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Abstract: The advent of optical coherence tomography angiography (OCTA) has allowed for remark-
able advancements in our understanding of the role of the choriocapillaris in age-related macular
degeneration (AMD). As a relatively new imaging modality, techniques to analyze and quantify
choriocapillaris images are still evolving. Quantification of the choriocapillaris requires careful
consideration of many factors, including the type of OCTA device, segmentation of the choriocapil-
laris slab, image processing techniques, and thresholding method. OCTA imaging shows that the
choriocapillaris is impaired in intermediate non-neovascular AMD, and the severity of impairment
may predict the advancement of disease. In advanced atrophic AMD, the choriocapillaris is severely
impaired underneath the area of geographic atrophy, and the level of impairment surrounding the
lesion predicts the rate of atrophy enlargement. Macular neovascularization can be readily identified
and classified using OCTA, but it is still unclear if neovascularization features with OCTA can predict
the lesion’s level of activity. The choriocapillaris surrounding macular neovascularization is impaired
while the more peripheral choriocapillaris is spared, implying that choriocapillaris disruption may
drive neovascularization growth. With continued innovation in OCTA image acquisition and analysis
methods, advancement in clinical applications and pathophysiologic discoveries in AMD are set
to follow.

Keywords: age-related macular degeneration; optical coherence tomography angiography; chori-
ocapillaris; OCT-A; retinal imaging; macular neovascularization; choriocapillaris quantification;
flow deficit

1. Introduction

Innovation in ophthalmic imaging has led to remarkable advancements in our un-
derstanding of age-related macular degeneration (AMD). The relatively thin and highly
vascularized choriocapillaris, critical to the pathophysiology of AMD, is located immedi-
ately posterior to the Bruch’s/retinal pigment epithelium complex and has historically been
challenging to visualize with conventional imaging. With the advent of optical coherence
tomography angiography (OCTA), however, blood flow in the choriocapillaris can be
identified with far greater detail than ever before. This advancement has heralded critical
new insights into the pathophysiology of both non-neovascular and neovascular AMD and
is poised to become an important part of the clinical care of AMD patients.

OCTA is a relatively new imaging modality that facilitates visualization of the retinal
and inner choroidal circulation without the need for dye injection [1]. It employs motion
contrast to detect blood flow and acquires three-dimensional volumetric information of the
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retina and choroid to provide high-resolution, depth-resolved segmentation of the different
vascular layers, including the choriocapillaris [1].

This review discusses the basic principles of OCTA and defines the current role and
relevance of OCTA-based choriocapillaris imaging in the assessment of eyes with both
non-neovascular and neovascular AMD.

2. OCTA Analysis of the Choriocapillaris
2.1. Basic Principles of OCTA

OCTA is a noninvasive tool that creates a reconstruction of the retinal capillary and
inner choroidal vasculature [2,3], by recognizing the intrinsic movement of particles in
these tissues. The device captures a dense volume of OCT scans at the same location
and then detects differences between the scans over a short, designated time interval. A
calculation is performed for each pixel in every frame to identify which pixels are changing
(in phase and/or amplitude) over time, thereby isolating or contrasting moving structures.
OCTA images combine the structural information of a standard OCT scan with blood flow
visualization. The moving elements are commonly coded as bright/white pixels on the
OCTA scans to represent blood flow, while the dark areas represent areas with blood flow
below the decorrelation threshold referred to as “flow deficits” [4–6].

Different devices employ unique calculation methods to analyze OCT intensity infor-
mation. Algorithms used by OCTA systems can be divided into three categories: (A) an-
giography based on both the phase and amplitude components of the OCT signal (OMAG
or OCT microangiography-complex; CODAA, complex OCT signal difference analysis
angiography), (B) angiography based on only the amplitude of the OCT signal (SSADA,
split spectrum amplitude decorrelation algorithm; OCTARA, OCTA ratio analysis), and (C)
angiography based on only the phase of the OCT signal (Doppler OCT) [7].

2.2. Spectral Domain OCTA versus Swept Source OCTA

Several OCTA systems are available in clinical practice and can be broadly divided into
spectral domain (SD) and swept source (SS) devices. This distinction is based primarily on
the wavelength of the device’s light source: 840 nm for SD and 1050 nm for SS devices. The
difference in wavelength results in distinctive penetration of the signal through the RPE,
drusen, and other blocking structures, thereby producing different visualizations of the
choroidal layers [8]. SS-OCTA, with its longer wavelength, facilitates deeper penetration
of the signal through the RPE, and through pathological structures such as drusen that
shadow, providing better visualization of the choroid and a more detailed, high-resolution
image [7]. Due to the relative limitations of the SD-OCTA system when compared to SS-
OCTA, some researchers have excluded regions below drusen from quantitative analyses
of the choriocapillaris when using SD-OCTA [9].

The differences in SS and SD OCTA, however, extend beyond their wavelengths.
SD-OCTA is characterized by a broad bandwidth light source which is coupled with a
spectrometer, while SS-OCTA is equipped with photodetectors and a tunable laser light
source that operates through a range of frequencies. Furthermore, SS-OCTA is characterized
by a faster rate of acquisition of the images, at 100,000–400,000 A-scans per second versus
around 70,000 to 100,000 A-scans per second for most commonly available SD-OCTA
systems. Considering that OCTA relies on decorrelation between sequentially acquired
OCT B-scans, increased speed of acquisition allows for improved image quality. Both
increased imaging speed and deeper penetration with SS-OCTA significantly improve the
visualization of the choriocapillaris, which is particularly important in the case of AMD.

OCTA images can be altered by artifacts that complicate the accurate interpretation
and quantification of the choriocapillaris [10]. To minimize motion artifacts while acquiring
images, OCTA devices employ an active “Eye-Tracking” system. Artifacts can also be
generated by the presence of structures casting shadows, such as drusen in eyes with
AMD. Drusen can alternatively be associated with projection and Z-axis micro-motion
artifacts, due to their highly reflective surface, generating a false positive flow signal
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termed “pseudoflow” [11], which can be mistaken for pathological neovascularization.
Artifacts like these may also interfere with quantitative analysis of the choriocapillaris by
generating a false positive flow deficit at the level of the OCTA choriocapillaris slab [12]. In
order to compensate for projection artifacts, OCTA devices are equipped with projection
artifact removal software. Media opacities pose another potential complication to OCTA
image quality. These factors each play a particularly critical role in the quantification of
choriocapillaris flow deficits, because poor quality images generate falsely diminished flow
due to a reduced signal rather than true pathology, and are discussed in more detail below.

2.3. Quantification of the Choriocapillaris

Reliable quantification of the choriocapillaris has many complex challenges which
have inspired numerous unique approaches. Imaging the choriocapillaris with OCTA is
not as simple as positioning a slab in the proper anatomic location (between the Bruch’s
membrane and the inner border of Sattler’s layer [13]). Several factors may influence this
analysis [14]. In regard to segmentation, the outer border of the choriocapillaris may not
be located at a consistent offset from Bruch’s membrane, which may introduce inaccuracy
despite an otherwise “correct” anatomic segmentation. The thickness of the choriocapillaris
is variable, measuring 10 µm under the fovea and 7 µm moving to the periphery with
undulations [15]. Finally, differences may exist between devices. Quantitative OCTA
metrics between instruments and scan patterns are not interchangeable, and several devices
use the RPE band as the offset, resulting in increased variability related to fluctuations in
the thickness of the RPE [16,17].

Considering these many factors, no consensus has been reached about the optimal po-
sition and thickness of the choriocapillaris slab, and diverse choriocapillaris segmentation
strategies have been adopted. This variability has a profound impact on the consistency of
studies in the literature, as quantitative choriocapillaris measurements may be significantly
influenced by small differences in slab selection [18]. Byon et al. [19] found that the use of a
Max projection with a slab positioned 21–31 µm below the RPE band centerline produced
the most repeatable flow deficit measurements in normal eyes. More superficial slabs
showed a hypointense region caused by inadvertent inclusion of the RPE band in the slab,
while deeper slabs showed inadvertent inclusion of the choroidal stroma. These artifacts
could theoretically be further accentuated if signal compensation strategies were applied
as described below [20].

Image compensation is a recently proposed method to correct regions of signal loss
using an inverted version of the corresponding en face structural OCT slab [2]. Images with
signal compensation show fewer choriocapillaris flow voids and improved repeatability
of measurement. This is particularly helpful in eyes with drusen to compensate for their
masking effects [2]. It has recently been demonstrated, however, that this technique may
alter the appearance of the thresholded images, creating the appearance of new flow deficits
and causing others to disappear [20].

In addition to image compensation, averaging of multiple en face angiographic images
after registration improves visualization of the choriocapillaris [21]. This technique im-
proves image quality by reducing noise that could be misinterpreted as flow and annealing
discontinuous vessel segments, thus improving visualization of the choriocapillaris and
resolution of the intervascular spaces [12]. In particular, averaging has been shown to
increase the measured vessel area density and decrease the number of flow voids, total
flow void area, and average flow void size [22]. It should be considered, however, that this
technique requires multiple scans with extra time and considerable patient cooperation.

Despite the recent progress in choriocapillaris image processing, OCTA images are
subject to a number of common artifacts that can impact their interpretation. Eyes with
choroidal disease are commonly affected by choriocapillaris segmentation errors that result
in segmentation artifacts [23]. In these cases, semi-automated approaches with manual
correction of the segmentation errors are commonly adopted. Quantitative analysis of the
choriocapillaris can also be significantly affected by projection artifacts from the superficial
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retinal vessels. To mitigate these changes, several devices contain projection removal
functions which remove the flow signal cast by overlying retinal vessels from the chorio-
capillaris slab. Many image processing strategies independent of the OCTA devices have
also been adopted to eliminate these potentially confounding residual shadow or projection
artifacts [9,24–28]. Motion artifacts created by body and eye movement and reduced signal
strength of the images can also profoundly reduce the accuracy of quantitative analysis
of the choriocapillaris [1,29]. Decreased image quality increases the frequency of artifacts
and decreases repeatability of choriocapillaris flow deficit measurements. In consideration
of these many variables, axial slab positions, reference offsets, projection artifact removal
methods, signal strength and thresholding strategies must all be carefully considered when
quantitatively analyzing the choriocapillaris [1,4,29–32].

Consideration of the anatomy of the choriocapillaris has led to discussion over which
flow deficits are pathologic and which may be physiologic. Histologic studies show that
the choriocapillaris has a different morphology in different regions of the retina: the
submacular region has a dense honeycomb network of freely interconnected capillaries
separated by septa, while the equatorial and peripheral regions have a polygonal lobular
network [13,33,34]. The distance between capillaries also changes according to the region,
ranging from 2 microns in the center to 20 microns in the periphery [13]. In considera-
tion of this anatomy, some OCTA studies have suggested excluding flow deficits smaller
than 24 µm in diameter when quantifying flow voids, as they may represent physiologic
intercapillary gaps [2–4,8].

When quantifying the choriocapillaris, it is critical to create a threshold above which a
pixel is considered to have blood flow, and below which a pixel is considered to have a flow
deficit. Multiple thresholding methods have been proposed, each of which significantly
impacts vessel density measurements [30,31]. One of the first proposed was Otsu’s global
thresholding methodology, however it assumes a bimodal distribution of decorrelation
in the image histogram, which may not be accurate when considering inner choroidal
images [35,36]. Another approach is the mean outer retinal pixel value global threshold,
which is based on the hypothesis that the outer retinal layer and inner choroidal layer
manifest the same noise level [37]. However, the position of the RPE between these two
layers likely influences the signal. In contrast, the standard deviation (SD) method uses the
mean and SD of a reference normal database to create a global threshold. Pixels with an
intensity lower than one SD below the normal database mean are considered to represent
flow deficits [2]. The limitations of this method include the lack of a globally approved and
validated normal database and the use of one standard deviation as a threshold, which is
debated. Currently, the most commonly used approach is the Phansalkar local thresholding
method [1,10,12,26,27,38–44]. This method sets a circle with a certain “Phansalkar radius”
around each pixel, and creates a threshold based off of the intensity mean and standard
deviation inside the circle. The limitation of this method is that the Phansalkar radius has to
take into consideration the pixel size of the image. Lastly, the fuzzy C-means self-clustering
algorithm has recently been proposed, which automatically assigns all pixels of the inner
choroidal slab into clusters based on their histogram distribution [45]. Such variety and the
lack of a globally accepted and validated method complicates the quantitative study of the
choriocapillaris considerably.

3. OCTA of the Choriocapillaris in Normal Aging

Analysis of the choriocapillaris in AMD must be considered in the context of the
normal aging of the retina. A histopathologic study shows that age is highly correlated with
decreasing density of the choriocapillaris, particularly in the macula [46]. These normal age-
dependent changes in choriocapillaris flow characteristics can be identified in vivo with
OCTA. An early SD-OCTA study demonstrated that the number of flow voids increase with
age [47] in a power law distribution. Subsequent SS-OCTA studies similarly demonstrated
an increase in the flow deficit percentage within the macula and an increase in the variability
of flow deficit measurements with age [43]. These changes may be secondary to underlying
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systemic vascular conditions that are common in older individuals, such as hypertension,
which itself has been shown to increase the number of choriocapillaris flow voids [47],
although systemic vascular disease as the cause of age-related OCTA choriocapillaris
impairment has not been studied robustly. Interestingly, the central 1 mm circle of the
macula shows the greatest increase in percentage of flow deficits with age [10,43]. Age-
related localized ischemia in the central macula may contribute to drusen and macular
neovascularization (MNV) development, especially considering that soft drusen and MNV
are found more commonly in the central macula [48–50], although this relationship remains
speculative. It is also important to consider that increased choriocapillaris flow voids, as
attributed to normal aging, can also be found in early AMD. The OCTA findings associated
with normal aging and the OCTA findings that occur during transition to early AMD are
not yet well defined.

4. OCTA of the Choriocapillaris in Non-Neovascular AMD

Choriocapillaris disease is associated with outer retinal, RPE and Bruch’s membrane
disruption in all stages of AMD. Several histopathologic studies have shown that chorio-
capillaris density decreases with increasing AMD severity [51,52]. It should be recognized,
however, that there is some inconsistency in these findings in the literature. The chorio-
capillaris in advancing AMD can display decreased density [46], increased density [53], or
equivocal features [54] according to various reports. This may be in part attributable to
an underestimation of vascular cell death with hematoxylin and eosin staining methods
compared to the use of endothelial markers like UEA-I lectin [55]. However, various
OCTA studies, discussed below, have identified distinct and significant choriocapillaris
alterations in the eyes of patients with intermediate and late-stage AMD and have shown
that the health of the choriocapillaris may be an important predictive factor. These findings
should be considered within the context of the ongoing discussion and limitations of
choriocapillaris imaging and quantitative analysis described in Section 2.

4.1. Choriocapillaris Impairment in Non-Neovascular Intermediate AMD

Early outer retinal abnormalities in non-neovascular AMD are associated with impair-
ment of the choriocapillaris. Drusen, the hallmark feature of early AMD, is associated with
progressive disruption of the RPE, Bruch’s membrane and choriocapillaris [56]. Histopatho-
logic [57] and OCT [58] studies have shown that choriocapillaris loss can be co-localized
with some, but not all, drusen. This association has been corroborated by OCTA analy-
sis of intermediate AMD eyes, which has displayed impaired choriocapillaris flow [47],
particularly beneath and surrounding drusen [59]. As discussed above, shadow artifact
underlying drusen can give the false impression of choriocapillaris flow deficits [29,60],
although image compensation strategies can mitigate these quantification limitations. Pa-
tients with reticular pseudodrusen show unique choriocapillaris alterations, with lower
choroidal thickness and volume, higher choroidal vascular index, and higher choroidal
intensity [61]. These early choriocapillaris changes may have functional impacts as well;
choriocapillaris flow impairment was found to correlate with reduced scotopic macular
sensitivity in eyes with early or intermediate AMD [62]. In these ways, the health of the
choriocapillaris on OCTA is a meaningful indicator of the severity of disease in AMD.

The health of the choriocapillaris on OCTA may also have predictive power in de-
termining the advancement of disease. In patients with macular drusen, choriocapillaris
flow deficit predicts both the enlargement of the existing drusen and the development
of new drusen [63]. Impairment of the choriocapillaris may also indicate progression
to more advanced stages of the disease. Choriocapillaris flow deficits are worse in pa-
tients with hyperreflective foci, particularly directly under the hyperreflective focus [64].
These hyperreflective foci correlate with progression to late AMD and development of
atrophy [65]. More directly, choriocapillaris flow deficit itself can predict progression of
disease. Greater inner choroidal flow deficit can be a predictor of progression to incomplete
RPE and outer retinal atrophy (iRORA) [66]. Similarly, choriocapillaris flow deficit is
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greater in intermediate AMD eyes that progress to complete RPE and outer retinal atrophy
(cRORA) [41]. Guided by these findings, OCTA of the choriocapillaris may provide useful
risk stratification or predictive benefits in the future.

4.2. Choriocapillaris Impairment in Geographic Atrophy

As geographic atrophy (GA) describes the atrophy of the outer retina, RPE and
choriocapillaris, it is not surprising that patients with advanced non-neovascular AMD
show choriocapillaris alterations on OCTA. OCTA in fact allows for the demarcation of
the area of atrophy as accurately as fundus autofluorescence [67]. Impairment of the
choriocapillaris can be identified before complete atrophy sets in. Flow impairment is
associated with regions of nascent GA [68], a precursor of drusen-associated GA. As the
disease progresses to GA, the choriocapillaris exhibits significant impairment underneath
the area of atrophy [39,69,70]. As the choriocapillaris is lost, the middle portions of
the choroid regress and the deeper larger choroidal vessels ascend to lie in the inner
choroid [5,71,72]. It is important to note that the choriocapillaris is also impaired in
the peripheral macula in patients with GA, compared to both normal eyes and eyes with
CNV [39,68]. The choriocapillaris in the zone immediately surrounding geographic atrophy
shows the greatest impairment on OCTA and predicts the rate of atrophy enlargement
(Figure 1) [73,74]. These findings again indicate the critical and possibly predictive role of
the choriocapillaris and its impairment in the development and progression of GA.
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Figure 1. Courtesy of Nassisi et al. 2019: Geographic atrophy and different growth rates: One eye from two patients with
geographic atrophy (GA) is shown in the two rows of images. (A,D) En face structural optical coherence tomography (OCT)
images at baseline. (B,E) En face OCT images acquired one year later. The 2 patients show a very different yearly growth
rate (0.07 and 0.73 for the first and second row, respectively) of the atrophic lesins. The corresponding OCT angiogram
at the level of the choriocapillaris (C,F) from the baseline visit for these two patients shows dramatically different flow
impairment surrounding the atrophic lesion, with significantly greater flow voids in the case with more rapid progression
of atrophy (41.2% versus 53% for (C,F) respectively) [73].

4.3. The Role of OCTA in Clinical Management of Non-Neovascular AMD

While the aforementioned findings shed noteworthy light on the understanding of
non-neovascular AMD progression, providers should be cautious when using OCTA of the
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choriocapillaris to guide clinical management. OCTA choriocapillaris flow deficits cannot
yet predict AMD progression on an individual case by case basis and the methodology
remains a research tool with potentially great clinical importance for the future evaluation
of AMD patients. Evaluation of eyes with intermediate AMD and drusen using OCTA can
be difficult and the interpretation of images can be challenging. Projection artifacts from the
overlying retinal vessels can create pseudoflow and the illusion of neovascularization in
eyes with drusen [11]. However, OCTA can accurately detect non-exudative MNV in eyes
that would otherwise be classified as intermediate AMD, a lesion that may be present in as
many as 25–30% of eyes with intermediate AMD [75]. This holds clear clinical significance,
as non-exudative type 1 MNV is predictive of progression to exudative disease [76]. OCTA
of the choriocapillaris may be particularly helpful in cases of non-neovascular age-related
macular degeneration with subretinal fluid [77] associated with non-vascularized macular
drusen and drusenoid pigment epithelial detachments (PEDs). In these cases, OCTA
confirmation of the absence of MNV despite the associated presence of subretinal fluid is
critical to avoid unnecessary anti-VEGF injection and suggests an alternate transudative
mechanism of fluid leakage such as RPE decompensation and pump failure, rather than
exudative neovascularization, that may be important contributory pathways of leakage in
both neovascular and non-neovascular AMD.

5. OCTA of the Choriocapillaris in Neovascular AMD
5.1. OCTA of Macular Neovascularization

An important application of OCTA is the assessment of MNV in neovascular AMD.
MNV is associated with a high risk of vision loss and may necessitate the frequent injec-
tion of anti-VEGF agents and therefore the identification and classification of MNV is of
critical significance. The advent of OCTA has transformed the diagnostic power of the
clinician to detect and image MNV and has provided insights into the pathophysiology of
neovascular AMD.

When coupled with its corresponding structural OCT, OCTA is a powerful tool for
both the diagnosis and classification of MNV. It has higher sensitivity and specificity than
fluorescein angiography (FA) or indocyanine green angiography (ICGA) [78–81] and does not
require dye injection. However, OCTA does not provide information about dynamic leakage
and may miss low flow components of neovascularization such as polypoidal lesions.

Beyond identification, OCTA facilitates classification of the neovascularization. MNV
can be classified by anatomical position: type 1 MNV is located below the RPE and origi-
nates from the choroid, type 2 MNV is located in the sub-retinal space and originates from
the choroid, and type 3 MNV is located in the neurosensory retina and originates from
the deep retinal capillary plexus and is also known as retinal angiomatous proliferation or
RAP [82,83]. Within these classifications, MNV can be sub-classified based on the morphol-
ogy of the vessels. Mature type 1 MNV is characterized by large thick branching vessels
with secondary finer capillary ramification. Various patterns of large vessel branching
have been described, including “medusa”, “seafan” and “tangled” morphologies, but
these subclassifications have limited clinical value [84]. Hypermature type 1 MNV is
characterized by larger vessels without the secondary capillary ramification (“dead tree”
pattern) [85–90]. The vascular morphology of Type 2 MNV [91,92] is comparable to that of
Type 1 MNV, and thus these two MNV types can only truly be differentiated based on their
position relative to the RPE. Type 3 MNV originates from the retinal deep capillary plexus
(DCP) rather than the choriocapillaris and may begin as a small punctate intraretinal flow
signal evident on cross sectional OCTA and can be identified as a small tuft of vessels with
en face OCTA. Nascent Type 3 lesions may show progressive downgrowth towards the
RPE (Figure 2) [93–95]. It is interesting that one study noted increased choriocapillaris
nonperfusion compared to fellow non-neovascular eyes, implying that choriocapillaris
ischemia may play a critical role in the development of these lesions [96]. Furthermore, this
study noted greater choriocapillaris non perfusion in the non-neovascular fellow eyes of
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patients with type 3 MNV (in the first eye) versus the fellow eyes of patients with Type 1
MNV (in the first eye).
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Figure 2. Courtesy of Sacconi et al. 2019: Evolution of type 3 macular neovascularization: Near
infrared (NIR) reflectance (left column), structural optical coherence tomography (OCT) B-scan
(middle column), and cross-sectional OCT angiography (OCTA) (right column) images of one
eye with a type 3 macular neovascularization (MNV) from a patient with age-related macular
degeneration (AMD) at (A) the first preclinical stage examination and after (B) 5 months, (C) 8 months,
(D) 12 months, and (E) 15 months. The MNV originates from the deep retinal capillary plexus, evident
as a small intraretinal hyperreflective focus on OCT and a punctate flow signal on cross sectional
OCTA (white arrows). The lesion progresses downward toward the RPE over time (from (A) to (E)).
These lesions may be driven by choriocapillaris ischemia, as eyes with type 3 MNV have significantly
increased choriocapillaris flow deficits with OCTA [95,96].
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The OCTA morphology of neovascularization can correlate with activity. Fine vessels
at the advancing edge of MNV, intralesional fractal dimension, and a dark halo surround-
ing the lesion may indicate exudative activity, while large, ‘dead tree’ like vessels and
a paucity of fine branching capillaries may indicate relative quiescence [78,85,97–100].
These descriptive features, however, do not have predictive value to guide anti-VEGF
therapy, nor is it clear whether they can be graded reliably. After anti-VEGF treatment,
MNV can show a rapid decrease in the fine capillary vessels typically at the lesion border,
as the capillary fringe is less protected by pericytes than the mature feeding or central
trunk vessels that are more anti-VEGF resistant (Figure 3) [88,91,101–103]. MNV may also
temporarily decrease in size after anti-VEGF therapy, but subsequently increase in size
after two weeks [104]. With repeated anti-VEGF injections, often only the mature, “tree
trunk-like” pericyte protected vessels remain, after which lesions are referred to as “mature”
or “hypermature” [85,105,106]. Chronic anti-VEGF therapy of mature type 1 MNV is asso-
ciated with progressive growth in the lesion area after 1 year in the majority of cases with
various growth patterns [106]. Lesions with extensive vascularity are typically associated
with good acuity and lesions with low vascularity are associated with poor acuity.
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Figure 3. Growth of macular neovascularization after anti-VEGF therapy: En face choriocapillaris OCTA and structural
OCT B-scan images of mature type 1 macular neovascularization (MNV). This patient with neovascular age-related macular
degeneration (AMD) in the right eye received anti-VEGF injections every 8 to 12 weeks for several years. Note the OCTA
characteristics of mature MNV that include larger thick vessels associated with a secondary dense fine capillary ramification.
A prominent perilesional halo is also identified with all three lesions. Even with continued anti-VEGF injections, the
mature network shows mild growth in total area from the baseline visit (left) to the one-year follow-up (right) visit. While
anti-VEGF treatment reduces fine capillary lesions at the border in the short term, lesions typically grow in overall area after
1 year.

5.2. OCTA of the Choriocapillaris in Neovascular AMD

Beyond the direct study of the neovascular membrane, OCTA studies show that the
choriocapillaris is impaired in the environment surrounding the MNV. MNV is commonly
encircled by a “dark-halo” on OCTA, an area devoid of flow which may represent a vascular
steal phenomenon [107] because of flow diverted through the neovascular membrane [108]
or the result of inner choroidal ischemia [44,109]. This dark halo may in fact be a marker of
activity of the neovascularization [78,98]. The choriocapillaris immediately surrounding
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MNV shows higher flow deficits than other areas of the macula [109–111]. The associ-
ation holds true even when analyzing only the choriocapillaris immediately outside of
the perilesional dark halo in treatment-naïve eyes (Figure 4) [44]. This suggests that RPE
hypoxia caused by choriocapillaris disease may drive VEGF release and MNV develop-
ment [7,44,112,113], but cannot exclude the possibility that the choriocapillaris impairment
is instead secondary to the MNV. It is interesting that choriocapillaris flow deficits may be
greater around exudative versus nonexudative MNV and future applications of OCTA may
become important to determine which nonexudative NV lesions may be appropriate to treat
with anti-VEGF therapy [44]. The choriocapillaris in the peripheral macula remote from the
MNV lesion is similar to age-matched normal eyes, which is in contrast to eyes with GA,
which show a significant increase in choriocapillaris flow deficit throughout the macula.
This has led to the hypothesis that the choriocapillaris in eyes with GA may be so severely
impaired, such that it is no longer capable of supporting an MNV response [41,66,74,111].
These concepts will need to be validated in future prospective studies.
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Figure 4. Courtesy of Scharf et al. 2020: Choriocapillaris flow deficits around macular neovascularization: En face chorio-
capillaris OCTA (A and C) and structural OCT B-scan (B) images of treatment-naïve exudative macular neovascularization
(MNV). In the Scharf study, en face choriocapillaris angiograms were analyzed for the percentage of choriocapillaris (CC)
flow deficits in two concentric rings, (R1) and (R2), around the peri-lesional dark halo (DH), (image C). The ring closer to
the MNV (R1) exhibits significantly greater percentage of flow deficits than the more peripheral ring. Both rings exhibit
significantly greater flow deficits than the same areas in age-matched normal controls [44].

6. Future Directions

OCTA in vivo study of the choriocapillaris is a remarkable advancement in the field of
retinal imaging and AMD. As a relatively novel imaging modality, there is much progress
still to be made in both image acquisition and choriocapillaris analysis. Faster scan speeds
and advancements in software for motion artifact correction, projection removal, tracking
and segmentation have the potential to improve image quality and consistency. Progress
in choriocapillaris quantification algorithms may improve the reliability and reproducibil-
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ity of these measurements and allow for automated analysis which could be clinically
applicable. New image analysis algorithms like variable interscan time analysis (VISTA),
which provides information on relative blood flow speed [114], continue to expand the
capabilities of OCTA. VISTA has already brought creative insights to the literature, showing
unique flow speeds in different parts of the MNV complex [115], varying degrees of flow
impairment in particular regions of GA [5], and distinguishing between choriocapillaris
flow impairment and complete choriocapillaris atrophy [68]. With continued OCTA hard-
ware and software innovation, advancements in clinical applications and pathophysiologic
discoveries in AMD are set to follow.
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