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Human cognitive abilities are limited resources. Today, in the age of cheap information—

cheap to produce, to manipulate, to disseminate—this cognitive bottleneck translates into

hypercompetition for rewarding outcomes among actors. These incentives push actors to

mutualistically interact with specific memes, seeking the virality of their messages. In turn,

memes’ chances to persist and spread are subject to changes in the communication envir-

onment. In spite of all this complexity, here we show that the underlying architecture of

empirical actor-meme information ecosystems evolves into recurring emergent patterns. We

then propose an ecology-inspired modelling framework, bringing to light the precise

mechanisms causing the observed flexible structural reorganisation. The model predicts—

and the data confirm—that users’ struggle for visibility induces a re-equilibration of the

network’s mesoscale towards self-similar nested arrangements. Our final microscale insights

suggest that flexibility at the structural level is not mirrored at the dynamical one.
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Our current experience of the accelerated stream of digital
content1 has exposed, in full range, the tight bio-cognitive
limitations that we are subject to2,3. Their finiteness had

not, in general, arisen in everyday communication processes: not in
the pre-industrial age, where a physical (face to face) or low-
bandwidth interaction governed the slow change of public opinion;
nor during the predominance of mass media, when the exposure to
an oligopolistic media environment put little pressure to the atten-
tional resources of the audience. In both cases, the public sphere was
hierarchically structured and framed by the operations of few actors
on a rather slow time scale. Contrarily, the paradigm of online
communication is characterised by the fragmentation of the public
sphere4, in which elite and non-elite actors behave like information
sources and receivers on the virtual stage. Only in this new scenario,
attention, memory and processing time, the cognitive underpinnings
of visibility5–7, suddenly become critical assets to compete for8–13:
their scarcity has been exposed.

On the other hand, the idea that words (or, more generally,
memes) compete to be used by speakers is one of the funda-
mentals of cultural evolution, a dominant framework to explain
language change in the last three decades14–16. Although the
accounts within this discipline differ in their theoretical back-
ground and assumptions, they share the postulate that linguistic
units are ‘replicators’: their survival depends on their ability to be
copied, i.e., internalised by other speakers of the language. Lexical
theorists argue that the scarce resource which memes compete for
is the speakers’ attention (users, in the online context). Words, in
this context, evolve to become compressible (reduction or sim-
plification) and discriminative (maintaining relevant distinc-
tions). In either case, the underlying assumption is that the
cognitive system “wishes for” easier-to-internalise terms. While
such theories (which precede the Internet) are not meant to
explain lexical competition in online environments, the logic
underlying these ideas hold as well1.

Of course, the choice of a meme is context-dependent (past
performance is no guarantee of future results), and thus the inter-
actions between actors and memes are adaptive and extremely
sensitive to changes in the communication environment—breaking
news, fads and rumours, celebrity gatherings, etc. In turn, changes in
the surrounding conditions tend to be ephemeral although
frequent1, in the more open and fluid access to many digital sources.

Complementary to direct competition (among actors and
among memes), interaction across classes in the system can
be thought of as mutualistic. In this work, we hypothesise that the
existence of actor-meme mutualistic links is implied by the
existence of the competitive ones: in a communication environ-
ment, the best tool for an actor to compete with its peers is
precisely to build the best possible discourse by making the right
lexical choices. These “information chunks” may—if correctly
chosen—optimally spread information and consolidate the visi-
bility they strive for5–7. Hence, for example, the (ab)use of hyper-
emotional language that we suffer in nowadays politics17, as an
arms race to impact optimisation. On the other hand, the best
way for a meme to compete with other lexical candidates is to be
clear and concise: thus the mutualistic relationship—which does
not exclude other strategies to maximise visibility.

Under the light of these four drivers—competition, mutualism,
adaptation, environment—online communication systems and
natural mutualistic assemblages can be understood as special
cases of a broader class of mutualistic bipartite systems, i.e., those
dominated by intra-class competition and inter-class mutually
beneficial interactions. Although clearly functioning at very dif-
ferent spatial and temporal scales, this work evaluates, empirically
and theoretically, whether this hypothesis holds.

Our failure to explore this possibility in the past is due to
several factors. Previous approaches to an “info-ecological”

understanding of online communication dynamics typically
focused on one of the dimensions of the problem (actors8,10–12 or
memes1), missing the structure-dynamics interplay of topologies
and states in the network18–20. This picture changes dramatically
if the focus is shifted from the relatively stable peer-to-peer net-
work to the fluid information bipartite network, that is, ad
hoc groups of users, which loosely gather around and engage
in shared memes21, operating in a hyper-competitive
environment17. Other approaches, which did include the bipar-
tite perspective, were limited to a qualitative discussion as a result
of empirical observations on a single dataset22, failing to identify
the mechanisms that drive the whole system.

A picture that embraces the mentioned ingredients might open
new promising possibilities to analyse and model online social
networks if we consider that Ecology is rich in theoretical fra-
meworks where the structure-dynamics coupling is studied23–25.
Moreover, while testing these theories empirically in natural
ecosystems is difficult—mainly because of the resource-intensive
demands to collect data26—digital streams from social interac-
tions are abundant on several spatial and temporal scales, and
precise knowledge about the environmental (external) conditions
—related to specific information flows—can also be collected.

The first problem to address under this information ecosystems
framework is the network’s structural volatility, which is coupled
to the fluctuating nature of the environment. Online commu-
nication is heavily driven by the events surrounding it, which
constantly trigger attention shifts that modify the behaviour of
otherwise loosely linked assemblages of individuals and groups17.
It is precisely this hectic, information-dense environment that
dictates the emergence and fall of ephemeral synchronised
attention episodes, which translate into fast structural changes.

Here, we provide evidence that information ecosystems exhibit
structural flexibility27 to environmental changes, recovering their
original architecture in the aftermath of an external event
affecting it. To do so, we stick to the “classical” scientific cycle
–observation, hypothesis, model, prediction. First, we report on
theory-free, empirical observations of the characteristic dynami-
cal re-organisation in communication networks, as they react to
environmental “shocks”. Analysing the response of the Twitter
ecosystem to different types of external events, we quantify how
collective attention episodes reshape the user-hashtag informa-
tion network, from a modular28–30 to a nested31–33 architecture,
and back. The emergence of these structural signatures is con-
sistent across different topics and time scales. Next, we propose a
theoretical framework that explains the emergence of the patterns
observed in real data streams, as a result of an adaptive
mechanism. The model builds on the idea that the actor-meme
network structure is effectively driven by an optimisation
process23, aiming at the maximisation of visibility5–7, and that the
nature of the user-meme interactions is mutualistic, i.e., beneficial
for both. Furthermore, through our modelling framework, we
predict that the users’ struggle for visibility in any context facil-
itates the emergence of nested self-similar arrangements: either
mesoscale (in-block) nestedness34–40 during the compartmenta-
lised stages or macroscale nestedness in exceptional global
attention episodes. Eventually, we present some results that link
our observations with the model at the microscale, which suggest
that environmental shocks may leave a lasting trace on the sys-
tem’s node dynamical states, despite the structural flexibility
found at the macroscale and mesoscale. These predictions are
supported by the data.

Results
Structural flexibility in information systems. Biased as it may
be41, Twitter is a sensitive platform that mirrors, practically
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without delay42–44, exogenous events occurring in offline envir-
onments. In this sense, Twitter data constitute a rich stream,
providing a public and machine-readable reflection of the
real world.

Despite the highly fluctuating nature of this communication
stream, some reliable patterns emerge from its activity. We
analyse these streams in a longitudinal manner, as a series of
snapshots from time-resolved activity. Each slice is represented as
a bipartite network with a fixed number of the most active actors
(users in this context; NU= 2000), and the corresponding memes
(hashtags in this context; NH) created and/or cited by these users,
in that slice. Note that the set of users and hashtags in a given
slice differs, to some extent, from one to the next: see
Supplementary Note 1, and particularly Supplementary Fig. 2.
Such a sequence of networks is studied monitoring different
structural arrangements that are relevant to the dynamical stage
in which the system is. For now, we focus on two of them:
modularity28,29 (Q) and nestedness31,45,46 (N ). Details on the
construction of time-resolved networks and their structural
analysis can be found in the “Methods” section below, and
Supplementary Note 1.

High levels of modularity correspond to a fragmented attention
scenario and can be considered as the resting state of the system.
In this stage, users mostly focus on their own topics of interest,
i.e., a certain subset of hashtags, facilitating the emergence of
identifiable blocks. High values of nestedness, on the other hand,
reflect an extraordinary (and, thus, ephemeral) stage in which the
system self-organises to attend one or few topics. In these
cases, the discussion revolves around a small set of
generalist hashtags (hashtags used virtually by everybody) and
users (highly active individuals participating in many facets of the
discussion).

Figure 1, panels c and h, present the evolution of Q and N on
two different portions of Twitter activity. For example, Fig. 1c
corresponds to a period of over 45 days around the local elections
in Spain (April-May 2019). For this dataset, the evolution of Q
and N shows a strongly anti-correlated behaviour. This
behaviour can be explained by the mutual structural constraints
that these two arrangements impose on each other, i.e., the upper
bound for the co-existence of nested and modular structures. This
bound is Q≤ 1�N , which implies that extremely high N values
are incompatible with the high values of Q47. Note however that
this does not impede many other regimes: it is perfectly possible
(and actually frequent) that both Q andN are extremely low (e.g.,
in Erdös-Rényi networks), or that both have intermediate values
(see Supplementary Note 3). In sum, the significant growth of
nestedness, qualitative and quantitative48,49 (see the discussion on
quantative nestedness in Supplementary Note 1), is not caused by
a decrease in the modularity of the system, but, on the contrary,
tightly linked to external events: see for instance the sudden
changes in the structure on specific dates, shadowed in grey in
Fig. 1c (debate and polling day, respectively). These extraordinary
events are accompanied, unsurprisingly, by an increased volume
of messages (Fig. 1a) and connectance. Despite previous
research50, neither volume nor connectance can explain, per se,
the rapid surge of nestedness: see the study on the effects of
activity in Supplementary Note 3 for a thorough discussion. The
figure, at the scale of days, is complemented with high-resolution
monitoring of portions of these exceptional events (Fig. 1d, e),
which confirm the general anti-correlated trend. Finally, the most
outstanding feature highlighted Fig. 1c is the structural flexibility:
no matter how abrupt and large the excursion to a nested
arrangement is, the system bounces back to its “ground”—
predominantly modular—state soon after when the interest in the
breaking news fades out.

The overall observed behaviour in Fig. 1c is replicated across
different types of events. Figure 1h shows an equivalent pattern
for a completely different event. In this case, the dataset
comprises the reaction after the Nepal earthquake in 201551,
including a major aftershock on May 12th. Unlike a political
debate or an election date, this example is inherently unexpected
and unpredictable—an important fact, attending the taxonomy of
collective attention described in Lehmann et al.42. As in Fig. 1c,
the coarse grain scale of days and weeks in Fig. 1h is
complemented with high-resolution monitoring of a portion of
exceptional events (panel i). Four more datasets are analysed in
Supplementary Note 1. In all of them, the previous observations
hold: the anti-correlated evolution of Q and N (Supplementary
Table 2), the alternation of modular and nested arrangements
(Supplementary Fig. 4), etc. Also, in-depth discussions on
statistical significance and the role of connectance can be found
in Supplementary Note 3.

These analyses suggest that there is a tight logic underlying the
structural fluctuations of the information network: the level of
fragmentation of collective attention maps onto specific network
arrangements, and is independent of the particular contents of
the data stream. Online activity on different topics translate to
comparable changes in the resulting patterns, no matter the
semantics of the underlying discussion. The observed differences
in the emergence, magnitude and persistence of structural
changes are directly related to the predictability, intensity and
duration of the exogenous events (i.e., related to the environ-
mental conditions), and therefore cannot be explained as intrinsic
to the communication system itself. The question remains,
however, how a networked system can fluctuate so fast between
two states which have often been considered incompatible52,53.
The key to this puzzle is in-block nestedness, a hybrid modular-
nested architecture that bridges the apparent antagonism between
nestedness and modularity47.

Theoretical framework. To understand the mechanisms that
govern the observed flexibility, and, at the same time, to solve the
puzzle around the network’s nested-modular oscillations, we
propose a model founded on the ecological drivers introduced
above: competition, mutualism, co-adaptation and environment.
The model builds on the simple idea that the network archi-
tecture between users and hashtags is the result of several local
optimisation processes, i.e., each individual’s maximisation of
visibility, and that such process operates on top of attentional
dynamics. To do so, we generalise the ecological adaptive mod-
elling proposed by Suweis et al.23,25, in which the system’s actors
(plant and pollinator species) strive for larger individual abun-
dance, rewiring their interactions accordingly.

The synthetic information network model comprises a total of
N interacting “species” or nodes (NU users and NH hashtags), in
which population dynamics—where population here quantifies
the visibility of the users and/or of the hashtags—is driven by
interspecific mutualistic interactions, following a Lotka-Volterra
dynamics with Holling-Type II functional response23,54.

Each species has an associated niche55 which, in the context of
an information ecosystem, represents their topical domain (i.e.,
the topic to which a user attends preferentially, and, conversely,
the semantic space where a hashtag belongs to). For the sake of
simplicity, each species’ niche is represented as a Gaussian
distribution with a given standard deviation σ25. Both users and
hashtags niches are anchored around T different points in the
range [0,1], to express different topic preferences (users), and
semantic domain (hashtags). To model the inherent diversity of
users and hashtags within their topic, their position over the line
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is perturbed by a small amount, randomly sampled from a
uniform distribution.

Competition occurs between species of the same class (or
guild), whereas mutualistic interactions couple the dynamics of
abundance of users and hashtags. Following the proposal of Cai
et al.25, the strength of the competitive interaction for
attention10,11,13 between a pair of users is tuned by a fixed
parameter (Ωc) scaled by a quantity that depends on the niche
overlap Gij between them. The same applies to hashtags, which
compete to get used against close alternatives15,16. Similarly, the
strength of the mutualistic interactions between a pair user-
hashtag results from a fixed parameter (Ωm) scaled by the niche
overlap between the pair user-hashtag—i.e., the similarity
between the user’s topic preference and the adequacy of the
hashtag within this topic—and constrained to the existence of a
link between them. Figure 2a summarises the ingredients of the
model. We note that, in contrast to natural ecosystems, hashtags
are an infinite resource—which explains why user-user competi-
tion does not grow with the number of shared hashtags.

On the dynamic side, each user attempts to change its
mutualistic partners (hashtags) in order to maximise the benefit
obtained from their use (see “Methods” section below, and
Supplementary Note 2). This optimisation principle may then be

interpreted within an adaptive framework, in which users
incrementally enhance their visibility by choosing the appropriate
hashtags, see Fig. 2b. In this setting, only users can actively rewire
their links to new hashtags. Within the model, this translates into
reiterative rewiring interactions of randomly drawn users so as to
increase their visibility—“abundance” in the ecological jargon.

Since our primary objective is to reproduce structural changes
under the irruption of external events, the dynamical model
includes as well a mechanism to introduce exogenous events in
the environment. These can be understood as transitory shifts in
the users’ attentional niches, which are tantamount to (typically
short-lived) changes in their interests (Fig. 2c). In this altered
environment, users temporarily engage with new kinds of
hashtags, different from those they usually interact with (see
“Methods” section and Supplementary Note 2.

In an unperturbed simulated environment, the observed
emergent structural arrangement mimics the prescribed organi-
sation of niches in topical blocks. That is, a modular architecture
arises from the random initial one, see Fig. 3e and f, for t < 3 × 104

(note that the plot is shifted by Q0, i.e., modularity at time 2 × 103,
once the system has stabilised its architecture). This is in line with
the resting state observed in the datasets (Fig. 1e, f), where users
are focused on their own topics of interest. It is important to

f

g

h

i

a

b

c

d e

Fig. 1 Structural measures over time for two datasets. Here we show Twitter streams covering two different topics, i.e., Spanish general election of 2019
(panels a–e) and the 2015 Nepal earthquake (panel f–i), respectively. Spanning different time ranges and attracting varying levels of attention (see tweet
volume in panels a and f), the information ecosystems self-organise in similar ways: a block organisation dominates the system (positive modularity Q̂),
reflecting the separate interests of users until external events induce large-scale attention shifts, which rearrange completely the network connectivity
towards a nested architecture (high N̂ ), c and h. Note that, despite the predictable (Spain) vs. unpredictable (Nepal) nature of each stream, structural
properties of the user-hashtag interaction networks (Q̂ with N̂ ) are anti-correlated22. For a closer view, we highlight specific time windows in each dataset
with some identifiable events happening in them (panels d and e for the Spanish elections dataset and panel i for the Nepal earthquake). In each plot,
measures of modularity and nestedness are shifted from their initial values (Q0 andN 0, respectively). The panels b and g, corresponding to NBðIÞ highlight
the nested self-similar arrangements at different scales, which is discussed later on.
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underline that the emergence of a modular architecture is not an
artefact of the model: users (hashtags) do not rewire by similarity
reasons; it is the search for an improvement in their individual
visibility that naturally drives to the consolidation of those new
connections. Also note that, in empirical settings, the random
initial stage is impossible to observe since the network already has
a modular organisation from the very beginning.

A change in the environment—e.g., breaking news—totally
alters this scenario. The systems react with a decrease in Q, and
an increase in the amount of nestedness in the system, Figure 3e, f
for 3 × 104 < t≲ 4 × 104. If the simulation refers to an abrupt
event (Fig. 3f), the decrease in Q is sharp and almost immediate; if
the simulation refers to a predictable event (Fig. 3e), the collapse
of Q is smoother, and the emergence of nestedness is slightly
delayed. Indeed, in this situation, we recover the results in Suweis
et al.23—the emergence of global nestedness—because the
existence of attentional niches becomes irrelevant when all niches
are equally centred, at least on the users’ side. In this sense, our
niche-based population dynamics (and that of Cai’s et al.25) is a
generalisation of Suweis and co-authors’ model. As the environ-
mental shock fades out, the network architecture tends to recover
the general layout present before the event was introduced, see
t≫ 4 × 104. The flexibility of empirical information ecosystems is
thus replicated here, including the anti-correlated behaviour of Q
and N (Supplementary Note 3), and explained as a consequence
of the adaptation to contextual changes—while the species’ local
strategies remain constant.

Nestedness reframed: multi-scale analysis. Beyond the exam-
ination of the evolution of Q and N , we now take a closer look at
the intra-modular organisation of connections during the frag-
mentary stage of the system (t < 3 × 104). For visualisation
purposes, the rows and columns of the adjacency matrices in
panels a and c of Fig. 3 have been arranged to highlight the
block structure that results from modularity optimisation. In
addition, rows and columns inside modules were sorted, in
panels i and k, in order to highlight the possible nested structure
within them36,37. Clear to the naked eye, each compartment
presents an internal nested architecture34. This is a natural
consequence of the node-level visibility-maximisation strategy
as it adapts to system-wide environmental conditions: as long
as these conditions are stable around weakly connected
topics, nestedness emerges in those relatively isolated
subsystems38,40. As soon as the boundaries across subsystems are
blurred (t > 3 × 104, panels b and d in Fig. 3), global nestedness
prevails.

This subtle insight, which stems from the model, reframes the
empirical findings presented above. Indeed, the information
network is not swapping between two radically different
architectures—often even antagonistic47,52—but rather fluctuat-
ing across nested self-similar arrangements at different scales. To
quantify them, N is not a suitable tool, because it is designed to
capture nestedness at the global scale only. For this reason, we
resort to in-block nestedness I39,47,56, which generalises N . On
the one hand, when nestedness emerges at the global scale (one

Fig. 2 Schematic representation of the visibility optimisation model. a Users and hashtags are represented as points in the range [0, 1] in a niche axis.
We modelled each niche as a Gaussian curve with a standard deviation σ. Topics are modelled as clusters of users (hashtags), i.e., T= 4. The coupling
matrices β and γ, which define the competitive (within guilds) and mutualistic interactions, are defined to be proportional to the niche overlap between pair
of species. b At each time-step, species rewire their connections trying to optimise their abundance (popularity). If the rewiring leads to larger popularity
the connection is kept, otherwise, the change is reverted. c Initially, the interactions are laid at random, and the rewiring process takes place. When the
system reaches an evolved steady state, an external event enters the system. Users' niches are temporarily focused on a single common topic and the
rewiring process continues while the effect of the event decays over time. As the event fades out, all species return to their original niche.
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block, B= 1), then we have that I ¼ N . On the other hand,
when the network presents several blocks (B > 1), each one
arranged in a nested manner, then I >N .

It makes sense now to revisit the previous numerical and
empirical results, now through the lens of in-block nestedness.
Figure 1b and g, and Fig. 3g and h, respectively, monitor the relative
size of the largest (NB1

=N) and second-largest (NB2
=N) nested

blocks. In both empirical and numerical cases, we observe that
nearly-perfect consensus is reached at different moments
(NB1

=N � 1), while a fragmented public sphere dominates most
of the time. The relative size of the second-largest nested block
(NB2

=N) allows for an easier interpretation of the level of consensus
reached at each time. Again, the analysis of additional datasets in
Supplementary Note 1 confirms the generality of the results.

Our framework allows explaining the puzzling transition
between partial and global consensus. A fast re-organisation
from modular (nested) to nested (modular) architectures seems
paradoxical and hard to achieve. Nevertheless, the system can
swiftly adapt to any state of collective attention through an
intermediary arrangement that combines the structural signature

of visibility maximisation with the existence of a fragmented
public sphere.

Lasting effects of perturbations on the system’s dynamics. Up
to now, the focus on the macroscale and mesoscale has prevented
us from connecting empirical observations with the model at the
microscopic level. Here, we attempt to perform a comparison—
even if qualitative—between the model and the data, exploiting
the concept of abundance. The translation of the concept of
abundance to the online communication context can be thought
of as the number of times an item is present on screens. With
language abuse, this is tantamount to the number of individuals
(e.g., hashtag instances) that build up the species (e.g., the
hashtag). Following this line of reasoning, for the empirical data
on the hashtags’ side, we can track the hashtag usage frequency
over time, as a proxy for hashtag abundance from the model.

We compare the evolution of such abundance in the model and
the data (Spanish and Nepal datasets). Panel a of Fig. 4 shows, from
our numerical simulations, the changes in abundances of the
hashtags over time, identifying with a colour the topic they are

a b

e

g

i j

c d

f

h

k l

Fig. 3 Structural evolution in the visibility optimisation model. The figure corresponds to controlled numerical experiments at the stable stationary state,
by holding fixed the number of species (100 users and 100 hashtags) and connectance (i.e., the fraction of non-zero interactions) C ~ 10−2. The dynamics
seek to maximise individual species abundances by varying the network architecture. Initially, links between users and hashtags are laid at random. Users
and hashtags are aligned with a number of predefined topics (T= 4, as in Fig. 2). Panel e models the increase, sustainment and decay of attention in
programmed events (e.g., election day), represented as a monotonically decreasing yellow shade starting at t= 3 × 104. Panel f, instead, mimics the arrival
of an unexpected exogenous event, represented also as a yellow shade. In the absence of an exogenous event, and following the trend observed in
empirical data, the model initially organises in a clear block structure. Once the external event enters the system, the network blurs its modular
organisation (smoothly in panel e; abruptly in panel f), and evolves towards a hierarchical, nested configuration. Such trend is visible also from panels g and
h, where changes in NBðIÞ point at the emergence of a single large nested block. After the effects of the shock fade, the network slowly recovers its
baseline modular configuration. The adjacency matrices surrounding the plots show the block and in-block nested structure of the bipartite network
immediately before the onset of the perturbation (panels a, c, i and k, respectively), and the nested and in-block nested arrangement sometime after
(panels b, d, j and l, respectively). In all panels, results correspond to an average of over 10 realisations.
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ascribed to. We observe that, prior to the event, the abundances of
the hashtags are distributed rather uniformly within a narrow range.
After the onset of the expected event, however, the abundance of
the hashtags in topic T3 (the one to which users’ attention is shifted
to) begins to increase. In the time range 3 × 104 < t < 5.5 × 104 we
observe a clear separation between the hashtags from T3 with
respect to the ones from the other topics. In the simulations
mimicking expected events, the artificial shock peaks at t= 5.5 ×
104. Slightly before that time, hashtags in T3 witness an even
stronger increase up to t= 6 × 104 (that is, beyond the peak time).
After that, the system stabilises and appears to be unable to bounce
back to the original, quite uniform abundances.

Panel b of Fig. 4 shows the usage frequency of actual hashtags
over time in the Spanish dataset, where events are known in advance
(in this case, election day on April 28). Adapting the logic of the
model to empirical data, we show the trajectories of a group of

hashtags that belong to 4 different communities, the largest ones
shortly before (light blue, orange, fuchsia) and at the time the ballots
were closed (violet). The abundance of hashtags is represented here
as their absolute frequency, shifted to the value at the beginning of
the observation, i.e., f̂ h ¼ f hðtÞ � f hð0Þ, window to enable the
comparison of their evolution. As in its model counterpart, the
vertical lines show the buildup of conversations ahead of the results
(around 4 p.m., “event onset” tag), and the electoral schools closing
time (8 p.m., “event peak” tag). Overall, we observe a striking
qualitative agreement between the simulated hashtags abundance
(model) and the hashtag frequencies (data). Until 4 p.m., all
4 communities present a rather flat and uniform activity (note the
logarithmic scale: apparently large fluctuations, e.g., between 12 p.m.
and 2 p.m., imply frequency changes below 10). In the period
4 p.m.–6 p.m., the behaviour of the violet subset of hashtags
resembles that of the hashtags of T3 when the event occurs (slow but

a b

c d

Fig. 4 Evolution of abundances for a 4-topic information ecosystem. Panels a and b correspond to synthetic and empirical expected events. For the
numerical simulations, hashtags in T3 (purple) begin a smooth increase in abundance ni at the event onset, which becomes steeper as the peak of the event
approaches. Hashtags in other topics (blue, orange, fuchsia) experiment a slow decline. The same happens for the Spanish election day (panel b), regarding
the evolution of hashtag frequencies f̂h ¼ fhðtÞ � fhð0Þ, although admittedly with fluctuations. In this case, each colour corresponds to different
communities, as detected from the networks maximising Q. Panels c and d correspond to synthetic and empirical unexpected events. Except for the
abruptness in the increase of the purple hashtags in the Nepal dataset (much faster than its synthetic counterpart), the similarities are clear to the naked
eye. Note that, in panels b and d, hashtag frequencies are shifted to their initial value. Remarkably, all four panels evidence that, at the microscale, a
sufficiently strong perturbation impedes the system to recover the pre-event state, i.e., the system has achieved a new stable state. This result contrasts
with the structural flexibility observed at the mesoscale and macroscale, in which the system remains within a narrow set of possible arrangements.
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steady separation from the other hashtags, with a frequency increase
between 101 and 102); and also a more pronounced boost in the
period 6 p.m.–10 p.m. (i.e., 2 hours before and after the event peak).
The violet subset of hashtags clearly dominates the scenario even at
midnight and starts an expected decline as conversations mostly halt
during the late-night period. On the other hand, the subset of
hashtags from the pre-debate stage (following T1, T2, T4 in the
model) present moderate decreases before 4 p.m., and losses are
stronger after that time (especially light blue and orange topics).

For a complete picture, we study, as well an unexpected event.
Panels c and d of Fig. 4 represent the evolution of abundances in
an artificial setting with an unexpected event happening at t=
3 × 104; and the evolution of hashtag frequencies around the time
of Nepal’s earthquake main aftershock (May 12, around 5 pm),
respectively. Similar to its “expected” counterpart, our numerical
experiments on panel c show a separation of the violet hashtags in
T3, with slight decreases of the other topics T1, T2 and T4. The
system also appears to be unable to return to the pre-event stage,
and so the only obvious difference is that the separation occurs in
an abrupt way. On panel d, we see the evolution of the
frequencies of hashtags that belong to four of the largest
communities detected in the data, slightly before (light blue,
orange, fuchsia) and right after the aftershock (violet). Clearly,
hashtags in the violet community present a sudden increase,
followed by a very slow decrease resembling the one observed for
t > 6 × 104 in panel c. Given the international impact of the
earthquake in Nepal, there is not decay during the night period.

These two examples extend the mesoscale and macroscale
connections between data and model to the microscale.
Furthermore, they provide a different perspective of our approach
with regard to the memory of the system and the trace that
exceptional events leave behind. From the mesoscale and
macroscale, it is still valid to say that the system is trapped in a
narrow set of structural configurations (namely, nested arrange-
ments with only one or several blocks): this explains our use of
the term “flexible”. And yet, structural flexibility does not imply
that the dynamic states of the system remain the same. Strong
enough perturbations push the system away from its present
stable state towards a new one. In this sense, the perturbation
produces a long-lasting effect on the system’s node dynamics.

Discussion
The transit from low-bandwidth management of public infor-
mation, to a decentralised and fragmentary scenario, has changed
the way in which humans process information. In the context of a
“cognitive bottleneck”, the relevant drivers of online commu-
nication need to be identified. Building on diverse evidence, from
cultural evolution14–16 to neuroscience5,7, we suggest that these
drivers are competition for cognitive resources, mutualistic
exploitation of the content, co-adaptation of actors’ and memes’
visibility, and environmental conditions—which heavily resemble
the ingredients of natural mutualistic assemblages. So far,
incursions in such an ecological mindset have been
sparse1,10,11,22. In this work, beyond a metaphoric interpretation,
we show that an ecological framework—with explicit use of
competitive and mutualistic interactions as drivers of information
dynamics—is a powerful tool to describe the evolution of infor-
mation ecosystems. Indeed, although simple neutral models may
account for emergent patterns in popularity10,11 and attention
distribution57, we show that our non-neutral, niche-based
population dynamics model can successfully explain the com-
plex interplay when combining actor-meme systems, attentional
niches and environmental shocks. We do so under the premise
that the only condition that defines mutualism is the exchange of
goods or services between two species, i.e., the fact that each

species involved in mutualism must receive a benefit from the
interaction. This is not to say that a one-to-one mapping is
possible between natural mutualistic assemblages and online
communication systems.

The success of the proposed approach is noteworthy at all the
relevant scales of the system, i.e., macro, meso and micro. A fine
quantitative fit is difficult to achieve at this stage since our syn-
thetic approach is very simple in purpose: not only the presented
toy model has an arbitrarily small size, but also a small amount of
“topics”, which, on top of that, are equally sized (exactly a fourth
of the synthetic users and hashtags are centred around each
topic). Clearly, all of this represents an idealisation of actual
systems, and therefore some specific empirical particularities
cannot be matched. Our modelling framework is a simple (but
not too simple) way to understand the fundamental ingredients
driving the observed emergent patterns in online communica-
tions systems.

Our results open an ambitious research alley. In the shorter
term, future efforts should attempt to disentangle the apparent
contradiction between structural flexibility, i.e., the propensity of
the system’s architecture to stay fixed at different in-block nested
configurations, and dynamical instability, i.e., the fact that strong
enough perturbations impede nodes to bounce back to their
previous state variables. Also, further work should seek to mimic
the microscopic dynamics of users’ abundances before and after
breaking events. These cannot be explained without including
death-birth and invasion processes58,59, which are in turn
necessary to understand how influential users and viral contents
emerge. Similarly, this initial proposal rules out “cultural drift”—
the slower changes in the users’ topical preferences—which leads
to persistent structures and shapes communication flows.

Closer to practical aspects, there are transitions to/from nested/
modular arrangements for which no explanation is provided (e.g.,
April 23 in Fig. 1e). It is often possible to find echoes of those
transitions in the media, which explain their occurrence a pos-
teriori. Whether those echoes can be found or not, the detection
of structural changes is tantamount to the detection of collective
attention foci. As such, our work contributes to the study of what
is expected or unexpected, remarkable or unremarkable, in online
communication streams—which remains an open question.

Reaching further, the tradition in theoretical ecology aimed at
understanding and preventing the collapse of ecosystems can be
adopted to decipher how social media and information bubbles
shape our thinking60, or, in the opposite direction to disrupt and
break misinformation dynamics and polarisation. Related to this,
we foresee as well a connection between the extensive research on
stability and resilience in natural ecosystems and their informa-
tional counterparts. In this sense, we are convinced that such
interchange of techniques and models could be beneficial for
theoretical ecology too, as it will allow testing theories and
methodologies in a more controlled, data-rich environment with
a faster time scale at play.

Methods
Empirical and synthetic data. For both synthetic and empirical cases, we repre-
sent a bipartite unweighted network as a NU ×NH matrix A, where rows and
columns refer to users and hashtags, respectively. Elements, therefore, represent
links in the bipartite network, i.e., if the element auh has a value of 1, it represents
that the user u produced the hashtag h at least once, otherwise auh is set to 0.

For each empirical dataset, we split the Twitter stream into chunks according to
non-overlapping time windows with three hours of duration ω= 3h, containing
the NU= 2000 most active unique users, while the number of hashtags is variable
(depending on the amount produced by those NU users). In this way, for each
snapshot, a rectangular binary presence-absence matrix is created. During the onset
of the events, the procedure was repeated considering time windows of 15 mins of
duration. It is important to highlight that the networks may not contain the same
nodes across t: as time advances, users join (disappear) as they start (cease) to show
activity; the same applies for hashtags, which might or might not be in the focus of
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attention of users. See Supplementary Note 1 for further details on the construction
of the networks, including a discussion regarding the choice of NU= 2000. Also,
Supplementary Note 3 introduces a discussion on the temporal continuity of users
and hashtags over time (‘species turnover’) in the data and the model.

For the generation of synthetic data, we set up a small network of 100 users and
100 hashtags, and the interactions between users and hashtags are laid at random
with a connectance of C ~ 10−2. The choice of such C is meant to match the same
order of magnitude of empirical networks’ connectance when we take NU= 100,
following the logic of the work by Suweis et al.23; see Supplementary Note 2.

Structural measures. In this work, we explore the structural evolution of the
networks by means of three arrangements, one at the macroscale (nestedness45,46),
and two at the mesoscale (modularity28, in-block nestedness34,39,47). We focus our
attention on modular, nested and in-block nested patterns since all of them have
been observed prominently in ecology36,52,53,61 and in information systems22,39. In
the following, we provide the definitions of the three measures.

Nestedness. The concept of nestedness appeared, in the context of complex net-
works, over a decade ago in systems ecology31, and was previously introduced as a
way to describe the patterns of distribution of species in isolated habitats45. In
structural terms, a perfect nested pattern is observed when specialists (nodes with
low connectivity) interact with properly nested subsets of those species interacting
with generalists (nodes with high connectivity), see Supplementary Fig. 3a. Here,
we quantify the amount of nestedness in information networks by employing an
overlap metric62 introduced by Solé-Ribalta et al.39:

N ¼ 2
Nr þ Nc

∑
Nr

i;j

Oij � hOiji
kjðNr � 1ÞΘðki � kjÞ
" #

þ ∑
Nc

l;m

Olm � hOlmi
kmðNc � 1Þ Θðkl � kmÞ
� �( )

;

ð1Þ
where Nr and Nc correspond to the number of rows and column nodes, respec-
tively. The values Oij (or Olm) measure the degree of links overlap between rows (or
columns) node pairs; ki, kj corresponds to the degree of the nodes i,j, and Θ(⋅) is a
Heaviside step function that guarantees that we only compute the overlap between
pair of nodes when ki≥ kj. Finally, 〈Oij〉 represents the expected number of links

between row nodes i and j in the null model and is equal to hOiji ¼
kikj
Nr
.

Modularity. The modular structure is a rather ubiquitous mesoscale
architecture29,63–65 and implies that nodes are organised forming groups, i.e.,
devoting many links to nodes in the same group, and fewer links towards nodes
outside66, see Supplementary Fig. 3b. Given the huge number of possible ways to
partition a graph into groups, an exhaustive assessment of every partition’s fitness
is unfeasible. Hence, scholars have developed several algorithms that are able to
find fairly good approximations or (sub)optimal partitions, by means of the
optimisation of a fitness function28,67–69. Here, we search for a (sub)optimal
modular partition of the nodes by applying the extremal optimisation algorithm67

to maximise Barber’s70 modularity, which is an extension of the original for-
mulation introduced by Newman28, to bipartite networks:

Q ¼ 1
L
∑
Nr

i¼1
∑
Nc

j¼1
~Aij � ~pij

� �
δðαri ; αcj Þ ð2Þ

where L is the number of interactions (links) in the network, ~Aij is the adjacency
matrix which denotes the existence of a link between rows and columns nodes i
and j, ~pij ¼ kikj=L is the probability that a link exists by chance, and δ(αi, αj) is the
Kronecker delta function, which takes the value 1 if nodes i and j are in the same
community, and 0 otherwise.

In-block nestedness. Nestedness and modularity are emergent properties in many
systems, but it is rare to find them in the same system. This apparent incompat-
ibility has been noticed and studied, and it can be explained by different dynamical
pressures: certain mechanisms favour the emergence of blocks, while others favour
the emergence of nested patterns. Following this logic, if two such mechanisms are
concurrent, then hybrid (nested-modular) arrangements may appear. Hence, the
third architectural organisation that we consider in our work refers to a mesoscale
hybrid pattern, in which the network presents a modular structure, but the
interactions within each module are nested, i.e., an in-block nested structure, see
Supplementary Fig. 3c. This type of hybrid or “compound" architectures was first
described in Lewinsohn et al.34 and has been further explored in the last
decade35,37–39. Using the formulation developed in ref. 39, the degree of in-block
nestedness of a network I can be computed as

I ¼ 2
Nr þ Nc

∑
Nr

i;j

Oij � hOiji
kjðSi � 1Þ Θðki � kjÞδðαi; αjÞ
" #

þ ∑
Nc

l;m

Olm � hOlmi
kmðSl � 1Þ Θðkl � kmÞδðαl; αmÞ

� �( )
;

ð3Þ
where Si accounts for the number of nodes in the same guilds of i and that belong
to the same community. Worth highlighting this hybrid structure reframes nest-
edness, originally a macroscale feature, to the mesoscopic level. In this sense, by
definition, I reduces to N when the number of blocks is 1.

For the community analysis, we apply a variant of the extremal optimisation
algorithm67 adapted to maximise both, Barber’s bipartite modularity, and the in-
block nestedness function47. Supplementary note 4 discusses the convenience and
quality of this maximisation heuristic.

Niche model and population dynamics. The model is developed for a bipartite
network representing users and hashtags as two interacting guilds (denoted U and
H). Each species i has to assign a niche profile, formulated as a Gaussian function
Gi(s) with width σi, positioned according to a number of T topics of their interest,
that is created equidistant on the niche axis, see Fig. 2. To perform the numerical
simulations, we employ a model that follows a Lotka-Volterra dynamics, with
Holling-Type II mutualistic functional response23,54:

dnUi
dt

¼ nUi ρUi �∑
j
βUij n

U
j þ ∑kγ

UH
ik nHk

1þ h∑kθ
UH
ik nHk

 !
;

dnHi
dt

¼ nHi ρHi �∑
j
βHij n

H
j þ ∑kγ

HU
ik nUk

1þ h∑kθ
HU
ik nUk

 !
:

ð4Þ

Here, the coupling matrices β and γ define the competitive (within guild) and
mutualistic (across guild) interactions, respectively. In this context, β encodes the
competition for others’ attention (among users), and for the cognitive resources of
speakers (among hashtags). Both interaction matrices depend linearly on the niche

overlap between pairs of species Ggg0

ij ¼ R Gg
i ðsÞGg 0

j ðsÞds. In addition, these matrices
have a global factor, Ωm or Ωc, which tune the strength of mutualistic or com-
petitive interactions, such that, γUHik / Ωm � GUH

ik � θUHik and βHHij / Ωc � GHH
ij � λ,

respectively. The competitive matrices include an additional parameter λ, that helps
to balance the inter–intra topic competitive interactions: see Supplementary Note 2.
Finally, θ is the adjacency matrix, and h is the handling time of the Holling-Type II
mutualistic functional response. Within the information ecosystem context, these
equations represent a phenomenological way to describe the evolution of the nodes’
visibility as a function of their interaction. In particular, nUi may represent the
number of instances in which user i is present in other users’ screens, while nHj may
quantify the popularity of a given hashtag j. Assuming that preferential attachment
mechanisms of various types affect the nodes visibility, ρUi and ρHi model the
associated exponential growth (if they are positive). The handling time h effectively
models the constraint that users cannot interact with a very large number of
hashtags due both to time and character constraints. Due to these limitations, the
benefit obtained through mutualistic interactions does not grow monotonically
with the number of partners.

Optimisation proccess. On the dynamical side, we also introduce an optimisation
principle, in which users attempt to change their mutualistic partners (memes) in
order to maximise their visibility. Specifically, we start a rewiring adaptation
process following the approaches in Suweis et al.23 and Cai et al.25:

Rewiring. at constant time intervals, a random species U, with a least one link, is
selected and rewired to a randomly selected species H0 , removing one of its pre-
vious links H, with probability pUH / 1� k�1

H , in order to maximise their indivi-
dual abundances.

Link recovery. At the end of each time interval, if the current abundance is greater
than the previous one, the current (new) link is kept; otherwise, the previous link is
recovered.

Note that in this scheme, memes do not optimise any quantity. Thus, the
rearrangement of the memes network structure is simply a byproduct of the user’s
actions.

Introduction of external events. Finally, our dynamic model includes as well a
mechanism to introduce exogenous events in the environment. We modelled these
events as transitory shifts in the users’ attentional niches. Concretely, we changed
the user’s niche centres towards a single common topic for a limited period of time.
After some time, we move them back to their original niche topics. In the simu-
lations, the users’ niches were modified in the following way:

GE
i ðsÞ ¼ ½1� f ðtEÞ�GiðsÞ þ f ðtEÞGE0 ðsÞ; ð5Þ

where a user’s niche becomes a composition of two Gaussian niches: GE0 ðsÞ cor-
responding to the general event, Gi(s) that is the original one corresponding to the
user’s intrinsic interests, and f(tE) is the function that governs the growth and decay
of the external event. In this work, we have modelled two profiles along the lines of
Lehmann et al.42, see Supplementary Note 2 and Supplementary Fig. 8.

Simulations were performed by integrating the system of ordinary differential
equations using a fourth-order Runge–Kutta method. We assigned the same initial
abundance n0= 0.2 and intrinsic growth rates ρU= ρH= 1 to all users and
hashtags. Species were considered to suffer extinctions when their abundance
density was lower than 10−4. Finally, the handling time h, of the Holling-Type II
mutualistic functional response was set to 0.1. See Supplementary Note 2 for
further details.
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Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The Catalan and Spanish datasets are available at OSF with the identifier https://doi.org/
10.17605/OSF.IO/J5QWX. The rest of the datasets employed in this study were collected
by Zubiaga51 and are available at figshare with the identifier https://doi.org/10.6084/m9.
figshare.5100460.v2.

Code availability
The software code for nestedness measurement, and modularity and in-block nestedness
optimisation, is available at https://github.com/COSIN3-UOC/N-Q-IBN with https://doi.
org/10.5281/zenodo.4557009. The code for simulations of the dynamical model is
available at https://github.com/COSIN3-UOC/dynamical-niche-model with https://doi.
org/10.5281/zenodo.4555890.
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