
transformer neural network. FC_256: fully connected neural network with 256 neurons

Method BA GM Train time 
(min)

Test time (s)

E + FC_256 0.677 0.612 25 88

E + CNN_6 + FC_256 0.748 0.644 29 106

E + CNN_6 + CNN_3 + FC_256 0.773 0.784 28 99

E + Transformer + FC_256 0.844 0.832 57 390

E + CNN_6 + Transformer + FC_256 0.866 0.849 61 377

E + CNN_6 + CNN_3 + Transformer + FC_256 0.877 0.881 44 342

E + CNN_6 + CNN_3 + CNN_3 + Transformer + FC_256 0.853 0.837 48 366

E + CNN_6 + CNN_3 + Transformer + FC_256 + FC_256 0.871 0.865 55 404
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model but would increase the model recognition time and reduce the model recognition 
efficiency.

The second hyperparameter is the word embedding dimension, Embedding_dim. 
We take every 10 values from 0 to 100 as the word embedding dimension. As shown in 
Fig. 6, when Embedding_dim is equal to 50, the best mean MCC values and BA values 
of the model are highest; the best mean MCC values are 0.481 and 0.467, respectively; 
and the best mean BA values are 0.892 and 0.876, respectively. When Embedding_dim 
is equal to 50, increasing Embedding_dim further does not improve the performance of 
the model but increases the time to train the weights of the embedding matrix. There-
fore, an Embedding_dim of 50 is selected for the experiment values.

Next, we study the effect of two other hyperparameters, N-head and Num-layer, in 
the transformer layer on model performance. Because the head number (N-head) of the 
hyperparameter multi-head self-attention mechanism must be divisible by Embedding_
dim, N-head values of 5 and 10 are chosen for the experiment. The numbers of layers of 
the encoder-decoder in the transformer hyperparameter are 2, 3, and 4. There are six 
combinations of N-head and Num-layer. Figure  7 shows the performance comparison 
of the models in the six different combinations. From the figure, we can see that in the 
CNN + Transformer model, when there are three layers of the transformer encoder-
decoder and 10 heads of the attention mechanism, the best, average, and worst BA and 
MCC values of the model in the testing set are highest for the six combinations; the best, 

Fig. 5  Comparison of CNN + Transformer performance with different Max_len values

Fig. 6  Comparison of CNN + Transformer performance with different Embedding_dim values
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average, and worst BA values are 0.888, 0.875, and 0.863, respectively; and the highest 
best, average, and worst MCC values are 0.479, 0.470, and 0.458, respectively. Adding an 
encoder-decoder layer on this basis will cause the model performance to drop dramati-
cally, with average BA and MCC values of 0.524 and 0.106, respectively. When one layer 
of the encoder-decoder is reduced or the number of multi-head attention mechanisms is 
reduced, the recognition performance of the model will also decrease.

Performance comparison with traditional deep learning models and traditional machine 

learning models

To verify the recognition performance of CNN + Transformer, we compared it with four 
basic models (RNN, LSTM, GRU and transformer) that are widely used in deep learning 
to process sequences and two traditional machine learning models (Support.

Vector Machines (SVM) [48], Random Forest [49]). At the same time, we added the 
CNN layer in CNN + Transformer to fine-tuned RNN, LSTM and GRU models, and 
the results are shown in Table 4. Each deep learning model was weighted according to 
the ratio of OG to non-OG. All models were tested ten times, and the average of the 
ten test results was used for comparison. As shown in the table, CNN + Transformer 

Fig. 7  Performance comparison of CNN + Transformer under different N-head and Num-layer combinations. 
L: transformer encoder-decoder number; H: number of heads of the self-attention mechanism

Table 4  Model performance comparison

Bold values indicate the highest values of different evaluation indicators

Model BA GM BM MCC Train time 
(min)

Test time (s)

Random forest 0.667 0.629 0.334 0.227 4 22

SVM 0.690 0.659 0.380 0.252 23 77

RNN 0.517 0.512 0.034 0.245 31 123

CNN + RNN 0.503 0.500 0.007 0.109 18 98

LSTM 0.829 0.829 0.659 0.418 36 284

CNN + LSTM 0.775 0.772 0.550 0.376 26 231

GRU​ 0.838 0.834 0.667 0.423 33 253

CNN + GRU​ 0.777 0.776 0.554 0.373 24 219

Transformer 0.844 0.838 0.678 0.444 57 387

CNN + Transformer 0.875 0.871 0.746 0.471 44 343
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performed significantly better than the four basic models according to the four com-
prehensive indicators of BA, BM, GM and MCC. The MCC value reached 0.471, which 
was 0.027 higher than the value for of the transformer model, 0.048 higher than that 
for GRU, 0.053 higher than that for LSTM, and 0.226 higher than that for RNN, and 
0.219 higher than that for SVM, and 0.244 higher than that for Random Forest. Com-
pared with Random Forest, SVM, RNN, LSTM, GRU, and the transformer model, the 
BA values ​​were increased by 0.208, 0.185 0.358, 0.046, 0.037, and 0.031; the GM values 
were increased by 0.242, 0.212, 0.359, 0.042, 0.037, and 0.033; and the BM values were 
increased by 0.412, 0.366, 0.712, 0.087, 0.079 and 0.068, respectively. We noticed that 
the CNN + Transformer model performed better than the transformer model, which 
proves the importance of the convolution operation in the CNN + Transformer model. 
Among the basic models, the transformer model showed the best performance, with a 
balance accuracy of 0.844 and an MCC value of 0.444, which were higher the values for 
the recurrent neural network. After adding the CNN layer, the recognition performance 
of the LSTM and GRU models for the moso bamboo orphan gene dataset decreased. 
Before adding the CNN layer, the average BA values of LSTM and GRU were 0.829 and 
0.838, and the average MCC values were 0.418 and 0.423, respectively. After adding the 
CNN layer, the average BA values of the two models dropped to 0.775 and 0.777, and the 
average MCC values dropped to 0.376 and 0.373, respectively. However, after the trans-
former was added to the CNN layer, the model’s recognition ability for the moso bam-
boo orphan gene dataset was improved and the training and testing time of the model 
was reduced, the balance accuracy and MCC value were increased from 0.844 and 0.444 
to 0.875 and 0.471, respectively.

In terms of training time and testing time, the Transformer model has slightly higher 
training and testing time than the recurrent neural network model, which is caused by 
the computational complexity of multi-head self-attention mechanism in Transformer. 
Although the complexity of CNN + Transformer model structure is higher than that 
of Transformer model, the training and testing time of CNN + Transformer model is 
lower than that of Transformer model. Because the one-dimensional convolution layer 
of CNN + Transforme model performs preliminary feature extraction on the input fea-
ture matrix, the size of the feature matrix is compressed, thus reducing the computa-
tional complexity of the model. These results further prove that CNN + Transformer is 
an effective deep learning model for moso bamboo OG recognition.

CNN + Transformer model verification

The genome of moso bamboo has been updated to the second edition, which includes 
50,936 protein sequences [50]. The model is tested on the dataset of second edition. 
Firstly, we obtained 1275 orphan genes (Additional file 2: Table S2) from the second edi-
tion of moso bamboo protein sequences through BLAST sequence alignment. Then, we 
input all the protein sequences of moso bamboo into the CNN + Transformer model, 
and the model identified 1466 orphan genes of moso bamboo.

In order to verify the reliability of CNN + Transformer model in identifying orphan 
genes of moso bamboo, we compared the 1466 orphan genes with 1275 orphan genes 
which were obtained by BLAST method. The results showed that 1106 protein sequences 
(Additional file 3: Table S3) were identical and our method had a high coincidence with 
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BLAST results. To further validate the performance of CNN + Transformer model, we 
trained an optimal CNN + Transformer model using 70% data for training, 15% data 
for verification and 15% data for testing in the second version of moso bamboo orphan 
genes dataset. The test set contained 194 orphan genes identified by BLAST tools. The 
CNN + Transformer model identified 211 protein sequences as orphan genes in the test 
set, 183 of which were coincident with BLAST results. The above results indicated the 
reliability of CNN + Transformer in identifying orphan genes of moso bamboo.

OGs functional analyses

Functional annotation, classification and enrichment (GO, KEGG) analysis were per-
formed by the BGI in-house customized data mining system called Dr.Tom (http://​
report.​bgi.​com). The 1254 OGs of moso bamboo were searched against the GO data-
base in order to categorize standardized gene functions. Some OGs were classified 
into “cellular process”, “metabolic process”, “catalytic activity”, “binding”, and “cell” 
(Fig. 8 (A)). In Fig. 8 (B), we performed GO enrichment analysis on OGs, functions 
such as “cell wall mannoprotein biosynthetic process”, “box H/ACA snoRNA 3’-end 
processing”, “mannose-6-phosphate isomerase activity” and “phosphoribosylformyl-
glycinamidine cyclo-lingase activity” were enriched. According to KEGG pathway 
annotation, the KEGG pathway classification graph (Fig. 8 (C)) and enrichment graph 
(Fig. 8 (D)) are generated [51–53], phyper function in the R project was used to calcu-
late P values and false discovery rates (FDRs). The 1254 OGs were divided into several 
categories (Fig. 8 (C)). Among them, “Translation”, “Folding, sorting and degradation”, 

Fig. 8  Functional classification and enrichment of OGs (Dr.Tom, BGI, China). A GO (Gene Ontology) 
classification of OGs. The vertical axis represents the GO terms, and the horizontal axis represents the number 
of OGs. B Bubble graph for GO enrichment (the bigger bubble means the more genes enriched, and the 
increasing depth of blue means the differences were more obvious; q-value: the adjusted p-value). C KEGG 
(Kyoto Encyclopedia of Genes and Genomes) classification of OGs. D Bubble graph for KEGG enrichment

http://report.bgi.com
http://report.bgi.com
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“Carbohydrate metabolism” and “Environmental adaptation” were the most promi-
nent. In Fig. 8 (D), we performed KEGG enrichment analysis on OGs, pathways such 
as “Circadian rhythm-plant”, “Protein processing in endoplasmic reticulum”, and 
“Plant-pathogen interaction” were enriched.

Conclusion
Using the sequence alignment method to identify OG in species is time-consuming 
and laborious, so it is a great challenge to design a robust and efficient model for iden-
tifying OG in species. In this study, we propose the sequence-based deep learning 
model CNN + Transformer with the aim of exploring whether deep learning shows 
better performance in the identification of moso bamboo OG (an unbalanced clas-
sification problem). The model uses a CNN to capture local k-mer amino acid features 
in the protein sequence and a transformer model to capture remote features between 
k-mer amino acids. CNNs are often used to capture local features, but they show 
some defects in effectively identifying the interdependence among long-distance 
input data. In contrast, in the model based on the transformer neural network, the 
long-term dependency relationships between local features are captured by introduc-
ing a multi-head self-attention mechanism.

The performance of CNN + Transformer was evaluated with a moso bamboo 
orphan gene dataset, and it achieved very good performance according to four 
comprehensive evaluation indexes: BA, GM, BM and MCC. Compared with four 
other models (RNN, LSTM, GRU, and transformer) that are widely used to address 
sequence problems in deep learning, the performance of CNN + Transformer was sig-
nificantly superior, which further proved that CNN + Transformer is an effective gene 
recognition model for moso bamboo OG. At the same time, we combined the CNN 
layer of CNN + Transformer with RNN, LSTM, GRU and other models and made 
fine adjustments. The results showed that the recognition performance of the RNN, 
LSTM and GRU models declined to varying degrees after adding the CNN layer. The 
efficiency of the transformer model in capturing the correlation dependence between 
k-mer amino acids in the protein sequence was verified. Subsequently, we compared 
the results of CNN + Transformer and BLAST on moso bamboo orphan gene dataset 
of the second edition, and verified that CNN + Transformer is a reliable orphan gene 
identification model of moso bamboo.

CNN + Transformer model was used to predict orphan genes directly from pro-
tein sequences, which was essentially different from BLAST method. Therefore, when 
researchers want to know whether some genes are orphan genes, CNN + Trans-
former can assist researchers to further confirm orphan genes as an effective tool. In 
the future, we will explore and integrate orphan gene data of other species to further 
improve the performance of CNN + Transformer. At the same time, we are interested 
in how to use deep learning to automatically learn features from biological data rather 
than manually extracting features heavily based on domain knowledge.
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