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1 |  INTRODUCTION

In daily life, we experience various affective states, stress and 
episodes of vulnerability, which might challenge wellbeing 
and health. However, these vulnerable states are often subtle 

and less salient (Brosschot et  al.,  2018). Therefore, in this 
article we propose a simulation approach toward the devel-
opment of a real- time system to identify psychosocial states 
associated with increased vulnerability and stress. Grounded 
on the concept of additional heart rate variability reductions 
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Abstract
Heart rate variability (HRV) has been associated with diverse psychosocial con-
cepts, like stress, anxiety, depression, rumination, social support, and positive affect, 
among others. Although recent ecological momentary assessment research devoted 
the analysis of cardiac- psychosocial interactions in daily life, traditional time sam-
pling designs are compromised by a random pairing of cardiac and psychosocial 
variables across several time points. In this study, we present an approach based 
on the concept of additional heart rate and additional HRV reductions, which aims 
to control for metabolic- related changes in cardiac activity. This approach allows 
derivation of algorithm settings, which can later be used to automatically trigger the 
assessment of psychosocial states by online- analysis of transient HRV changes. We 
used an already published data set in order to identify potential triggers offline index-
ing meaningful HRV decrements as related to low quality social interactions. First, 
two algorithm settings for a non- metabolic HRV decrease trigger (i.e., the number 
of HRV decreases in a specified time window) were systematically manipulated and 
quantified by binary triggers (HRV decrease detected vs. not). Second, triggers were 
then entered in multilevel models predicting (lower levels of) social support. Effect 
estimates and bootstrap power simulations were visualized on hyperplanes to deter-
mine the most robust algorithm settings. A setting associated with 13 HRV decreases 
out of 29 min seems to be particularly sensitive to low quality of social interactions. 
Further algorithm refinements and validation studies are encouraged.
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(AddHRVr) developed by Brown et al. (2018; see also Verkuil 
et al., 2016), we advocate for a simulation approach to derive 
AddHRVr algorithms that could later be used to automati-
cally trigger and identify periods of vulnerability in everyday 
life. Precisely, by using psychophysiological data recorded 
via ecological momentary assessment (EMA) we aim to 
demonstrate a method composed of two steps to identify pat-
terns of metabolically independent HRV decreases that may 
allow conclusions about individual psychosocial states.

HRV could constitute a useful tool to identify such 
episodes, because it sensitively indicates a complex in-
terplay between the autonomic and the central nervous 
system (for overviews, e.g., Appelhans & Luecken,  2006; 
Schwerdtfeger, Schwarz, et  al.,  2020; Shaffer et  al.,  2014; 
Thayer & Lane,  2009). Specifically, the vagus nerve as 
the primary parasympathetic nerve and major constituent 
of HRV ensures a rapid communication between the brain 
and the heart (~200 ms) with afferent fibers (from the heart 
to the brain) outweighing efferent fibers (from the brain to 
the heart). Hence, vagally mediated HRV could signal cog-
nitive function, emotion regulation, and states of stress and 
vulnerability, among others (e.g., Schwerdtfeger, Schwarz, 
et  al.,  2020). Accordingly, several prominent theories have 
been developed to account for the salient role of HRV for psy-
chosocial functioning (e.g., theory of neurovisceral integra-
tion, Thayer & Lane, 2009; polyvagal theory, Porges, 2007; 
vagal tank theory, Laborde et al., 2018).

Numerous empirical studies seem to support the hy-
pothesis of a close connection between the heart and the 
brain and the advent of modern imaging techniques have 
further accelerated this field of research (e.g., Jennings 
et al., 2016; Keller et  al., 2020; Pfurtscheller et  al., 2018; 
Schwerdtfeger, Schwarz, et  al.,  2020). Of note, the root 
mean square of successive differences (RMSSD) and the 
high frequency (HF) component of the heartbeat are in-
dicators of vagally mediated HRV (Goedhart et  al.,  2007; 
Task Force Guidelines, 1996). These measures seem to be 
especially sensitive to higher central nervous system (dys)
function and thus, could be of special importance for psy-
chosocial functioning (e.g., Appelhans & Luecken,  2006; 
Carnevali, Koenig, et al., 2018; Friedman, 2007; Gerteis & 
Schwerdtfeger,  2016; Schneider & Schwerdtfeger,  2020). 
Taken together, analyzing the rhythm of the heart may in-
form about the adaptive or compromised psychosocial func-
tioning of an organism in an ever- changing environment. 
Thus, EMA approaches seem to be especially suited to 
examine associations between HRV and psychosocial con-
cepts as they unfold in daily life.

Although the benefits of EMA are obvious, this method 
is limited by the sampling strategy. In principle, we can dis-
tinguish two strategies: First, a time sampling strategy al-
lows to record both psychosocial and physiological variables 
randomly at certain periods in time across multiple hours 

or days. Specifically, random psychosocial assessments are 
matched with corresponding ECG traces to allow calculat-
ing psychophysiological correlations within and between in-
dividuals. Because of the random assessments in time, this 
approach ensures reasonable generalizability of the findings. 
However, as a drawback, situations of interest such as highly 
stressful episodes and associated alterations in HRV might 
be missed by chance. This limitation can be countered by 
an event- sampling strategy, which requires individuals to 
trigger the assessment in the case of specific events or cir-
cumstances (e.g., when they feel stressed). Entries are then 
compared to randomly prompted assessments. Although this 
sampling strategy is more sensitive to salient events of inter-
est, it is hampered by the conscious allocation of attention 
to the specific event, which might induce behavioral and/or 
cognitive adjustments and could even sensitize the individ-
ual to specific events. Furthermore, entries are dependent 
on subjective evaluations, thus precluding less salient en-
counters to be detected. Therefore, detection of such seem-
ingly incidental episodes could be accomplished by using 
HRV as a trigger (see, Brown et al., 2018), which has been 
referred to as interactive psychophysiological assessment 
(Myrtek, 2004).

1.1 | Interactive 
psychophysiological assessment

Recently, mobile devices became available, which— in 
principle— offer the opportunity to record physiological vari-
ables and bodily movement in daily life and to interact with 
smartphones. This interactive psychophysiological assess-
ment allows to identify episodes of transient bodily changes 
in daily life, which might signal certain psychosocial states. 
For example, Ebner- Priemer et al. (2012) applied this method 
to detect episodes of intensified and lowered physical activity 
and to trigger the assessment of wellbeing during such events.

The idea of an interactive ambulatory psychophysiologi-
cal assessment can be dated back to the 1990s when Myrtek 
and Brügner (1996) used increases in heart rate to detect 
meaningful psychological episodes in daily life. Based on 
well- controlled laboratory experiments, they suggested that 
controlling for bodily movement and hence, metabolic de-
mand during the recording of ambulatory heart rate would 
allow to estimate the amount of the so- called additional heart 
rate, which should mainly result from cognitive/emotional 
factors (see also Myrtek,  2004). It needs to be mentioned 
that heart rate is innervated by both the sympathetic and the 
parasympathetic (i.e., vagal) branches of the autonomic ner-
vous system, which makes a thorough interpretation of heart 
rate increases and decreases challenging. In turn, vagally 
mediated HRV as a sensitive indicator of vagal innervation 
(e.g., RMSSD) might appear a promising alternative for an 
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interactive psychophysiological assessment, allowing a more 
rigorous interpretation, because it is based on well- founded 
neuropsychological theories and has been related to various 
psychosocial concepts (e.g., stress, anxiety, depression, worry, 
rumination, social support, and negative affect). Since tran-
sient HRV changes are also strongly influenced by metabolic 
adjustments, methods to automatically detect HRV decreases 
need to account for bodily movement. Such non- metabolic 
(additional) reductions in HRV (AddHRVr) are supposed to 
index psychosocial states, such as stress and vulnerability 
(e.g., Brown et al., 2018; Verkuil et al., 2016). Probing such 
an algorithm in offline- mode Verkuil and colleagues (2016) 
could show that prolonged metabolic- independent (hence, 
additional) HRV decreases were accompanied by increased 
feelings of worry and negative affect as assessed via smart-
phone (Brown et al., 2018; Raugh et al., 2019).

The general procedure of such an approach relies on a re-
gression algorithm. In particular, while continuously recording 
the ECG and analyzing vagally mediated HRV (RMSSD) on 
a minute- by- minute basis, bodily movement is regressed on 
RMSSD. The general relationship between HRV and bodily 
movement is individually estimated during a calibration pe-
riod. When the deviation of the momentary HRV from the 
predicted HRV reaches a pre- defined threshold (e.g., 2 × SE 
of the RMSSD during calibration period), the algorithm deliv-
ers a binary trigger (Brown et al., 2018; Verkuil et al., 2016). 
The triggered psychosocial states may then be compared with 
random assessments. In order to avoid excessive alarms when 
individuals show frequent fluctuations in HRV, the algorithm 
can be set silent for a predefined period (e.g., 20 min).

It should be noted that previous research on AddHRVr 
mainly focused on deriving a reasonable calibration protocol 
to assess the individual association between HRV and bodily 
movement (Brown et al., 2018) and then to analyze associ-
ations with psychosocial states to evaluate the algorithm's 
validity (e.g., Verkuil et al., 2016). Specifically, beside stan-
dardized laboratory protocols mirroring daily life activities 
like sitting, cycling, climbing stairs etc., ambulatory RMSSD 
across a period of 24 hr seem to constitute a robust calibration 
procedure, which could make time- consuming laboratory ap-
proaches obsolete (Brown et al., 2018, 2020).

Although the interactive psychophysiological assessment 
of HRV has gained considerable interest and first steps to-
ward its development appear promising, research is still in its 
infancy and there are several unresolved questions that need 
to be tackled. First, it should be noted that up till now this 
algorithm has only rarely been applied and— to the authors' 
knowledge— there are yet no published reports on HRV de-
crease algorithms working in online- mode. Second, and 
most importantly, the exact algorithm settings have not yet 
been systematically evaluated with respect to their psycho-
social sensitivity. Specifically, it remains unclear how often 
and in which time period AddHRVr should be quantified to 

sensitively index psychosocial states. Precisely, the number of 
meaningful RMSSD decreases (e.g., 7) in a given time period 
(e.g., 20 min) needs further systematic research (we refer to 
this as the window threshold) and these algorithm's settings 
(i.e., long- term vs. short- term changes in RMSSD) might be 
differentially sensitive to different psychosocial phenomena. 
Notably, Verkuil et al. (2016) used a time period of at least 
7.5 min of subsequent HRV decrease segments (specifically, 
15 segments of 30 s, which corresponds to 15 additional HRV 
decrease epochs in 15 segments) for a psychologically mean-
ingful HRV decrease trigger (AddHRVr). When at least one 
AddHRVr was prevalent, the corresponding hr was classified 
as reflecting a meaningful decrease.

Of note, previous approaches did not examine a poten-
tial online applicability of the algorithm and different trig-
ger characteristics were not evaluated. Hence, the aim of this 
study was to simulate different settings of the algorithm and 
to explore their respective associations with psychosocial 
states of vulnerability. Importantly, this study did not aim to 
examine the validity of such an algorithm, but to present and 
exemplify a toolbox that could be applied to similar EMA 
data sets to derive trigger algorithm settings for an interactive 
psychophysiological assessment. To illustrate our approach, 
we used an already recorded EMA data set and analyzed a 
cascade of multilevel models to predict the quality of social 
interactions in daily life by different patterns of AddHRVr.

2 |  METHODS

2.1 | Participants

An already published data set was used to simulate the al-
gorithm settings (Schwerdtfeger, Rominger, et al., 2020). In 
total 21 participants (9 men, 12 women) showed ECG record-
ings of sufficient quality (i.e., at least 50% of continuous ECG 
information was valid and showed no artifacts). The mean 
age of the participants was M  =  22.48  years (SD  =  3.23). 
The study was proved by the local ethics committee (GZ. 
39/78/63 ex 2017/18).

2.2 | EMA design

Schwerdtfeger, Rominger, et al. (2020) applied an ecological 
momentary assessment (EMA) approach (time sampling) to 
collect data through three consecutive days between 9 a.m. 
and 9 p.m. Each day a maximum of 16 random prompts were 
delivered (with a minimum of 30 min between prompts). In 
total 921 prompts were available of which 560 covered social 
interactions during 5 min before the prompt. Participants had 
also the possibility to self- initialize prompts (k = 190; 34% of 
all prompts with a social interaction).
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2.3 | Material and instruments

2.3.1 | Perceived quality of interactions

To measure the perceived quality of social interactions, par-
ticipants answered four items assessing closeness, valence, 
warmth, and the supportive value of a relationship during the 
last 5 min on a six- point Likert scale. The mean of all four 
items was used as a measure of the quality of the interaction 
(M = 4.37, SD = 0.92, min = 1.50 max = 5.75). We applied 
Generalizability Theory Analysis (GTA; Brennan,  2001; 
Shrout & Lane,  2012) to analyze reliability of this com-
posed measure and found satisfactory within- person reli-
ability (RC  =  .71) and excellent between- person reliability 
(RkR  =  .94), thus suggesting reliable assessment of both 
within- person changes and interindividual differences.

2.3.2 | Physiological ambulatory monitoring of 
ECG and bodily movement

ECG and bodily movement were recorded with the physi-
ological ambulatory monitoring device EcgMove4 (movis-
ens GmbH, Karlsruhe, Germany) between 9 a.m. and 9 p.m. 
throughout three consecutive days. The ECG signal was sam-
pled with 12 bit- resolution and stored with 1,024 Hz. Bodily 
movement was recorded with 64 Hz via a 3D acceleration 
sampling.

2.3.3 | Data preprocessing

The EcgMove4 device delivers readings of several variables 
(e.g., HRV, movement) in real time. Relevant variables (e.g., 
RMSSD) are calculated in adjacent 1- min segments, which 
could be used for the online application of an algorithm. 
Therefore, we used the stored live data of the device for the 
simulation of the algorithm function. These stored online val-
ues are automatically scanned for artifacts by the EcgMove4 
device during recording. The use of the stored live param-
eters is important to achieve a realistic simulation of an al-
gorithm, which should finally work in online mode during 
everyday life. As a measure of HRV the established time 
domain measure RMSSD (ms) was used and movement was 
indexed by the movement acceleration (g).

2.3.4 | Development and simulation of an 
algorithm for detecting AddHRVr

In this work, we illustrate the two major steps of simulating 
and developing an algorithm and elaborate on how to adjust 
the algorithm to work in online mode. In step 1, the AddHRVr 

trigger was simulated at the individual level. By simulating 
various algorithm adjustments, we were able to determine 
when an algorithm would have detected meaningful HRV 
decreases and delivered triggers within the 3 days of record-
ing. In step 2, these triggers were used to predict the quality 
of social interactions in order to evaluate their psychosocial 
sensitivity. By running bootstrapped multi- level analyses per 
algorithm setting (1,000 iterations each), predicting the qual-
ity of social interactions following a trigger (within 20 min), 
the power and the (unstandardized) effect size associated 
with a specific algorithm setting can be evaluated. Following 
this procedure, researchers should be enabled to select the 
most promising algorithm settings for an online application 
to predict the quality of social interactions. In the following, 
we will illustrate the two steps in more detail.

Step 1: Simulation of individual AddHRVr triggers for 
each person
Importantly, the exact definition of a meaningful HRV 
decrease may differ for each individual. Specifically, the 
association between bodily movement and HRV might 
differ between persons. Correspondingly, in a first step, a 
regression analysis predicting participants' RMSSD (ms) 
by movement acceleration (g) was calculated for the cali-
bration of the algorithm (see e.g., Verkuil et  al.,  2016). 
The regression was estimated with data of the first 12 hr 
of recording (e.g., Brown et al., 2020). This was done via 
Matlab. Of note, since single artifacts might strongly bias 
the estimated slope and intercept of the regression analy-
ses, a semi- automatic procedure was applied. Precisely, if a 
1- min data segment showed one of the 50 highest RMSSD 
scores (within the 12- hr period; 720 data points) and, at 
the same time one of the 50 highest movement acceleration 
scores, it was automatically deleted, since it most likely 
represents an artifact. Please note in this respect that the 
observation of the highest RMSSD scores accompanied 
by the highest amount of movement within a particular 
person appears physiologically implausible. Then, the re-
sulting scatter plots and regression lines were visually in-
spected for each participant to indicate if further outliers 
were present. Consequently, a few 1- min segments were 
deleted before calculating regression analyses (M = 0.90, 
SD = 1.30, max = 4).

The individual regression parameters (i.e., intercept 
and slope) were then used to simulate the algorithm's set-
tings and calculate meaningful RMSSD decreases (see, 
Figure  1). Specifically, the continuous 1- min movement 
acceleration scores were used (after applying a 5- min mov-
ing maximum window) to calculate the expected RMSSD 
(due to the regression function), which was compared with 
the corresponding and actual RMSSD of this very minute. 
If the deviation between actual RMSSD and predicted/
expected RMSSD was higher than a predefined threshold 
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(i.e., >0.5 × SD of RMSSDcalibration), this 1- min segment 
was classified as a meaningful RMSSD decrease.

It should be noted that according to the algorithm, a 1- 
min segment classified as a meaningful RMSSD decrease 
is not considered sufficient to provoke an AddHRVr trigger. 
To reach a robust estimate of an AddHRVr, three further ad-
justment parameters are implemented in the algorithm (for 
algorithm illustration, see Figure  1): (a) the RMSSD win-
dow length (i.e., number of 1- min segments included), (b) 
the RMSSD window threshold (the number of 1- min seg-
ments, which have to be classified as a meaningful RMSSD 
decreases in order to provoke an AddHRVr trigger) and (c) 
the silent setting. Specifically, if within a predefined period 
of, for example, 5 min (window length), four segments are 
classified as significant decreases (RMSSD window thresh-
old), an AddHRVr trigger will be provoked (i.e., 4 out of 5). 
Following an AddHRVr trigger, the algorithm will remain 
silent for a predefined time (silent setting; e.g., 20  min). 
The silent setting prevents the algorithm to trigger numer-
ous prompts during a longer period of consecutive RMSSD 
decreases.

Importantly, the change of these parameters may sig-
nificantly alter the characteristic of the algorithm. For 
example, an algorithm which fires when 4 out of 5 seg-
ments are classified as meaningful HRV decreases, detects 
shorter- lived effects as compared to an algorithm with a 7 
out of 10 or even a 29 out of 30 setting. Hence, different 
algorithms are potentially associated with different alarm- 
rates and might differ in their psychosocial meaningful-
ness. Of note, although the silent setting is an important 
feature of the algorithm, in this demonstration we will 
mainly focus on the window length and window threshold, 
thereby fixing the silent setting at 20 min in order to keep 
the methodology succinct. However, we will briefly ex-
emplify how a change in the silent setting could affect the 

trigger's characteristics. We calculated the resulting trigger 
information (coded as 0 = absent and 1 = present) at the 
individual level for all combinations of RMSSD window 
lengths starting from 2 to 30 and RMSSD window thresh-
olds from 1 to 29 (i.e., 1 out of 2 until 29 out of 30, thus 
totaling 435 different algorithm adjustments). This infor-
mation was used as input for the multi- level simulation in 
step 2.

Step 2: Simulation of the AddHRVr trigger's sensitivity to 
psychosocial states (quality of social interaction)
Similar to former procedures (Brown et  al.,  2020; Verkuil 
et  al.,  2016), the predictive utility of an AddHRVr trigger 
relative to a random prompt was determined via calculating 
associations with the quality of social interactions assessed 
at the subsequent prompt following the AddHRVr trigger 
within 20 min. Thus, we aimed to evaluate the sensitivity of 
various AddHRVr algorithms by comparing the associations 
of AddHRVr triggers with the quality of social interactions 
relative to non- triggers. A reliable difference between psy-
chosocial states associated with periods of no change in HRV 
and AddHRVr triggered prompts would suggest psychoso-
cial sensitivity of the algorithm settings. Statistical evalua-
tion was accomplished via the lme4 package (linear mixed 
effects modeling; Bates et al., 2015) in R (vers. 4.0.4; R Core 
Team, 2021).

Specifically, within 20 min preceding a prompt, the preva-
lence of an AddHRVr trigger was determined. The decreases 
identified (coded as 0 = absent and 1 = present) were sub-
jected to a multilevel model predicting the quality of the 
social interaction of the subsequent prompt. In total, 435 dif-
ferent combinations of algorithm settings were analyzed (i.e., 
RMSSD window length, RMSSD window threshold) with a 
silent setting of 20 min. These 435 multilevel models were 
bootstrapped with 1,000 iterations each. For each iteration 

F I G U R E  1  A schematic representation of the AddHRVr algorithm
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data of 21 participants were sampled with replacement. This 
allowed to estimate statistical power, (unstandardized) ef-
fect sizes and confidence intervals for all combinations of 
the algorithm's settings. Statistical power was calculated by 
dividing the number of iterations with a significant effect 
(p  <  .05) by the total number of (valid) iterations (hence, 
the ratio between significant effects of the quality of social 
interactions and total iterations). Based on this information, 
3- dimensional hyperplanes were constructed visualizing the 
associations between the different algorithm settings (i.e., 
window length and threshold) and the respective predicted 
quality of social interactions. Figures were generated in R 
(plotly package; Sievert, 2020; for the R- script and data, see 
https://doi.org/10.17605/ OSF.IO/FMT5U). The algorithm 
setting with the highest power, solid effect size (with compa-
rably small confidence intervals), and a reasonable number of 
AddHRVr triggers might be favored for an online validation 
study.

3 |  RESULTS

3.1 | Step 1: AddHRVr trigger simulation 
on an individual level

Table  1 presents the descriptive statistics of the result-
ing individually adjusted parameters of the algorithm. Of 
note, all parameters showed high inter- individual variation. 
Accordingly, the regression analyses indicated that for some 
participants bodily movement (acceleration) had a low and in 
others a high predictive value for RMSSD.

Based on these individual algorithm adjustments, Figure 2 
illustrates the distribution of the simulated AddHRVr trig-
gers for two representative participants. Panel A depicts the 
AddHRVr for a short- term algorithm setting (4 out of 5) 
and panel B for a more long- term algorithm (29 out of 30). 
The number as well as the temporal distribution of triggers 
(green asterisks) substantially differed between the algorithm 
adjustments.

On the group level, the different number of delivered 
AddHRVr triggers associated with varying algorithm ad-
justments is illustrated in Figure  3. As could be expected, 
short- term algorithms (yellow) were associated with a higher 
number of emitted triggers during the three days of recording 
as compared to long- term algorithms (blue). Furthermore, 
the silent setting seemed to have a strong impact on the total 
number of delivered triggers, which was significantly lower 
for the silent setting of 60 min (Figure 3b) as compared to 
10 min (Figure 3a), t(434) = 25.03, p < .001.

3.2 | Step 2: Simulation of the trigger's 
sensitivity to psychosocial states

The prediction of the perceived quality of social interactions 
varied as a function of the algorithms' settings. In order to 
derive the most sensitive algorithm setting for predicting the 
quality of social interactions, all 435 bootstrap simulations 
were inspected for the highest power (Figure 4a; see URL 
the electronic supplement for an interactive 3D illustration), 
which was observed for the algorithm setting with 13 out of 
29 (silent setting of 20  min). The respective power to de-
tect episodes of low social quality interactions was 0.814 
(see, Table 2 for algorithm adjustments with similar power 
scores). Of note, the simulation suggests that some algorithm 
settings showed similar properties and could also be favored 
for an online validation study.

Analyzing other properties of the algorithms' settings, it 
was found that effect estimates and the number of triggers 
were comparable between the five settings with the highest 
power (see Table 2). With an effect size of b = −0.29 (for 13 
out of 29), AddHRVr triggers could predict lower quality of 
social interactions (specifically, a decrease trigger relative to 
a non- trigger was associated with a decline in the rated qual-
ity of social interactions of 0.29 on a six- point Likert scale). 
The total number of delivered triggers was 498 for a 13 out 
of 29 setting, thus indicating that on average each partici-
pant would have received about 7.90 triggers per day, in case 
an interactive psychophysiological ambulatory assessment 
would have been conducted with these settings. The mean 
effect estimates (and confidence intervals) for all simulated 
algorithm adjustments with a silent setting of 20 min are il-
lustrated in Figure 4b (see the electronic supplement for an 
interactive 3D illustration).

4 |  DISCUSSION

The aim of this study was to demonstrate a simulation ap-
proach to derive the settings of an AddHRVr trigger algorithm 
to index meaningful psychosocial states (in our example, 
low quality of social interactions) in daily life that should 

T A B L E  1  AddHRVr algorithm calibration: Descriptive statistics 
of the individual parameters for all 21 participants calculated for the 
first 12 hr of recording

M SD Max Min

RMSSD 
(ms)

42.65 18.84 92.47 15.25

Acceleration 
(g)

0.05 0.02 0.09 0.02

Intercept 48.73 21.12 100.00 17.09

Slope −134.66 96.58 −12.00 −324.87

r −.38 .17 −.06 −.65

https://doi.org/10.17605/OSF.IO/FMT5U
https://webpsy2.uni-graz.at/ges1www/alarmSimulation/power_agg_boot_s20.html
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further be validated in future interactive psychophysiological 
ambulatory assessment studies. The proposed methodologi-
cal approach aims to obtain individual algorithm settings in 
a first step and to analyze their psychosocial sensitivity in a 

second step via systematic simulations along two dimensions 
(window length and RMSSD window threshold). In the cur-
rent example, we arrived at an algorithm specifying 13 out of 
29 min- segments with AddHRVr exceeding an individually 

F I G U R E  2  Example of a simulation for two participants. The algorithm was run with a window threshold of 4 and a window length of 5 (i.e., 
4 out of 5; panel A) and 29 out of 30 (panel B) with a silent period of 20 min in between. The figure illustrates an observation time of 3 hr. The x- 
axis depicts minutes and the y- axis RMSSD. The red line represents the amount of movement, the blue line is the actual RMSSD and the bold blue 
line represents the estimated threshold (predicted RMSSD − 0.5 × SD RMSSDcalibration). Green asterisks indicate AddHRVr triggers and the black 
asterisks indicates a 1- min segment with the actual HRV being lower than the predicted threshold

F I G U R E  3  Number of AddHRVr triggers for different algorithm settings. A represents the number of triggers with a silent setting of 10 min 
and B with a silent setting of 60 min. C shows the mean number of triggers for 6 different silent settings of the algorithm (from 10 to 60 min)
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determined predefined threshold of predicted RMSSD. These 
algorithm settings were sensitive to comparably low levels of 
the perceived quality of social interactions in everyday life, 
thus supporting previous evidence for lower HRV when in-
dividuals experience compromised social interactions (e.g., 
Eisenberger & Cole, 2012; Shahrestani et al., 2015). It should 
be noted though that the prolonged HRV decreases could 
have been accompanied by other negative feeling states (e.g., 
stress, rumination, episodes of anger), which in turn might 
have impacted social interactions at a later time point. Thus, 
based on the simulations of this study we can predict low 
quality social interactions by preceding AddHRVr, but are 
not yet able to determine the exact mechanism or directional-
ity of this relationship.

Importantly, this study aimed to provide a tool that 
could be useful to derive the most sensitive settings for 

a psychosocially meaningful AddHRVr trigger. While 
previous research used preset algorithm settings and was 
mainly concerned with the calibration protocol (e.g., 
Brown et al., 2018, 2020), we applied an exploratory ap-
proach to determine which algorithm settings are partic-
ularly sensitive to psychosocial states (in this case, the 
perceived quality of social interactions). It should be 
noted though that the derived settings in this study could 
differ in other populations and particularly, for other 
psychosocial concepts (e.g., worry, rumination, anger, 
fear). Thus, it seems mandatory to validate the findings 
in subsequent research and to analyze the specificity of 
the algorithms' settings. Below we first provide some 
ideas on the validation of these algorithms, before turn-
ing to further algorithm refinements and the algorithms' 
specificity.

F I G U R E  4  Panel A illustrates the power for each of the 435 bootstrapped multi- level analyses using the algorithm settings of RMSSD 
window length (x- axis) and window threshold (y- axis; i.e., y out of x to be a trigger; see URL for an interactive 3D illustration). Panel B illustrates 
the corresponding effect estimates and confidence intervals derived from bootstrap simulations (1,000 samples with n = 21; for an interactive 3D 
illustration see URL). The silent setting of both figures was fixed at 20 min

T A B L E  2  Order of algorithm setting with respect to power estimates

Order Window threshold Power
Effect 
estimatea 

CI low 
(2.5%) CI high (97.5%)

Total 
triggers

Triggered 
prompts

1 29/13 0.814 −0.29 −0.53 −0.07 498 112.33

2 29/14 0.806 −0.30 −0.54 −0.07 445 102.34

3 28/13 0.806 −0.30 −0.55 −0.07 481 107.93

4 30/14 0.792 −0.29 −0.54 −0.05 466 107.95

5 27/13 0.786 −0.28 −0.52 −0.06 467 106.19

Note: Total triggers = number of triggers delivered at the specific algorithm settings, triggered prompts = number of prompts classified as a triggered prompt, i.e., 
trigger within 20 min before prompt, total prompts = 560.
aUnstandardized effect estimate b.

https://webpsy2.uni-graz.at/ges1www/alarmSimulation/power_agg_boot_s20.html
https://webpsy2.uni-graz.at/ges1www/alarmSimulation/power_agg_boot_s20.html
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4.1 | Toward the validation of 
algorithm settings

In principle, different validation approaches could be ap-
plied. First, offline validation studies could be carried out in 
the same study sample (within- person) by deriving the algo-
rithm settings in a subset of recording days (e.g., first 3 days) 
and evaluating the performance of the AddHRVr algorithm 
on the subsequent days (e.g., days 4– 6). This would allow to 
evaluate the robustness of the algorithm in the same sample, 
thus ensuring internal validity. A second approach would be 
to derive the settings in one study sample and to evaluate 
the algorithm's performance in a different sample offline. 
Certainly, this approach would ensure generalizability of the 
AddHRVr algorithm settings to other populations, but its 
success depends on the representativeness (and situational 
diversity) of the original sample.

Importantly, the functioning of the algorithm in online mode 
must be considered the gold standard of validation. Hence, the 
AddHRVr algorithm should be implemented in the ambulatory 
recording device, which will then emit an acoustic signal via 
the smartphone whenever AddHRVr with the pre- specified 
characteristics is detected. The subjective ratings following this 
alarm would then be compared to ratings following random 
prompts. It should be emphasized though that the selection of 
algorithm settings via the suggested simulation approach needs 
careful consideration. Specifically, a transfer from an offline 
identified algorithm setting to an online tool should account for 
the respective ambulatory setting. For example, an AddHRVr 
trigger with high power that is emitted quite frequently (due to 
its short- lived characteristic) might be unsuitable for individu-
als who have a dense working schedule and thus would require 
a comparably long silent setting. Thus, we argue that while the 
outlined two- step simulation approach derives quantitative ev-
idence for the most sensitive settings, it needs to be matched 
with qualitative decision rules (e.g., considering the study's set-
tings and compliance of the participants).

We are convinced that developing such HRV decrease 
algorithms that work in online mode would strongly stimu-
late electronic and mobile health interventions (e.g., via slow 
breathing exercises). Providing just in time interventions 
whenever a trigger of a meaningful HRV decrease is emitted 
would allow for a personalized, tailored approach that could 
help individuals withstanding periods of cardiac (and psy-
chosocial) episodes of vulnerability.

4.2 | Trigger refinements

4.2.1 | Adjusting the magnitude of AddHRVr

It is important to note that within this demonstration we re-
lied on a magnitude of change from the predicted value of 0.5 

SD. Although it is reasonable to assume that a comparably 
strong HRV decrease (e.g., 1 SD) should be more informa-
tive regarding psychosocial states, an overly high threshold 
could be too restrictive, thus allowing only most severe (and 
hence, rather seldom) events to be detected. Likewise, a 
lower threshold could be less meaningful with respect to psy-
chosocial events. It should also be noted that most studies on 
HRV and psychosocial concepts suggested rather moderate 
associations. Taken together, although a SD of 0.5 seems like 
a good starting point for identifying meaningful AddHRVr, 
we would recommend simulating the magnitude of change as 
well in order to evaluate its sensitivity to diverse psychoso-
cial states.

4.2.2 | Static algorithm— Dynamic algorithm?

Importantly, the AddHRVr algorithm used in this demon-
stration (and in previous approaches as well!) represents a 
static approach. Thus, the evoked trigger responds whenever 
RMSSD meaningfully declines below an individually de-
termined basal value obtained during a calibration protocol. 
Although a static algorithm could constitute a simple and 
powerful tool to detect meaningful HRV decreases from an 
individual set- point, it cannot account for dynamic changes 
from moment to moment (e.g., when HRV is declining from 
an elevated level) or for circadian changes. Hence, dynamic 
algorithms constitute promising alternatives, since they can 
adapt to individuals' momentary HRV via moving aver-
age windows and signal deviations thereof. Of note, we ran 
the same simulation procedure presented in this study with 
a dynamic algorithm, thereby adjusting the intercept of the 
regression by the mean of RMSSD recorded throughout the 
last 10 min. However, the setting simulation of this dynamic 
algorithm reached only a low maximum power estimate of 
0.61 with the setting 24 out of 30 (see, URL for the simula-
tion of a dynamic AddHRVr algorithm with a silent setting of 
20 min). It remains to be studied under which circumstances 
more sophisticated dynamic algorithms could outperform 
static algorithms in the accuracy of the prediction of mean-
ingful psychosocial states. Certainly, in addition to the other 
parameters dynamic algorithms offer another array for sys-
tematic simulation by varying the time interval of the moving 
average (e.g., between 5 and 20 min).

4.2.3 | Accounting for the silent setting

For reasons of parsimony, in this simulation approach we 
held the silent setting of the algorithm constant at 20 min. 
A silent setting of 20 min seems quite reasonable and cor-
responds to a maximum of 36 triggers in a 12 hr- period. In 
online mode, such a setting could be intermixed with random 

https://webpsy2.uni-graz.at/ges1www/alarmSimulation/power_agg_boot_dy.html
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prompts, thus ensuring a time- sensitive assessment of psy-
chosocial states. It should be noted though that the silent 
setting could be adjusted as well and the systematic manip-
ulation of the silent setting could substantially alter the re-
sponse characteristic of the algorithm (see, for example, our 
results on the frequency of triggers in Figure 3). For a further 
evaluation, we additionally calculated the statistical power 
for algorithm adjustments with a silent setting of 60 min (see 
URL). This analysis showed a maximum power of 0.876 
for the algorithm setting 14 out of 28. Importantly, 97.73% 
of these trigger associated- prompts were also detected by a 
setting 13 out of 29 (with 20 min silent setting) reported in 
the results section. However, considerably less triggers were 
delivered with a silent setting of 60  min (i.e., 199 in total 
corresponding to 3.16 per day and participant). This finding 
suggests that while different algorithm settings might be as-
sociated with similar psychosocial phenomena, they show 
different response characteristics. This overlap of evoked 
triggers between different algorithm settings might argue 
for an over- specification of the algorithm, since changes in 
different algorithm parameters are associated with similar 
changes in trigger characteristics. A reduction of parameters 
with similar effects on the algorithm's functioning might be 
worthwhile to consider and can be derived from simulation 
approaches as outlined above.

4.2.4 | Accounting for body position and 
respiration

Because RMSSD is sensitive to body position, future algo-
rithms could also be calibrated to handle periods of lying or 
sitting differently than periods of standing and walking. Even 
more, other confounds, like breathing and/or speaking pat-
terns could be controlled for as long as a reliable and, for the 
participant, convenient assessment is guaranteed. Of note, 
these adjustments might change the evoked trigger charac-
teristics considerably, which asks for continued simulation 
and validation of each algorithm. In the following, we will 
concentrate on the impact of body position, because reliable 
assessment of breathing (via the electrocardiogram- derived 
respiration; EDR) was compromised. We suggest to use elas-
tic belts to sensitively track thoracic movements in future 
research, which however, are not yet implemented in the mo-
visens EcgMove4 device.

In order to evaluate the impact of posture on our findings, 
we conducted a series of follow- up simulations to predict 
social interaction quality by AddHRVr, thereby controlling 
for body position (measured via accelerometers within the 
EcgMove4 device). Specifically, we analyzed only segments 
with an upright position (without lying) and applied this 
setting to our simulations. Findings of step 1 simulations 
are depicted in the Supporting Information Table S1. The 

results of step 2 simulations are illustrated in the Supporting 
Information Table S2 (see, URL for an interactive 3D illus-
tration of power estimates and URL for effect estimates and 
confidence intervals). Importantly, the general pattern of 
findings did not change, thus suggesting a relatively minor 
influence of body position in the current research context. 
However, future research should strive to implement those 
potential confounds in the individually determined algorithm 
settings (simulations in step 1), because for some individuals 
the impact of breathing or body position on RMSSD could be 
stronger as compared to other individuals.

4.3 | Trigger specificity: Different AddHRVr 
algorithms for different psychosocial concepts?

The aim of this research was to demonstrate a feasible 
approach to derive settings for an AddHRVr algorithm, 
which could be further used in an interactive psychophysi-
ological ambulatory assessment of HRV. In doing so, we 
used an already available data set and hypothesized, in 
accordance with previous theorizing and empirical re-
ports (e.g., Eisenberger & Cole,  2012; Porges,  2007; for 
a meta- analysis, see Shahrestani et  al.,  2015), that HRV 
reductions in everyday life could be associated with low 
quality social interactions, among others. It is important 
to note that other research associated perseverative cog-
nition (worry, rumination; e.g., Chalmers et  al.,  2016; 
Kocsel et al., 2019; Ottaviani, 2018; Verkuil et al., 2016; 
Williams et al., 2017), anxiety (e.g., Friedman, 2007), de-
pression (e.g., Dell'Acqua et al., 2020; Koch et al., 2019; 
Schwerdtfeger & Friedrich- Mai, 2009), or stress (e.g., Kim 
et al., 2018) with decreased HRV. It is not clear yet if these 
phenomena share the same or different patterns of (momen-
tary) HRV reductions. It should also be noted that more 
activated/arousal- related positive (motivational) states 
could be accompanied by HRV- reductions in everyday life 
as well (e.g., Schwerdtfeger & Dick, 2019; Schwerdtfeger 
& Gerteis, 2014). Hence, the sensitivity and specificity of 
each algorithm setting remains to be elucidated in future 
research. In particular, the following questions should be 
tackled: Are short- lived AddHRVr triggers associated with 
different psychosocial phenomena as compared to rather 
long- term triggers? Should the algorithm threshold (i.e., the 
magnitude of change from the predicted value) be adjusted 
depending on the psychosocial variables studied?

Furthermore, we want to encourage the develop-
ment of algorithms capable of detecting meaningful in-
creases in HRV, independent of movement patterns (i.e., 
AddHRVi). Elevated vagally mediated HRV has been as-
sociated with resilience and psychosocial resources (e.g., 
An et  al.,  2020; Carnevali, Thayer, et al., 2018; Gerteis & 
Schwerdtfeger,  2016; Koenig,  2020; Perna et  al.,  2020; 

https://webpsy2.uni-graz.at/ges1www/alarmSimulation/power_agg_boot_s60.html
https://webpsy2.uni-graz.at/ges1www/alarmSimulation/power_agg_boot_s20_standing.html
https://webpsy2.uni-graz.at/ges1www/alarmSimulation/beta_agg_boot_s20_standing.html
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Schwerdtfeger & Scheel,  2012; for an inverse association 
on a within- person level, see however, Schwerdtfeger & 
Dick,  2019), which should complement the automated de-
tection of HRV decreases. This way HRV decrease triggers 
could not only be compared to random prompts, but be con-
trasted with HRV increase triggers to maximize effects. It 
should be noted though that HRV increase algorithms could 
be more complex. Specifically, a transition from movement 
to rest is surely accompanied by increased HRV, which how-
ever might not be relevant for psychosocial concepts (not to 
mention the strong impact of respiration). Hence, an HRV 
increase algorithm would need to account for body position 
and possibly respiration or speaking patterns.

Irrespective of further research agenda described above, 
interactive psychophysiological ambulatory assessment 
could considerably advance our understanding of psycho-
physiological linkage in general and psychophysiological in-
ference in particular. In this respect, Cacioppo and Tassinary 
(1990) distinguished psychophysiological variables as out-
comes (many psychosocial phenomena linked to a particular 
physiological variable within a specific context), marker (a 
one- to- one relation between a psychosocial and a physiolog-
ical variable within a specific context), concomitant (many 
psychosocial phenomena linked to a physiological variable 
irrespective of the context), and as invariant (one- to- one 
correspondence between a psychosocial and a physiological 
variable irrespective of the context). HRV- derived triggers 
in ambulatory assessment could be considered outcomes, 
markers, concomitants, or even invariants of a psychosocial 
state, which however, depends on further systematic research 
aiming to analyze the trigger's specificity and contextual 
sensitivity.

4.4 | Conclusions

Can we detect meaningful psychosocial episodes by an 
online analysis of HRV? Probably so, but what sounds as 
quite an easy and pragmatic question imposes great meth-
odological challenges. This study aimed to present a two- 
step simulation approach to derive algorithm settings for 
AddHRVr triggers, thus contributing to the further devel-
opment of an interactive psychophysiological ambulatory 
assessment approach. The proposed method first aims to 
derive meaningful algorithm settings for each individual 
and, in a second step, to use the derived triggers as predic-
tors of momentary psychosocial states in everyday life. As 
a result, a multidimensional hyperplane can be constructed 
(and verified by bootstrap simulations), which may inform 
about the most sensitive algorithm settings for a particu-
lar psychosocial state. In the discussion section, we elabo-
rated on the validation of these settings, proposed further 
refinements (i.e., adding more dimensions and potential 

confounds to the simulation approach) and argued for the 
need to analyze the algorithms' specificity. We hope that 
the toolbox presented in this report will be applied to other 
data sets as well and that future research will let us know 
if and to what extend different psychosocial states could be 
reliably detected/predicted by transient changes in momen-
tary HRV in daily life.
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