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Cigarette smoke promotes oral leukoplakia via regulating
glutamine metabolism and M2 polarization of macrophage
Yanan Zhu1, Shuo Zhang1,2, Jiahui Sun 1,2, Tingting Wang3, Qin Liu1, Guanxi Wu1,2, Yajie Qian1,2, Weidong Yang1, Yong Wang1,2✉ and
Wenmei Wang1✉

Oral immunosuppression caused by smoking creates a microenvironment to promote the occurrence and development of oral
mucosa precancerous lesions. This study aimed to investigate the role of metabolism and macrophage polarization in cigarette-
promoting oral leukoplakia. The effects of cigarette smoke extract (CSE) on macrophage polarization and metabolism were studied
in vivo and in vitro. The polarity of macrophages was detected by flow cytometric analysis and qPCR. Liquid chromatography-mass
spectrometry (LC-MS) was used to perform a metabolomic analysis of Raw cells stimulated with CSE. Immunofluorescence and flow
cytometry were used to detect the polarity of macrophages in the condition of glutamine abundance and deficiency. Cell Counting
Kit-8 (CCK-8), wound-healing assay, and Annexin V-FITC (fluorescein isothiocyanate)/PI (propidium iodide) double-staining flow
cytometry were applied to detect the growth and transferability and apoptosis of Leuk-1 cells in the supernatant of Raw cells which
were stimulated with CSE, glutamine abundance and deficiency. Hyperkeratosis and dysplasia of the epithelium were evident in
smoking mice. M2 macrophages increased under CSE stimulation in vivo and in vitro. In total, 162 types of metabolites were
detected in the CSE group. The metabolites of nicotine, glutamate, arachidic acid, and arginine changed significantly. The
significant enrichment pathways were also selected, including nicotine addiction, glutamine and glutamate metabolism, and
arginine biosynthesis. The results also showed that the supernatant of Raw cells stimulated by CSE could induce excessive
proliferation of Leuk-1 and inhibit apoptosis. Glutamine abundance can facilitate this process. Cigarette smoke promotes oral
leukoplakia via regulating glutamine metabolism and macrophage M2 polarization.
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INTRODUCTION
Smoking is a key risk factor for cancer, chronic obstructive
pulmonary disease, and cardiovascular disease. Cigarette smoke
produced by smoking contains about 4 000 compounds, most of
which are harmful to humans, including carcinogens, mutagenic
substances, and immunotoxin substances, which have detrimental
effects on systemic and local immunity.1 Oral mucosa and gingival
epithelium are the first human tissues exposed to cigarette smoke
and are directly affected by smoking. Smoking can promote the
development of various oral diseases, such as oral leukoplakia
(OLK), oral cancer, and periodontitis.2,3

Smoking is one of the essential epidemiological risk factors
recognized by oral leukoplakia, and 80%–90% of OLK patients
smoke.4 Smoking increases the risk of oral leukoplakia and promotes
cancer formation, causing the occurrence of oral squamous cell
carcinoma.5 The prevalence of OLK is related to the number and
duration of smoking, and there is a dose–effect relationship.6 The
smoking period, the number of cigarettes smoked per day, and the
smoking manner all have an impact on the risk of OLK.7

However, the mechanism by which smoking promotes OLK
pathogenesis is unclear. Biochemically and pathologically, there is
strong evidence for airway sensitization, hyperresponsiveness, and
inflammation as a consequence of exposure to smoke particulate.8

Smoking is recognized to promote oral and respiratory infections
caused by biological pathogens. The influence of smoking on
immunity is well recognized.9,10 Smoking impacts both innate and
adaptive immunity and plays dual roles in regulating immunity by
either exacerbation of pathogenic immune responses or attenua-
tion of defensive immunity.11 Pappas examined studies some of
which implied activation of innate response in animals with
exposure to smoke, and some of which implied suppression of
innate response.8 It was noted that innate response was indeed
activated with low initial exposures to either cigarette smoke or
diesel exhaust particulate, but that at high doses, the innate
response was suppressed. Macrophages perform a variety of
functions like inflammatory and antimicrobial activity in host
defense, resolution of inflammation and wound healing, and
maintenance of various homeostatic processes.12 It is suggested
that the effects of smoking on innate immunity are related to the
dose and duration of action. It incorporates the activation of M1
innate response at a low dose but suppresses the M1 innate
response at high-dose particle exposures.
Abundant studies have shown that macrophage polarization

depends on the environment of human blood monocytes and
mouse macrophages in vitro.13,14 Smoke stimulation affects
the immune environment by affecting the polarization and
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phagocytosis of macrophages. Research on the effects of smoking
on macrophages has been ongoing. Two main macrophage
activation programs are called M1 and M2 polarization.15 Data
indicate that smoking does change the steady-state polarization
program in human alveolar macrophages. There is an overall anti-
inflammatory gene expression pattern in the macrophage of
healthy smokers. The inactivation of the M1 polarization pattern is
accompanied by the induction of abnormal phenotypes, char-
acterized by the upregulation of genes associated with different
M2 polarization programs. Long-term smoking reprograms the
steady-state macrophage polarization to M1 inactivated, and
partially M2-activated macrophages, which enhances the ability of
tissue remodeling but reduces the gene expression related to
inflammation and immunity.16,17 Recently, many studies have
focused on the metabolic changes of immune cells, and external
stimuli are believed to reprogram the metabolism of immune
cells, thereby affecting their immune function and differentiation,
and subsequently producing many effects.18 Research showed
that different metabolic pathways are used to regulate macro-
phage phenotypes. Its functional plasticity and macrophage
polarization are related to metabolism.19

Metabolic processes and their products play a critical regulatory
role in the polarization of mature macrophages, and this local
microenvironment and cells are often considered as interaction.
Activation or polarization of macrophages by microenvironmental
cues can trigger distinct changes in their metabolic program. The
cross-talk between the intracellular signal cascades, metabolic
pathways, and their metabolites in turn affect the transcription
and epigenetic events, resulting in distinct functional states.20 The
manipulation of such metabolic pathways in these cells can
dramatically alter their specific immune functions, rather than
simply affecting energy generation or general biosynthesis.
Different intracellular metabolic pathways regulate the polariza-
tion and function of activated macrophages.
Activation of macrophages to an M1 state by inflammatory

stimuli, like lipopolysaccharide (LPS) and interferon-γ (IFNγ), was
associated with enhanced glycolysis and impaired tricarboxylic acid
(TCA) cycle and mitochondrial oxidative phosphorylation (OXPHOS).
Several recent studies demonstrate an integral role of glutamine

metabolism in M2 macrophages, rather than M1 macrophages. Jha
et al.21 showed glutamine metabolism as a characteristic feature of
M2 macrophages.
In recent years, macrophage metabolic reprogramming has

attracted attention.22 However, how macrophage metabolism is
regulated by the local microenvironment stimulated by cigarettes
especially for oral mucosa disease is still minimal which is worthy
of further study.
In this study, the effect of smoking on macrophage polarization

was verified in vitro and in vivo studies. The liquid
chromatography-mass spectrometry (LC-MS) non-targeted meta-
bolome analysis was used to screen the significantly different
metabolites and enriched metabolic pathways of macrophage by
CSE stimulation. We want to verify and explain that if cigarette
smoke induced glutamine metabolism and macrophage M2
polarization to affect epithelial hyperplasia and influence the
occurrence and development of oral leukoplakia.

RESULTS
Smoking promotes oral leukoplakia (OLK) of mice
The mice were given smoking and/or 4NQO (4-nitroquinoline
N-oxide), respectively. It was found that after 16 weeks of oral
smoking, white streaks or plaques appeared on the tongue of the
mice, and tumors were developed in some mice. Most mice in
the 4NQO-drinking group showed obvious markings or even
masses in the tongue tissues of which pathological examination
showed epithelial hyperkeratosis and partial epithelial dysplasia.
Meanwhile, the combination of smoke and 4NQO led to a higher

proportion of abnormal tongue tissues, compared with a single
treatment. Tongue tissues were further analyzed using hematox-
ylin and eosin (H&E) staining (Fig. 1a). Compared with the control
group, leukoplakia and epithelial keratosis were significantly
increased in the smoke group. The epithelium hyperplasia of the
oral mucosal epithelium was severe in the 4NQO+ smoke group,
compared with the single-treatment group. While nicotine and
cotinine contents assessed by high-performance liquid chromato-
graphy (HPLC) are shown in Fig. 1e. The nicotine and cotinine
levels of the smoking mice increased significantly.

Smoking affects macrophage M2 polarization
In the above animal model, the proportion of M2 macrophages
(F4/80+CD206+ cells) was significantly higher in the smoking
group than that in the non-smoking group (Fig. 1b). mRNA
expressions of genes associated with M2 macrophage function
(Arg-1, IL-10) were also increased in the smoking group compared
with the control group. Meanwhile, mRNA expressions of genes
associated with M2 macrophage function (iNOS and TNF-α) were
significantly decreased in the smoking group (Fig. 1d). Immuno-
histochemical analysis of Arg-1 in the oral mucosa epithelial tissue
of the mice is shown in Fig. 1c.
Raw cells were stimulated with CSE in vitro. Compared with the

control group, the proportion of M2 macrophages (F4/80+CD206+

cells) in the smoking group was significantly increased, while the
proportion of M1 macrophages (F4/80+MHC-II+ cells) was
decreased (Fig. 2a). Similarly, the mRNA levels of Arg-1 and IL-10
were increased, while the mRNA levels of iNOS and TNF-a were
decreased in CSE-treated Raw cells (Fig. 2b).

Smoking promotes glutamine metabolism of macrophages
The results of non-targeted ultra-high-performance liquid
chromatography-mass spectrometry (UPLC-MS), including differ-
ential metabolites and enriched pathway terms are shown in
Fig. 3. The cells were cultured with 32% CSE for 24 h or Dulbecco’s
modified eagle medium (DMEM) (the control group).
Comparing the CSE group with the control group, 162

differential metabolites were detected by UPLC-MS (P < 0.05)
(Fig. 3a). In the volcanic plots, red, blue, and gray dots,
respectively, represent upregulated, downregulated, and non-
significant differential metabolites.
Heatmaps of metabolites that can be enriched into known

metabolic pathways (Fig. 3b). In the CSE group, we found
metabolic increased in some organic heterocyclic compounds,
such as L-nicotine, D-glutamate, arachidic acid, and L-arginine.
According to the Kyoto Encyclopedia of Genes and Genomes

(KEGG) and UPLC-MS data, the significant enrichment pathway is
selected for bubble mapping and a histogram (Fig. 3c-e). The
P value in the metabolic pathway is the significance of enrichment
of this metabolic pathway. The abscissa is the enrichment factor
(Rich factor, Rich factor= significantly different number of
metabolites/total number of metabolites in the pathway). The
greater the Rich factor is, the greater the enrichment degree will
be. The color from red to green indicates that the P value
decreases successively. The larger the dot is, the more metabolites
are enriched in this pathway. The enrichment analysis of different
metabolites is helpful to understand the mechanism of metabolic
pathways in different samples.
In the CSE group, the pathways of nicotine addiction,

mammalian target of rapamycin (mTOR) signaling pathway,
antifolate resistance, glycerophospholipid metabolism, choline
metabolism in cancer, central carbon metabolism in cancer,
D-glutamine and D-glutamate metabolism, synaptic vesicle cycle,
and arginine biosynthesis significantly enriched (Fig. 3d, e).
We further verified that in the animal model, the relative

expression of Slc1a5, Slc7a5, and Ogdh in the oral mucosa tissue
of the smoking group was significantly increased (Fig. 4a). Similar
results of the relative expression of Slc1a5, Slc7a5, and Ogdh were
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found in Raw cells stimulated with CSE (Fig. 4b). The glutamine,
glutamate, and α-ketoglutarate (α-KG) contents inside macro-
phages stimulated by CSE were increased (Fig. 4c).

Glutamine metabolism affects macrophage M2 polarization
To investigate the role of glutamine metabolism in smoking-
promoting macrophage polarization, we added glutamate in the
DMEM for the glutamate abundance environment and used the
DMEM culture without glutamate for the deprivation environment.
Figure 5a, b shows the expression of F4/80+CD206+ cells by
immunofluorescence. Figure 5c, d shows the proportions of F4/80+

CD206+ cells by flow cytometry. The results showed that F4/
80+CD206+ cells were significantly increased after CSE stimulation
and glutamate abundance.

Glutamine metabolism promotes epithelial cell proliferation
In order to explore the role of glutamine metabolism in promoting
macrophage M2 polarization and inducing epithelial cell pro-
liferation by cigarette smoking, we performed a wound-healing

assay to examine the migration ability of Leuk-1 cells under the
supernatant of Raw cells cultured with or without glutamate. It
was found that cells with the Raw cell supernatant stimulated with
CSE and glutamate were more active, while the supernatant of
Raw cells using glutamine-free medium was significantly less
effective (Fig. 6b and S1). CCK-8 results are shown in Fig. 6a and
the apoptosis ratios are shown in Fig. 6c, d which were detected
by flow cytometry with Annexin V-FITC/PI double staining. The
abundance of glutamine significantly induced Leuk-1 cell viability
and inhibited apoptosis rate in Leuk-1 cells compared with
treatment with CSE alone.

DISCUSSION
Smoking, as an important risk factor of OLK, has long been one of
the concerns in the research field of the oral mucosa. There are
many studies on the direct effects of smoke stimulation on
epithelial cells. However, few studies are on the effects of smoke
stimulation on the differentiation and function of oral local
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immune cells. In this study, the results of animal models and cell
experiments in vitro showed that smoke promoted the differ-
entiation and M2 polarization of macrophages in oral mucosa to
affect the dysplasia of epithelial cells indirectly.
Macrophages, the mature form of the monocytes, play a

significant role in tissue homeostasis and immunity. Macrophages
are an important cell type that play a wide variety of roles in
various organ sites. Cigarette smoking is a major pathogenic factor
in lung cancer. Macrophages play an important role in host
defense and adaptive immunity. These cells display diverse
phenotypes for performing different functions. Exposure to
particulate induces both M1 and M2 polarization. The results of
this research show M2 polarization is increased with exposure to
smoke, while the dose is the important consideration as
mentioned in Pappa’s review.8 As M1 macrophages undergo M2
polarization, fewer M1 macrophages are available. As fewer M1
macrophages produce M1 proinflammatory cytokines, fewer
monocytes are recruited from bone marrow to replace them, so
polarization is shifted to M2. It is not mean that M2 polarization
suppresses M1 immune response nor the M1 tumor-suppressing
activity. M2 polarization is still an immune response in which the
T2 activity of T cells promotes antibody production. Smokers often
have higher circulating IgE than nonsmokers and light smokers,
indicating that sensitization is active, but often the atopic response
associated with high IgE levels is suppressed as well. While at high
particle dose exposures, M2 immune response is also suppressed.
Therefore, it is reasonable to expect that cigarette smoke promotes
a M2-like phenotype with dose dependence.23

These effects are mediated through a few major pathways
including the nuclear factor kappa-B (NF-κB), mitogen-activated
protein kinase (MAPK), and Janus kinase and signal transducer and
activator of transcription (JAK/STAT) signaling pathways.5,24 It is
showed that in our study, the metabolism of macrophages
changes significantly when it gets the smoke stimulation. This
suggests that metabolic reprogramming may be one of the
mechanisms for smoking to promote OLK.
In this experiment, we performed two sample groups for the

metabolite detection by LC-MS, and metabolic effects of CSE
stimulation on Raw cells were studied. Liquid chromatography-mass
spectrometry (LC-MS) has distinct advantages over other metabolic
grouping techniques.25 Ultra-high-pressure liquid chromatography
or ultra-high-performance liquid chromatography (UPLC) achieves
better separation. In MS scanning, the tandem mass spectrometer
can achieve rapid switching of high- and low-collision energy.
Combined with mass spectrometry information analyzed by
Progenesis QI v2.3, abundant metabolites can be detected.26

After CES stimulation, Raw cells had nicotine, cocaine, and
morphine substance dependence, and multiple metabolites
changed in nicotine, cocaine, and morphine addiction, which were
related to metabolite changes such as acetylcholine and glutamate.
In the ventral tegmental area (VTA), alpha6-nicotinic acetylcholine
receptors and alpha4beta2-nicotinic acetylcholine receptors
(α6nAChRs and α4β2nAChRs) inhibit DAergic neurons, while
alpha7-nicotinic acetylcholine receptors (α7nAChRs) enhance glu-
tamate release and increases the excitability of DAergic neurons.
After short-term nicotine exposure, α6nAChRs and α4β2nAChRs on
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GABAergic terminals are desensitized, reducing γ-aminobutyric
acid (GABA) release and local inhibition of dopamine (DA) neurons.
The α7nAChRs on the glutamate terminal remain active and
enhance the glutamate excitation of DA neurons and DA release.
After literature review, it is known that α7nAChR is expressed in
various nonneuronal cells, including macrophages.27,28 This may be
one of the reasons for the abnormal glutamine metabolism in
macrophages induced by smoke stimulation.

The result of LC-MS showed that in amino acid metabolism,
glutamine rose significantly in the CES group. Glutamine metabolic
pathways in the smoke group enriched significantly, while the M2
macrophage polarization happened significantly. It was pointed
that when macrophage got smoke stimulation, glutamine meta-
bolic and M2 polarization played important roles. Early studies
have indicated a role for glutamine in LPS-stimulated macrophages
and the expression of cytotoxic/inflammatory effectors such as NO
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and IL-1β. In LPS-activated M1 macrophages, glutamine metabo-
lism contributes to the increased generation of succinate via
anaplerosis (proceeding through α-ketoglutarate α-KG) and
γ-aminobutyric acid (GABA) shunt.29 However, several recent
studies demonstrated an integral role of glutamine metabolism
in M2 macrophages, rather than M1 macrophages.30,31 Glutamine
metabolism acted as a characteristic feature of M2 macrophages.
They showed that almost a third of the carbons in the TCA cycle
were derived from glutamine.21 Functionally, deprivation of
glutamine or inhibition N-glycosylation decreased the expression
of several M2 markers like Il4i1 and CD206.
Jha et al. characterized systemic changes during murine macro-

phage M1 and M2 polarization. Glutamine deprivation affects M2
polarization but not M1 polarization.21 Glutamine deprivation shows
a significant (50%) defect in M2 commitment in glutamine-deprived
media based on CD301-CD206. M2 polarization was found to activate
glutamine catabolism and UDP-GlcNAc-associated modules. Corre-
spondingly, glutamine deprivation or inhibition of N-glycosylation
decreased M2 polarization.
At the same time, significant increases in arginine content were

found in both arginine and proline metabolism and arginine
biosynthesis pathways. L-Arg in macrophages was regulated by
iNOS and Arg-1, and iNOS can catalyze L-Arg to produce NO and L-
citrulline. NO had a bactericidal effect of meeting the M1
macrophage needs for anti-inflammatory and pathogen invasion
resistance, and L-citrulline was used in the urea cycle.32 Inversely,
Arg-1 catalyzed L-Arg to produce ornithine and urea ammonia
acid, promoting cell proliferation and collagen synthesis and
working for tissue repair and remodeling. High expression of Arg-1
was detected in M2 macrophages.33 The qPCR and flow cytometry
results showed that M2 macrophages significantly increased
especially under CSE stimulation, suggesting that amino acid

metabolism and product changes are involved in the smoke-
stimulation mechanism.
We found common changes in glutamate, arginine, and citric

acid in the arginine-proline synthesis pathway. metabolic changes
in three glutamate derivatives were found in the glutamine
metabolic pathway. L-glutamate decreased and D-glutamine
increased in the D-glutamine and D-glutamic acid metabolism.
The expression of glutamic acid and arginine changed under 32%-
24 h CSE stimulation. The significant increase in arginine
metabolism in the stimulation suggested tissue repairment.
The mechanism of glutamine metabolism in the process of

macrophage M2 polarization induced by smoking is worth
exploring. Glutamine metabolism is recognized to be associated
with tumors. However, the role of glutamine metabolism in
smoking promoting the precancerous lesions of oral mucosa is
still unknown.
In this study, the result showed the expression of Slc1a5 and

Slc7a5 genes increased significantly in the CSE group. The uptake
of glutamine through the cytomembrane mainly relies on
translocators, such as ASCT2 (system ASC amino acid array 2)
and LAT1(L-type amino acid array 1).34,35

Slc1a5 and Slc7a5 are transcription genes of ASCT2 and LAT1.
Microarray Data raised to elevated expression of ASCT2 (Slc1a5)
and LAT1 (Slc7a5) in many cases, and this has been confirmed in
many studies and cell lines.36,37 ASCT2 high expression generally
predicts a poor prognosis in cancer patients.38–40

According to this study, smoke activates the glutamine
translocators in macrophages, promotes the intracellular transport
of glutamine, leads to the active metabolism of glutamine,
changes the local immune metabolism microenvironment of the
oral mucosa, and promotes abnormal cell proliferation and
reduces cell apoptosis. The effects of glutamine abundance and
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deficiency on macrophages and epithelial cells in this study
further confirm this inference.
Therefore, it is concluded that in the process of smoke

cigarettes promoting OLK, glutamine metabolism and M2
polarization of macrophage play important roles for regulating
oral mucosa immune microenvironment and epithelial dysplasia
and keratosis. Still, the specific mechanism involved may need
more experimental data to be fully depicted.

MATERIALS AND METHODS
Animal studies
All animal studies were approved by the Animal Ethical and Welfare
Committee of Nanjing University (IACUC-2003136). Seven-week-old
C57BL/6J male mice purchased from Qinglongshan, Inc., Nanjing,
China, received regular food and water before the experiment.
4NQO powder was dissolved in ultra-pure water, the concentration

is 50 μg·mL−1. All mice were divided into two groups. An OLK model
group drunk 4NQO-dissolved water as daily drinking water for
16 weeks and a negative control group drunk water. Half of them
received air exposure and others exposed to cigarette smoke. There
were four groups: (I) the control group; (II) the smoke group; (III) the
4NQO group; and (IV) the 4NQO and smoke group (n= 10).
Smoke was prepared, as previously described.41 Mice in the

smoke group smoked two cigarettes every day. All the mice
were sacrificed after 16 weeks to get oral tissues. Some samples
were stored at −80 °C for qPCR and flow cytometry, and others
were embedded in paraffin for histological analysis by H&E stain.
Histological scores were assessed by a pathologist. Nicotine and
cotinine contents in mouse hair were detected by HPLC.

Cell lines and cell cultures
Raw cells were obtained from the Shanghai Institute of Cell
Biology (Shanghai, China) and cultured with DMEM basic (1×)
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(Gibco, Thermo Fisher Scientific) at 37 °C in 5% CO2 and
humidified air incubators.
Leuk-1 cells, an immortalized human oral mucosal epithelial cell

line, were a generous gift from Professor Li Mao in the Department
of Oncology and Diagnostic Sciences, University of Maryland
Dental School, Baltimore, MD, USA. Leuk-1 cells were cultured and
passaged in a defined keratinocyte serum-free medium (K-SFM)
(Gibco, Invitrogen, Carlsbad, CA, USA).

CSE preparation
3R4F Kentucky reference cigarettes were purchased from the
Tobacco Research Institute at the University of Kentucky (Lexington,
KY, USA). CSE was prepared by a peristaltic pump where one 3R4F
reference cigarette smoke was bubbled through 10mL of
keratinocyte serum-free medium. Then the solution was filtered,
diluted, and administered to cell cultures within 30min.

Metabolomic analysis
Sample preparation. Raw cells were supplemented with CSE (4%/
32%). Samples were collected 3 h and 24 h later. We discarded the
medium, added internal standard (2-chlor-1-phenylalanine,
0.3mg·mL−1) and 1mL methanol: water (V:V= 4:1), and transformed
samples to a 4-mL glass vial where 200 μL trichloroethane were
added. Sample extracts were centrifuged at 13 000 r·min−1, 4 °C for
10min. In total, 400 μL methanol: water was added. Samples
centrifuged, the supernatants (150 μL) were collected, filtered, and
transferred to LC vials stored at −80 °C until metabolomic analysis.

UPLC-MS analysis. The metabolomics analysis was conducted
using UPLC-MS in ACQUITY I-Class system and VION Ion Mobility
Spectrum Quadrupole Time-of-Flight mass spectrometer in both
positive and negative modes (Waters Corporation, Milford, MA).
Water and acetonitrile/methanol (V:V= 2:3) both containing 0.1%
formic acid were used as mobile phases A and B. Linear gradient:
0min, 1% B; 1min, 30% B; 2.5min, 60% B; 6.5min, 90% B; 8.5min,
100% B; 10.7min, 100% B; 10.8min, 1% B and 13min, 1% B. The
flow rate was 0.4mL·min−1, and the column temperature was 45 °C.

We alternatively acquired data with full scan mode (m/z ranges
from 50 to 1 000), which is combined with a mode including two
independent scans with different collision energies (CE). A low-
energy scan (CE 4 eV), and a high-energy scan (CE ranp 20–45 eV)
were the parameters of mass spectrometry.
Argon (99.999%) was used as collision-induced dissociation gas;

scan rate: 0.2 s/scan; capillary voltage, 1 kV (negative mode)/2 kV
(positive mode); reference capillary voltage, 2.5 kV; cone voltage,
40 V; source offset, 60 V; source temperature, 115 °C; desolvation gas
temperature, 450 °C; desolvation gas flow, 900 L·h−1, and cone gas
flow, 50 L·h−1 nitrogen (>99.5%) was employed as desolvation and
cone gas. For lock mass correction, a 250 ng·mL−1 standard solution
of leucine-enkephalin in acetonitrile/water/formic acid (50: 49.9: 0.1,
v/v/v) was continuously infused (5 μL·min−1) through the reference
probe and scanned every 30 s.

Data preprocessing and statistical analysis. The raw data acquired
from LC-MS were analyzed by the progenesis QI software (Waters
Corporation, Milford, USA). Supervised orthogonal partial least
squares discriminant analysis (OPLS-DA) was performed to
visualize the alterations of metabolites between the groups.
Metabolites were identified by the progenesis QI software

(Waters Corporation, Milford, USA) based on the Human
Metabolome Database (HMDB, http://www.hmdb.ca/), LIPID
MAPS database (http://www.lipidmaps.org/) and the self-built
database of Shanghai Lu-Ming Biotech Co., Ltd (Shanghai, China).
The differential metabolites were screened by the combination
of multidimensional analysis and unidimensional analysis. The
thresholds were set to variable important for the projection (VIP)
obtained from the OPLS-DA > 1 and P value from a two-tailed
Student’s test <0.05.
In order to identify the effect of disturbed metabolites on

metabolic pathways, pathway enrichment analysis for differential
metabolites was performed using MBRole 2.0 (http://csbg.cnb.csic.
es/mbrole2/) based on Kyoto Encyclopedia of Genes and Genomes
(KEGG, http://www.genome.jp/KEGG/pathway.html). The pathway
with P value <0.05 was identified as the significant pathway.
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RT-qPCR
Total RNAs of cells and tissues were extracted with Trizol Reagent
(Invitrogen, Carlsbad, CA) and were reverse-transcribed into cDNA
using oligo (dT) primer. Step One Plus or an ABI Vii 7 detection
system (Applied Biosystems, Thermo Fisher Scientific, US) with
SYBR Green PCR master mix solution was used for qPCR. The
primers used are listed in Supplemental Table 1.

Flow cytometry
Raw cells were washed and stained with fluorescent-conjugated
antibodies. Anti-mouse antibodies (Biolegend, San Diego, CA, US)
were used: anti-F4/80 PE (#123110), anti-MHC-II APC (#107613),
and anti-CD206 APC (#141708). FACS Calibur flow cytometer
(Becton Dickinson, Franklin Lakes, NJ) detected cells. FlowJo
software (Treestar, Inc., San Carlos, CA) analyzed the data.

Immunofluorescence
Cell samples in six-well plates were fixed with acetone for 15 min
after different treatments. Then, the samples were permeabilized
with 0.3% Triton X-100 for 20 min, washed with PBS, and blocked
with PBS containing 3% bovine albumin (BSA) at 37 °C for 30 min.
Subsequently, primary antibodies against CD206 and MHC II
(diluted 1:1 000 in 3% BSA) were added and incubated at 4 °C
overnight, and goat anti-rabbit FITC 488 (1:1 000; CST) and CY3
554 (1:1 000; CST) were placed onto the coverslips and incubated
at 37 °C for 30 min. After washing in PBS, the cellular nuclei of each
sample were counterstained with diamidino phenylindole (DAPI).
After staining, the samples were observed using a confocal
fluorescence microscope (FV1000, Olympus, Tokyo, Japan).

Measurement of cell viability
Cell viability was measured by the Cell Counting Kit-8 (CCK-8)
(Dojindo Laboratories, Kumamoto, Japan) assay. Leuk-1 cells at a
density of 3 000 cells per well were cultured in 96-well plates at
37 °C and 5% CO2. Each well was treated with supernatant from
Raw cells under different stimulations (DMEM, DMEM+ CSE,
DMEM+ 4 mmol·L−1 Gln, DMEM without Gln), for different
lengths of time (3 h, 12 h, 24 h) after cell adhesion. Then, the
supernatants were discarded, and 10 μL of CCK-8 solution was
added to each well. After 2 h of incubation, the absorbance at a
wavelength of 450 nm was determined by using a multiplate
reader (BioTek, CA, USA).

Wound-healing assay
The Raw cell supernatants stimulated by CSE (32%, 24 h) were
collected. The initial wound size of Leuk-1 cells was determined
immediately after washing the cells. The supernatants of Raw cells
were added to the medium of Leuk-1 cells, including four groups
(Control, CSE, Gln+ , Gln-). After 3, 12, and 24 h, the wound closure
was calculated as the percentage of the remaining wound area.

Glutamine colorimetric assay
To prepare the samples for the glutamine colorimetric assay kit
(Abcam), tissue samples were washed in 1× PBS and re-suspended
in hydrolysis buffer on ice. Then, tissues were homogenized using a
homogenizer with about 15 passes, then centrifuged at 10 000 × g,
4 °C for 10min. Deproteinization was performed on the super-
natant, with the addition of ice-cold 4mol·L−1 PCA to a final
concentration of 1 mol·L−1. Samples were vortexed briefly and
incubated on ice for 5min, then centrifuged at 13 000 × g, 4 °C for
2min. An equal volume of 2mol·L−1 KOH was added to the
supernatant and vortexed to adjust the pH to 6.5-8. Samples were
centrifuged at 13 000 × g, 4 °C for 5min. The supernatant from
samples was transferred to newly, labeled tubes for glutamine
assay. Briefly, 40mL of glutamine standard and diluted samples
were added to a 96-well plate. In all, 2 mL of hydrolysis mix was
added to glutamine standards and sample wells and incubated for
30min at 37 °C 50ml of glutamine reaction mix was added to wells

and incubated for 60min at 37 °C. Absorbance was measured at
OD-450 nm on a microplate reader (Synergy HT, BioTek).

Statistical analysis
All the experiment data of biochemical index were presented as
means ± standard error of the mean (SEM). Statistical analysis of
the experimental data was performed by Prism 8 (GraphPad
Software). A two-tailed Student’s t test and paired t test were used.
The significance threshold and extremely significance threshold
were set at P value < 0.05 (*), P value < 0.01 (**), and P value
< 0.001 (***), respectively.
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