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SU(2) hadrons on a quantum computer via a
variational approach
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Christine A. Muschik1,2,5

Quantum computers have the potential to create important new opportunities for ongoing

essential research on gauge theories. They can provide simulations that are unattainable on

classical computers such as sign-problem afflicted models or time evolutions. In this work, we

variationally prepare the low-lying eigenstates of a non-Abelian gauge theory with dynami-

cally coupled matter on a quantum computer. This enables the observation of hadrons and

the calculation of their associated masses. The SU(2) gauge group considered here repre-

sents an important first step towards ultimately studying quantum chromodynamics, the

theory that describes the properties of protons, neutrons and other hadrons. Our calculations

on an IBM superconducting platform utilize a variational quantum eigensolver to study both

meson and baryon states, hadrons which have never been seen in a non-Abelian simulation

on a quantum computer. We develop a hybrid resource-efficient approach by combining

classical and quantum computing, that not only allows the study of an SU(2) gauge theory

with dynamical matter fields on present-day quantum hardware, but further lays out the

premises for future quantum simulations that will address currently unanswered questions in

particle and nuclear physics.
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Quantum computing technologies are developing quickly
in recent years with applications in a broad range of
scientific areas from chemistry to fundamental interac-

tions of Nature. Prime candidates for the application of such
quantum simulations are gauge theories, which play a major role
in many branches of physics and comprise the entire Standard
Model of particle physics. Within this area, quantum computa-
tion of non-Abelian gauge theories is an outstanding challenge.

The most prominent example, quantum chromodynamics (QCD),
is a non-Abelian gauge theory that explains the strong interactions
between quarks and gluons and ultimately underlies nuclear physics.
There are also suggestions of non-Abelian forces beyond the Stan-
dard Model (BSM) that are completely separate from QCD and
might, for example, underlie the Higgs sector of the Standard Model1

or provide a strongly interacting theory for dark matter2.
Lattice gauge theory (LGT)3 is a mature and successful dis-

cretisation strategy for computational methods that have devel-
oped into an extremely successful field of science. The
formulation of the theory on a spacetime lattice provides a non-
perturbative regularization of the theory with the lattice spacing
playing the role of an inverse UV cutoff. Modern LGT calcula-
tions have provided precise quantitative results and important
insights for QCD4, nuclear physics5, and non-Abelian BSM
theories6, and they will continue to do so for the foreseeable
future. Quantum computers offer a possibility to extend the reach
of LGT into regimes that are presently unattainable7. Funda-
mental issues like the sign problem8,9 prevent classical methods
for LGTs from studying many properties of interest such as real-
time particle dynamics and highly entangled matter, so quantum
simulations will play an essential role in improving our under-
standing of Nature.

Quantum simulations of LGTs are a growing research area10,
addressing both real-time dynamics and equilibrium problems.
Our work contributes to the latter. Equilibrium problems include
important sign-problem afflicted settings such as models with
high matter density (with finite chemical potentials) and topo-
logical theories. While current proof-of-concept demonstrations
of equilibrium problems still address sign-problem-free settings,
they form the foundation for extensions to more complicated
models. This foundation is currently built by simulating low-
dimensional benchmarking models. Even though the ultimate
goal is the simulation of three-dimensional (3D) theories, so far
all quantum simulation experiments realize 1D models. More-
over, while different experimental realisations of 1D Abelian
LGTs have been successful11–16, non-Abelian theories are fun-
damentally different. Efforts to confront this challenge are
underway17–31, and a first important step has been made by
experimentally realising pure gauge non-Abelian theories32,33. In
this work, we present the first quantum computer calculation for
a non-Abelian gauge theory with the dynamically coupled matter.

We consider as gauge group SU(2), which is the smallest non-
Abelian Lie group and is thus a key step towards studying full
QCD. In contrast to an Abelian theory, it is possible to build
gauge singlet states from valence fermions, without any valence
antifermions; the lowest energy state that exhibits this distinctly
non-Abelian feature is called a baryon and it has no counterpart
in an Abelian theory. The non-Abelian theory also contains a
meson, which is built from one valence fermion and one valence
antifermion and is thus the counterpart to a neutral state in an
Abelian theory.

While the considered non-Abelian model can in principle be
realized by adapting the very successfully explored purely quan-
tum simulations11,15,16,34,35, its complexity is currently out of
reach for implementing such strategies on present-day devices.
We, therefore, use a hybrid quantum-classical approach and
employ a so-called variational quantum eigensolver (VQE).

Within the VQE protocols, the task of preparing the baryon and
meson state is cast into the form of an optimisation problem
which is solved by a classical algorithm with cost function eva-
luations made on a quantum co-processor.

Running deep quantum circuits on present-day devices is a
formidable challenge in the current era of noisy intermediate-
scale quantum (NISQ)-devices36, which pose severe restrictions
in the number of qubits used and the number of gates applied.
Given these restrictions, we use a number of measures to make
the calculations possible: (i) We integrate out the gauge field
degrees of freedom to reduce the experimental resources needed.
(ii) We design efficient circuits that generate an ansatz state
containing only components relevant for the chosen parameter
regimes and (iii) we reduce the depth of the experimental circuit
by relegating part of the computation to classical preprocessing
that can be performed efficiently. Note that the techniques
developed in points (ii) and (iii) are general and not exclusive to
the studied non-Abelian theory or LGT calculations.

In this work we study an SU(2) gauge theory with dynamical
matter fields on the IBM Quantum Experience37,38, and we
experimentally study physics beyond the Abelian features
demonstrated so far. More specifically, we perform a quantum
computation experiment to variationally access the lowest hadron
energies of the model, namely the non-Abelian baryon and the
meson state. This allows us to calculate their masses on the
quantum computer. In particular, we perform calculations for
different lattice sizes to show how a known physical symmetry
emerges: the baryon and meson masses are equal in the physical
limit where lattice artifacts vanish.

Results
SU(2) gauge theory. The quantum field theory for SU(2) gauge
fields interacting with fundamental fermions is well known39. At
each point in spacetime a matter field operator can annihilate a
fermion of one of two possible colors (here named red and green),
or it can create the corresponding antiparticle. The gauge fields
(or “gluons”) at each point mediate the interactions between color
charges. The quantum field theory in the continuum is described
in more detail in Supplementary Note 1.

Because the non-Abelian nature of SU(2) leads to strong
interactions and the confinement of color charge, these fermions
and gluons are confined within color-singlet hadrons that cannot
be studied perturbatively. In order to access the non-perturbative
regime, both classical and quantum simulations require for-
mulating the gauge theory on a lattice. Lattice calculations on
classical computers are successful in Euclidean spacetime with a
least-action approach, but quantum computers can address new
regimes of the theory by working directly in Minkowski
spacetime with a Hamiltonian approach.

We follow the staggered fermion formulation of Kogut and
Susskind, where fermions and antifermions occupy separate
lattice sites, arranged in an alternating pattern along the lattice
(Fig. 1a). The lattice Hamiltonian40,41 in natural units (ℏ= c= 1)
is

Ĥl ¼
1
2al

∑
N�1

n¼1
ϕ̂
y
nÛnϕ̂nþ1 þH:C:

� �

þ m ∑
N

n¼1
ð�1Þnϕ̂ynϕ̂n þ

alg
2

2
∑
N�1

n¼1
L̂
2
n;

ð1Þ

where H.C. denotes the Hermitian conjugate, N is the number of
lattice sites with spacing al, g is the gauge coupling, m is the

fermion mass, ϕ̂n ¼ ϕ̂
1
n; ϕ̂

2
n

� �T
is the staggered fermion field at

site n with a red and a green component, and Ûn is the gauge link
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connecting sites n and n+ 1 (see Supplemental Information for
the continuum model).

The last term in the Hamiltonian corresponds to the invariant
Casimir operator of the theory and represents color electric field

energy stored in the gauge links. Here, L̂
2
n ¼ ∑aL̂

a
nL̂

a
n ¼ ∑aR̂

a
nR̂

a
n

where L̂
a
n and R̂

a
n (with a= x, y, z) are respectively the left and

right color electric field components on the link n. For a non-
Abelian gauge group, the right and left color electric field are
different and are related via the adjoint representation

R̂
a
n ¼ ∑bðÛ

adj
n ÞabL̂

b
n, where ðÛadj

n Þab ¼ 2Tr ÛnT
aÛ

y
nT

b
h i

, Ta are

the three generators of the SU(2) algebra and are given by half the
Pauli matrices41.

Symmetries and non-Abelian physics. By virtue of its gauge
invariance, the Hamiltonian in Eq. (1) commutes with the local
gauge transformation generators, also called the Gauss’s law
operators, and are given by Ĝ

a
n � L̂

a
n � R̂

a
n�1 � Q̂

a
n; where the

non-Abelian charges Q̂
a
n acting on the site n are defined as

Q̂
a
n ¼ ∑

ij
ϕ̂
iy
n ðTaÞijϕ̂

j
n; a ¼ x; y; z: ð2Þ

More precisely, the physical Hilbert space of the theory is span-
ned by the eigenstates of the Gauss’s law operators Ĝ

a
n. In the

following, we choose to work in the sector with no external
charges which is specified by Ĝn Ψj i ¼ 0, ∀ n, and in the neutral
total charge sector Q̂

a
tot Ψj i ¼ ∑N

n¼1 Q̂
a
n Ψj i ¼ 0, ∀ a.

Remarkably, the non-Abelian nature of the model allows the
existence of gauge-invariant singlet states which are forbidden in
the Abelian case due to symmetry constraints. To see this, we
note that the total color charges Q̂

a
tot ¼ ∑N

n¼1 Q̂
a
n are conserved

quantities and commute with the Hamiltonian. Besides the three
non-Abelian charges, the Hamiltonian also commutes with the

redness and greenness operators defined as R̂ ¼ ∑N
n¼1 ϕ̂

1y
n ϕ̂

1
n �

N=2 and Ĝ ¼ ∑N
n¼1 ϕ̂

2y
n ϕ̂

2
n � N=2, which respectively measure the

red and green color charges. Because redness and greenness do
not have convenient symmetry properties, it is more natural to
use their difference (which is purely within the SU(2) gauge

symmetry, since R̂�Ĝ
2 ¼ Q̂

z
tot ) and their sum (which is a global

U(1) symmetry). We therefore define the baryon quantum

number of the model as B̂ ¼ R̂þĜ
2 ¼ 1

2∑
N
n¼1 ϕ̂

y
nϕ̂n � N=2 which

measures the matter-antimatter imbalance.
The existence of multiple conserved charges in the non-

Abelian theory has to be contrasted with the Abelian U(1) case
of quantum electrodynamics (QED), where the electric charge
is the only conserved quantity. In QED, the total electric charge
coincides with the baryon number B of the system42, and the
neutral charge constraint thus imposes the value of the matter-
antimatter imbalance to be zero. In other words, neutral gauge
invariant states of QED must contain as many electrons as
positrons leading to meson-type singlet states only. On the
other hand, the constraint of neutral charge for the SU(2)

theory Q̂
i
tot Ψj i ¼ 0, ∀ i does not enforce the value of the baryon

quantum number B, since these are different quantum
numbers. Therefore, it is possible to construct color-neutral
gauge-invariant singlets with B ≠ 0, which are forbidden in
QED. While the states in the B= 0 sector are similar to the
neutral states of QED, the states in the sector with B ≠ 0 have no
equivalent in Abelian theories. In particular, we will refer to the
ground state in the sector with B= 1 as a baryon state, the
ground state in B= 0 will be the vacuum and the first excited
state will be called a meson state. A pictorial comparison of a
meson and a baryon is given in Fig. 1b.

Elimination of the gauge fields and qubit formulation. To
study the energy spectrum of the SU(2) theory on a quantum
computer, we map the lattice Hamiltonian in Eq. (1) to a qubit
system. In one spatial dimension and with open boundary
conditions, the gauge degrees of freedom can be integrated out
and implicitly contribute to the non-Abelian physics through
long-range exotic interactions43–47 (see Supplemental Note 2
for details and Eq. (6) below). This approach eliminates
redundant degrees of freedom and allows us to calculate our
target model with a minimal number of qubits. As a second
step, a Jordan-Wigner transformation is applied to map the
fermionic matter degrees of freedom to Pauli spin operators
(see Supplementary Note 3 for details). The Hamiltonian is
rescaled into the dimensionless form

Ĥ ¼ x ~mĤm þ Ĥel þ xĤkin; ð3Þ
where we have defined the dimensionless Hamiltonian para-
meters ~m ¼ alm, x ¼ 1

a2l g
2, and we have added a constant to

normalize the strong coupling (x→ 0) ground state energy to
zero. The different terms in the Hamiltonian are given by

Ĥm ¼ 2 ∑
N

n¼1

ð�1Þn
2

σ̂z2n�1 þ σ̂z2n
� �þ 1

� �
; ð4Þ

Ĥkin ¼ � ∑
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n¼1
σ̂þ2n�1σ̂

z
2nσ̂

�
2nþ1 þ σ̂þ2nσ̂

z
2nþ1σ̂

�
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; ð5Þ

Spatial lattice and qubit encodinga

1 2 4 6 2N-2 2N3 5  2N-3  2N-1

1

1
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1

1

Abelian vs. non-Abelian (color-) neutral matter configurationsb

QED

SU(2)

positron electron Zero matter-antimatter imbalance for 
any Abelian theory.

red & green fermionantiparticle - particle pairs
B = 1 B = 0 

Non-zero matter-antimatter 
imbalance possible.

+

Fig. 1 Gauge theory on a lattice. To study the SU(2) theory in one
dimension, we employ the spatial lattice in (a), where each site consists of
either matter or antimatter particles of the two possible colors. In the
equivalent qubit formulation, each particle is represented by a qubit on a
one-dimensional chain, which hence contains a number of qubits that
equals twice the number of staggered sites. For a full discussion of the qubit
representation see Supplementary Fig. 1. b Illustrates a comparison
between the different gauge invariant states allowed in the neutral charge
sector of Abelian QED and SU(2). While in the Abelian case neutral states
require an equal number of matter (full spheres) and antimatter (striped
spheres) particles, in the non-Abelian case, color-neutral states with a non-
zero matter-antimatter imbalance are possible.
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The Hamiltonian thus reduces to an effective qubit model with long-
range interactions originating from the color electric field energy. In
general, in order to calculate N staggered sites (i.e., N/2 physical
sites), 2N qubits are necessary (Fig. 1a). The presence of non-
diagonal interactions in Eq. (6) is a direct consequence of the non-
Abelian character of the model (such terms are absent in the Abelian
Schwinger model11,41,42). Note that even though the gauge degrees
of freedom no longer appear explicitly in the Hamiltonian, their
interaction with the matter fields is fully taken into account. In fact,
gauge field observables such as the electric field density can be
computed using the reduced Hamiltonian42 and are therefore still
accessible to our quantum computation.

Variational quantum search. To study the SU(2) baryon and
meson states on current quantum computers, we employ the
VQE approach to quantum calculations48–50, which consists of a
classical optimizer that aims to minimize a cost function C(θ),
where θ= (θ1, θ2,… ) are the variational parameters. The cost
function is evaluated on quantum hardware, e.g., for the task of
ground state preparation, we choose CðθÞ ¼ ΨðθÞ� 		Ĥ ΨðθÞ

		 

with

an ansatz state ΨðθÞ
		 
 ¼ ÛðθÞ Ψ0

		 

. Ψ0

		 

represents a fiducial

input state, and ÛðθÞ a parameterized unitary evolution. In our
case the circuits that implement such evolution are shown in
Fig. 2. Our classical optimizer (see “Methods”) combines a mesh-
based search with Bayesian optimisation techniques51, which
avoids both costly gradient estimations and convergence in a local
minimum. For each set of parameters θ we store the performed
measurements of the multi-qubit Pauli operators contained in Ĥ
(see “Methods” for a discussion about the decomposition of Ĥ),
which enables us to classically compute the corresponding value
of C(θ) for different values of the Hamiltonian parameters.

To reduce the circuit depth and the number of qubits needed, i.e.,
to minimize error sources on the currently available NISQ devices,
we exploit the freedom to split the circuit into two parts
ÛðθÞ ¼ ÛsÛ

0ðθÞ, where Ûs contains static parts of the evolution
that are not affected by the variational parameters, as shown in Fig. 2.
Only the variational part of the circuit, Û

0ðθÞ has to be carried out on
quantum hardware, as part of the computation is relegated to
classical preprocessing by transforming the Hamiltonian used in C(θ)

as Û
y
s ĤÛs. Generally this approach comes at the cost of increasing

the number of Pauli operators that have to be measured. An
additional practical advantage can be gained if this decomposition
results—as in our case—in a separable state of active and inactive
qubits, Û

0ðθÞ Ψ0

		 
 ¼ ûaðθÞ Ψa

		 
� ûi Ψi

		 

whose second component

can be efficiently computed classically. Hence, only the variational
part of the ansatz state ûaðθÞ Ψa

		 

is implemented to measure the

expectation value of the effective Hamiltonian acting on the active

qubits Ψi

� 		ûyi Ûy
s ĤÛsûi Ψi

		 

(see “Methods” for more details).

Preparation of the lightest baryon state on quantum hardware.
Our VQE experiment determines the mass of the lightest baryonMb,
which is defined as the gap between the energy of the lowest baryon

state Eb and the vacuum state Ev

Mb ¼ Eb � Ev: ð7Þ

As previously discussed, the lightest baryon state is the ground state
of the Hamiltonian Ĥ given in Eq. (3) in the sector with baryon
number B= 1, while the vacuum is the ground state in the sector
with B= 0.

We experimentally prepare both states using the IBM Quantum
Experience37 for a lattice with N= 4 spatial sites, ~m ¼ 1 and
x∈ [0, 5] (see “Methods” for a generalisation of our experimentally
realized VQE scheme to larger lattices and parameter regimes). Since
current quantum devices are restricted in the gate depth that can be
faithfully implemented, we employ a problem-adapted efficient VQE
circuit (Fig. 2) that creates a limited number of basis states and
variationally combines them with adjustable weights. The circuit
generates only color-neutral states in the B= 1 symmetry sector. Our
implementation of the color symmetry and baryon number
conservation is encoded directly into the VQE circuit and maintains
the scalability of our algorithm. It differs from the pre-processing of
the Hamiltonian by symmetry projections as discussed in ref. 32. We
further reduce the explored state space by considering only basis
elements that contain up to a total of four fermions and antifermions,
which approximates the ground state well in the considered
parameter range. In Methods, we propose a circuit that is not
limited by the cut-off in the number of particles and valid for any
Hamiltonian parameters, but comes at the expense of a higher gate
depth (see Fig. 7 in “Methods”).

We apply the circuit-splitting technique explained above to our
ansatz state, which reduces the number of qubits from eight to
four (six) for the baryon (vacuum) state, as shown in Fig. 2. For

=

static gates Us

Adapt coupling topology VQE circuit for the meson mass

Adaption of the VQE circuits for small devices
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Fig. 2 VQE ansatz circuits. The uppermost circuits for N= 4 can be
reduced by absorbing the static colored gates into Ûs. The parametrized
controlled gates are Y-rotations. For the orange gates, the circuit identity in
the orange box has to be applied beforehand. This results in inactive qubits
(dashed lines), which do not need to be physically available on the quantum
device. Details of circuit reduction are discussed in Methods. In the lower
left, the introduced SWAP gate for the adaptation to the architecture of the
ibmq_casablanca processor is shown, with the qubit labeling as introduced
in Fig. 3a (see below). The N= 2 circuits to estimate the meson mass are
illustrated in the box in the bottom right.
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our case the B= 1 baryon circuit can be seen as a specialized
instance of the B= 0 circuit, so only the more general circuit
needs to be implemented on the quantum hardware, namely the
lower-left panel in Fig. 2.

The IBM Casablanca processor37 consists of seven qubits with the
coupling topology displayed in Fig. 3a. We arranged the active qubits
in a fashion such that only one SWAP gate is required to perform the
circuit. The reduced circuit possesses three variational parameters,
each modifying several single-qubit gates marked by the colored
boxes in Fig. 3a. In order to perform one measurement of the
Hamiltonian we need to repeat the ansatz state preparation and
measure each of the 36 multi-qubit Pauli operators in which it is
decomposed, and we average the measurement results over 8192
repetitions. In order to mitigate CNOT errors this procedure is
repeated three times for different noise rates, which allows to
extrapolate the results to the noise-free limit (see “Methods”).

The baryon mass obtained from the experimental VQE is
shown in Fig. 3b and we find good agreement with the exact
diagonalisation result.

Accessing excited states on quantum hardware. As a next step
in studying the properties of the baryon we address its mass ratio
with its partner particle, the meson. We consider the lightest
meson, which is the first excited state in the B= 0 sector with
energy Em, and mass Mm= Em− Ev.

In order to access excited states within the VQE approach, we
need to modify the cost function appropriately. Since the
eigenstates of the Hamiltonian are mutually orthogonal, we add
a term that penalizes variational states that overlap with the
lower-energy eigenstates. More precisely, after obtaining the
parameters θv that minimize ΨðθÞ� 		Ĥ ΨðθÞ

		 

, we consider as

cost function CðθÞ ¼ ΨðθÞ� 		Ĥ ΨðθÞ
		 
þ βjhΨðθÞjΨðθvÞij to

obtain the energy of the meson state, where β is a weight
chosen larger than the expected energy gap52. The measure-
ment of the overlap can be obtained by applying the unitary
ÛðθÞyÛðθvÞ to the initial state. This composite unitary evolution
can be realized by a further application of the inverse quantum
circuit. Consequently, the overlap is directly given by the
probability of measuring the initial state Ψ0

		 

in the final state

ÛðθÞyÛðθvÞ Ψ0

		 

. This procedure is trivially extendable, i.e.

higher excited states can be obtained recursively (see “Methods”
for more details).

Similar to the study of the baryon, we can simplify the VQE by
enforcing the suitable symmetries of the state directly within the
construction of the circuit, so that it creates only basis states that
have the correct B number, are gauge singlets, and contain a
limited number of particles. However, given the current
limitations on the fidelities of available gates, calculating the
required overlap is still a nontrivial task since it requires a deeper
circuit. We, therefore, reduce our lattice size to enable the
calculation on the quantum machine and compute the properties
of the meson for N= 2. By applying the strategies discussed in the
baryon case we can reduce the number of necessary qubits from
four to three. In Fig. 4 we report the results from an experimental
VQE calculation performed on the IBM Athens processor38,
where we obtain the energies necessary to compute the meson
mass. The vacuum and meson states are successfully computed
with good accuracy (Fig. 4a), and the mass of the meson is shown
in Fig. 4d. In Fig. 4b–c, we give the two circuits required to
calculate the cost function for the computation of the excited
meson state, namely one computing the expectation value of Ĥ,
and one computing the overlap with the previously calculated
vacuum.

Path towards the continuum limit. In the continuum limit,
SU(2) gauge theory dictates that the masses of the baryon and the
meson are equal53 because of a global SU(2) symmetry. Some
lattice discretisations will preserve this degeneracy but for others
it will only be restored in the continuum limit. Staggered
fermions40, as used here, are in the latter category, which means
the distinction between meson and baryon masses is a valuable
measure of approaching the continuum limit.

To study this effect quantitatively, let us define the hadron mass
ratio

r ¼ Mm

Mb
; ð8Þ

and obtain this quantity with explicit calculations from the qubit
Hamiltonian in Eqs. (3–6) on classical computers. In general, in order
to extrapolate lattice calculations to the continuum limit, it is
necessary to take the limit x→∞, while keeping a physical length
scale fixed4. Our small lattices are insufficient for performing a
continuum extrapolation, but we are able to consider the x
dependence while holding the mass ratio fixed. Figure 5a shows
curves of constant r in the plane spanned by x and ~m. Notice that any
curve with a fixed r > 1 does not allow for x→∞. The only constant-
physics curve that allows it is the one in the limit of r→ 1, therefore
the correct value of the mass ratio in the continuum limit has to be 1
as required by the theory’s SU(2) global symmetry.

VQE preparation of the baryon massb

x
1 2 3 4 5 0

0

5

10

15

20

Mb

SU(2) “quark”

SU(2) “proton”

N = 4

1

2

3

4

5

6
a VQE circuit to prepare baryon and vacuum states

Exact baryon mass
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Fig. 3 VQE calculation of a baryon. We variationally study an effective
eight sites chain with the experimental circuit shown in (a). The boxes
represent single-qubit gates. Gray boxes are fixed gates while the color
coding indicates dependence from three variational parameters. Their exact
implementation changes depending on the combination of the parameter
values, which is automatically compiled from the original circuit shown in
Fig. 2. This takes into account the coupling topology of the IBMQ
Casablanca processor, which, together with the qubit identification for the
B= 0 sector are shown on the left. b The circuit yields the mass of the
baryon (error bars are smaller than markers, see “Methods” for a more
detailed discussion), an SU(2)-"proton” (see inset), for a range of x and
~m ¼ 1 as explained in the main text.
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The large ~m region of Fig. 5a, i.e., ~m > 1, is also insightful. Here
the meson and baryon masses become dominated by the masses
of the fermions and antifermions that they contain, relegating the
meson-baryon mass difference arising from pair creation
processes and gauge flux effects to be a small correction. This is
reflected in Fig. 5a in two ways. One is that the curves of constant
r become independent of x (getting more vertical toward the top
of the graph). The other is that curves of constant r become

independent of the lattice size N, since extended objects that
probe the lattice boundaries always contain gauge flux which
becomes a small effect at the top of the graph.

We perform experimental VQE calculations in the intermedi-
ate mass regime ~m ¼ 1 for several values of the gauge coupling
within x∈ [0, 5], marked by the horizontal blue line in Fig. 5a.
The mass ratio r along this blue line is displayed in Fig. 5b for
both the experimental VQE and exact diagonalisation, and the
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Y - gate

ca VQE preparation of the low-lying energy spectrum
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VQE preparation of the meson massd
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Fig. 4 VQE calculation of the meson mass. To obtain the low-lying energy spectrum as shown in (a), we first employ the circuit in (b) to obtain the
vacuum energy Ev (circles) in step I. Note that the employed gates are either rotations around the y-axis, the corresponding controlled gate, and bitflip X-
gates. Subsequently in step II, the variational parameters minimizing Ev are used in the circuit in (c), which allows to estimate the overlap betweeen the
ansatz state and the variational ground state (see main text and Methods). Together with the circuit b we perform a VQE calculation to obtain the first
excited state energy Em (step III, triangles). In the final step IV, we compute the energy difference Mm= Em− Ev and obtain the mass of the meson, shown
in panel d. In all panels, solid or dashed lines correspond to results derived via exact diagonalisation, error bars for experimental data are hidden due to the
marker size (see “Methods” for a more detailed discussion).
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Fig. 5 Mass ratio of lightest SU(2) meson and baryon in parameter space. a Displays lines of constant mass ratios r in the ðx; ~mÞ plane obtained from
exact diagonalisation for lattices of size N= 2, 4, 6. The blue horizontal line marks the cut shown in (b). For N= 2 we supply the experimental VQE results
for the meson mass with data obtained via exact diagonalisation of the baryon energy, which is trivial for this lattice size. For N= 4 the meson energy is
obtained via a classical calculation of a VQE including statistical errors, using the same measurement protocol as in the experimental run. Most of the error
bars are hidden by the markers, see “Methods” for a more detailed discussion.
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two methods show good agreement. The graph confirms that r
approaches the value 1 for larger x, representing the correct
restoration of mass degeneracy.

Furthermore, as is shown by comparing the exact diagonalisa-
tion data for N= 4 and N= 6, there is a clear indication that
finite-size effects are quite limited already for small system sizes.
We show in the Methods how our experimental VQE circuit for
computing the baryon energy can be generalised to larger lattice
sizes N, as required for the parameter range ~m ¼ 1, x∈ [0, 5] that
was discussed in Fig. 5b. We also extend our study to smaller
fermion masses ~m and provide a general circuit in the Methods
that allows to compute the energy of the baryon for all parameter
regimes. These extensions to our VQE experiments involve
circuits beyond the capabilities of current quantum hardware and
will require further experimental developments.

Discussion
As of today, only Abelian physics and non-Abelian pure gauge
theory have been simulated on a quantum computer. In this work
we combine a quantum and a classical computer to prepare and
study the hadrons of a non-Abelian gauge theory; this is made
possible by the inclusion of dynamically coupled matter fields in
the quantum computation.

While the gauge fields only appear implicitly in our approach,
it is the gauge fields that provide the non-Abelian feature of the
theory, i.e., the existence of a gauge-invariant baryon. This proof-
of-concept demonstration was made possible by a resource-
efficient approach for designing our VQE circuits. While neces-
sary to alleviate the experimental requirements for implementing
the full SU(2) gauge theory, this approach also paves the way for
the development of future quantum simulators. In particular, the
developed formalism offers a rigorous and systematic protocol to
prepare highly entangled initial states for time evolution pro-
blems. We note that the theory developed in the first part of this
paper lends itself to quantum simulations in other scientific areas
and with other experimental platforms than the ones considered
here. Finally, it is worth mentioning that the incorporation of
digital-analog approaches54 in our VQE approach may be
another promising direction to achieve a quantum advantage in
practice.

Our work lays the foundation for a series of important next
steps. Within the considered 1D SU(2) gauge theory, our work
can be extended to study other hadrons including less familiar
ones such as tetraquarks, with the goal of developing quantum
simulators for nuclear physics. To this end, future work will
include the extension to SU(3) gauge theory, since that is directly
applicable to QCD. On this quest, extending our formulation to
two and three spatial dimensions will have to be pursued, which
can be done by following55. While the calculation of the low-lying
spectrum of a non-Abelian model such as the one studied here
can be performed with a classical computer, the methods devel-
oped in this benchmarking work offer the tools to tackle pro-
blems that are inherently difficult to address classically, such as
the infamous sign problem which constitutes a well known issue
in Monte Carlo methods for lattice gauge theories. In our
approach, sign-problem afflicted models can be considered that
include for example fermionic chemical potentials or topological
terms, which both represent additions that can be included in the
Hamiltonian formalism without any fundamental roadblock.

Ultimately, LGT calculations are indispensable for studying
non-Abelian gauge theories, and a dramatic new breakthrough
such as quantum computing has the potential to greatly extend
the regime of numerical accessibility. Our computation of a
complete non-Abelian benchmarking model, including both
gauge and matter fields, represents an important first step and

brings a path towards the quantum computation of non-Abelian
LGT into view.

Methods
Hamiltonian decomposition and classical optimisation. The operators to be
measured on the quantum hardware to estimate the expectation value hĤi can be
readily obtained from Eqs. ((4)–(6)) in the main text after recalling that
σ̂ ± ¼ ðσ̂x ± iσ̂yÞ=2. In particular, the Hamiltonian Ĥ can be written as
Ĥ ¼ ∑n

k¼1 ckðx; ~mÞP̂k , where ckðx; ~mÞ is a real coefficient and P̂k a 2N-qubit Pauli
operator, e.g.

N2N
k¼1σ̂

z
k . For our Hamiltonian, we find by direct counting that the

number of Pauli strings is given by n= 6N2− 11N+ 9 and grows quadratically in
the number of qubits which is much smaller than the exponential upper bound of
42N. Hence the value of hĤi is given by ∑n

k¼1 ckhP̂ki, where we have omitted the
dependence of ck in x and ~m for simplicity. In order to reduce the number of
observables to measure, we form groups of commuting operators and measure only
the operator with the lowest number of identity components out of each group.
This allows to calculate the expectation value of the remaining operators in the
same group employing only classical computations. Note that here we restrict to
local measurements of the quantum state.

During the optimisation we consider different values of the Hamiltonian
parameter x and it is clear that this only affects the weights ckðx; ~mÞ. Hence we
can store the values of the hP̂ki obtained for different values of the variational
parameters θ and supply our optimisation routine with the updated values of
hĤi after a change of x. For the estimation of the baryon mass we make use of

this fact by jointly measuring all operators P̂
v
k and P̂

b
k that are required for either

the vacuum (v) or the baryon (b) energy respectively. This bears two
advantages: first it allows to perform the error reduction described below, and
second, it reduces the total number of calls that have to be made to the quantum
processor.

Our optimisation routine employs an intertwined combination of a grid-based
search (for exploration) and a Bayesian optimizer (for exploitation) that guide each
other between subsequent iterations51. After enough refinements of the grid, it is
hence guaranteed to find the global minimum. Since the optimizer accumulates
more knowledge of the parameter space after each iteration and the measurements
are independent of x, it is able to revisit any x-value to refine the optimisation after
gaining these additional insights. On the other hand, the Bayesian techniques limit
the number of optimisation parameters to around 20.

Adaptations for NISQ hardware. In the following, we discuss the steps to adapt
the quantum circuits to the currently available hardware in more detail. The
simplifications proposed are general and not restricted to 1D systems and can in
principle be applied to larger systems in higher dimension with dynamical gauge
fields, as long as a qubit encoding is possible. As a concrete example, we consider
the estimation of the baryon mass, where the circuits are constructed according to
the targeted sector of the baryon number B, as outlined in the main text. Figure 2 in
the main text focuses on the case N= 4 and illustrates the procedure formulated in
the main text. For both baryon numbers we can rewrite the ansatz state as
ÛsÛ

0ðθÞ Ψ0

		 

, where we separate the trailing static part of the circuit which does

not depend on the variational parameters and form the unitary Ûs. It becomes clear

from CðθÞ ¼ Ψ0

� 		Û 0yðθÞÛy
s ĤÛ sÛ

0ðθÞ Ψ0

		 

that this corresponds to an effective

transformation of the Hamiltonian Ĥ 7!Û
y
s ĤÛ s and an ansatz state produced with

a shorter circuit Û
0ðθÞ Ψ0

		 

. Importantly, the transformation of Ĥ can be performed

efficiently by applying a set of rules to the multi-qubit Pauli operators contained in
it, e.g., a CNOT with control on qubit one maps σ̂2x σ̂

1
z 7! �σ̂2y σ̂

1
y . This transfor-

mation does not only reduce the depth of the circuit that needs to be implemented
but, crucially, also reduces the required connectivity between the qubits employed
in the experiment, which usually represents a major limiting factor, especially in
superconducting architectures. Next, we note the circuit identity shown in the
orange inset of Fig. 2, which allows to commute the two CNOT gates marked in
orange with the controlled-Y rotations and enables us to absorb them into Ûs as
well. While this identity is generally not true, here the input state ϕ2

		 

is given by

#
		 


, which after the application of the CNOT results in a composite Bell-like state
of the type

ffiffiffiffiffiffiffi
p##

p ##
		 
þ ffiffiffiffiffiffiffi

p""
p ""

		 

. Hence the control qubit for the following

operation can be chosen arbitrarily among them.
In a second step, we eliminate inactive qubits from the circuit. Note that these

are not ancilla qubits in the common notion, since they are still part of the encoded
quantum state of the SU(2) theory; their entanglement with other qubits has rather
been traded for additional measurements that have to be performed to estimate

hÛy
s ĤÛ si. Nevertheless, their quantum state is now separable from the active

qubits, which allows to write the ansatz as Û
0ðθÞ Ψ0

		 
 ¼ ûaðθÞ Ψa

		 
� ûi Ψi

		 

, where

ûaðθÞ is the unitary containing the gates on the active qubits, while ûi corresponds
to a static part that might be applied to the inactive qubits (we have ûi ¼ I for all
circuits employed here).
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For example, in the case of B= 0, the qubits three and four are now inactive,
and we can therefore modify the cost function as follows,

CðθÞ ¼ Ψa

� 		ûyaðθÞ ##� 		
34
Û

y
s ĤÛ s ##

		 

34

h i
ûaðθÞ Ψa

		 

; ð9Þ

where the term in the square brackets is an operator in the Hilbert space of the
remaining qubits one, two and five to eight. After relabeling, we arrive at the six
qubit circuit in Fig. 2. A similar procedure is performed for the circuit designed for
the sector B= 1 with the addition that also the qubits seven and eight can be
removed, i.e. the effective Hamiltonian in the brackets reads

####� 		
3478

Û
y
s ĤÛ s ####

		 

3478

h i
, which leaves the corresponding circuit

consisting of four qubits.
We remark that the six qubit circuit can be employed in both cases, if the qubits

are correctly relabeled and we only remove the qubits seven and eight in the B= 1
case. Since we are interested in the difference of the two eigenenergies, the latter
approach is able to remove erroneous admixtures to the quantum state, since the
estimations of the energies are calculated from the same sample. In more detail, for
any observable Ô to be measured, we have hÔi ¼ ð1� peÞTr½Ôρ̂ðθÞ� þ peTr½Ôρ̂e�, if
we assume that at least some systematic, θ-independent part of the errors can be
modeled by a convex combination to the density matrix with error probability pe.
Then hÔiB¼1 � hÔiB¼0 ¼ ð1� peÞ Tr½Ôρ̂ðθB¼1Þ� � Tr½Ôρ̂ðθB¼0Þ�

� �
is independent

of ρ̂e.

VQE computation of the meson mass. In this section we detail the experimental
VQE protocol for the quantum simulation of the meson mass Em− Ev. The
energies Ev and Em are found as the energies of the ground and first excited state in
the B= 0 subsector respectively. The full circuit to estimate the ground state energy
for N= 2 is shown in the lower right of Fig. 2 in the main text. We reduce the
circuit to three qubits by employing the methods described above. In the main text,
we explain the protocol to access the first excited state of the sector, here we cover
the calculation of the overlap in more detail. The VQE result of the ground state
(i.e., vacuum state) for a specific value of x entails the parameters θv, such that
ÛðθvÞ Ψ0

		 

is the ground state of Ĥ found through the quantum simulation. The

overlap with any other state generated by a new set of variational parameters is

given by j Ψ0

� 		ÛyðθÞÛðθvÞ Ψ0

		 
j2. We can access the Hermitian conjugate of ÛðθÞ
by applying the inverse circuit, i.e., the reversed gate sequence with all parameters

multiplied by −1. Since Ψ0

		 
 ¼ #
		 
�2N

is an element of the computational basis

(the eigenstates of
N2N

k¼1σ̂
z
k), we can obtain the required overlap as the probability

of measuring the state Û
yðθÞÛðθvÞ Ψ0

		 

in the computational basis and obtaining

the initial state Ψ0

		 

. Note that due to the approximately doubled circuit depth, the

calculation is much more susceptible to gate errors and environmental noise
processes, which can render the measurement of the overlap experimentally
infeasible.

As an alternative method to obtain the first excited state, we perform a
variational search in the space orthogonal to the variational ground state
ÛðθvÞ Ψ0

		 

by implementing a Gram-Schmidt orthogonalisation procedure. The

ansatz for the first excited state is thus searched in the form

Ψ1ðθÞ
		 
 ¼ N 0 ÛðθÞ � Ψ0

� 		ÛyðθvÞÛðθÞ Ψ0

		 

ÛðθvÞ

� �
Ψ0

		 

; ð10Þ

with the normalisation factor given by

N 0 ¼ 1� j Ψ0

� 		ÛyðθvÞÛðθÞ Ψ0

		 
j2� ��1=2
: ð11Þ

The new energy cost function to minimize CðθÞ ¼ Ψ1ðθÞ
� 		Ĥ Ψ1ðθÞ

		 

considers only

components of the variational state orthogonal to the ground state, and explicitly
reads

CðθÞ ¼ ΨðθÞ� 		Ĥ ΨðθÞ
		 
� Evj Ψ0

� 		ÛyðθvÞÛðθÞ Ψ0

		 
j2
1� j Ψ0

� 		ÛyðθvÞÛðθÞ Ψ0

		 
j2 : ð12Þ

This has the advantage of obtaining the excited state energy, even if the quantum
circuit can only produce small components of the excited state. However, the
dependence on the ground state energy Ev demands a precise estimate of the latter,
since the structure of the denominator implies vast distortions due to mistakes in
Ev when the overlap is estimated to be close to one. Hence we resort to the cost
function described in the main text for the experimental calculation of the meson
energy.

Implementation on the IBM processors. All reduced circuits can be straight-
forwardly implemented on hardware that offers qubits arranged in a simple
chain with nearest-neighbor coupling, since all further connectivity require-
ments have been mitigated into measurements of the effective Hamiltonian

Ψi

� 		Ûy
s ĤÛs Ψi

		 

(recall ûi ¼ I here). We implement the six-qubit circuit for the

baryon mass on the seven-qubit ibmq_casablanca processor, which possesses

the coupling map shown in Fig. 3b in the main text and hence requires at least
one SWAP operation. We modify the circuit as shown in Fig. 2 in the main text
and relabel the operators in the effective Hamiltonian, such that the SWAP has
not to be reversed.

During the experiment, the main sources of error are the statistical readout,
imperfect application of the CNOT gates, and readout errors, i.e., a false
assignment of basis states during the measurement process. An estimate of the
statistical error can be done by standard techniques employing the sample mean
and sample covariance. Note that such error does not quantify a deviation to the
true expectation value of Ĥ with respect to the variational state, since the
measurement is performed via subsequent measurements of sets containing the
Pauli-operators spanning Ĥ. Furthermore, each call to the quantum processor
entails a set of calibrating circuits to mitigate readout errors, i.e. allow one to
estimate the map Λ that mixes the true measurement probabilities ptrue into the
observed ones pobs=Λ ptrue, such that one obtains an estimate of the true
probabilities by an inversion of the map. Note that no contribution to the final
error bar is obtained via that procedure. To include and minimize the error
stemming from the entangling gates, we employ an extrapolation of the CNOT
errors to mitigate their effect (the final error bars do not include uncertainty
resulting from this inversion). We replace each CNOT in the circuits by either
three or five CNOT gates to artificially enhance the effect of the introduced error.
The errors are small enough that the experimental points with different numbers of
CNOT gates can be linearly interpolated without needing any higher-order
correction to give the result in the hypothetical case of vanishing CNOT error56,57.
The latter procedure takes into account the statistical error influencing each of the
results, hence an error is associated to the linear fit, which is the one we show in the
figures of the main text. Let us remark however that the data collection has been
performed over multiple calibration cycles automatically performed by IBM which
can have non-tractable influence on the shown error bars.

Extension for future quantum computers. As explained in the previous sections,
our results presented in the main text for the baryon and the meson rely on
carefully chosen measures such as the mass cut-off and circuit-splitting technique.
These measures are necessary given the current technological status and restric-
tions imposed by NISQ devices. It is however important to present tools for the
investigation of our model in light of foreseeable more powerful quantum hard-
ware. Future quantum computers will offer the possibility to use more qubits with a
higher level of qubit control and increased circuit depth. To address the advantages
and potential offered by these future quantum computers, we have designed cir-
cuits free of the measures taken in the case of NISQ devices. To be more precise, we
first show that the VQE approach applied in our experiment can be extended to
larger lattice sizes and any parameter regime by emulating the VQE protocol on a
classical device, where we estimate the mass of the baryon for N= 6 spatial sites (12
qubits). The calculation involves a circuit that does not limit the number of par-
ticles that are contained in the states that are generated, but comes at the expense of
a high gate depth. To alleviate the experimental requirements, we also propose an
alternative circuit for the baryon in the case of N= 4, which allows us to obtain the
baryon state in all parameter regimes with high fidelity.

As a proof of principle, we perform numerical simulations of a VQE
protocol employing a generalized ansatz circuit to estimate the baryon mass for
a spatial lattice of six sites (N= 6, 12 qubits). Here, we do not take the statistical
quantum measurement noise into account. The ansatz we choose is the
following. Given a baryon number B, we employ the ground state at x→ 0
(strong coupling) as our input Ψ0

		 

. For B= 1 this corresponds to a red-green

particle pair at the spatial site N= 6 and in the case B= 0 to the bare vacuum
state. Note that for B= 1, the ground state for x→ 0 is N/2-fold degenerate,
corresponding to the possible number of sites the red-green particle pair could
occupy. For small, finite values of the parameter x, the kinetic term in our
Hamiltonian (see Eq. (5) in the main text) lifts the degeneracy and a second-
order perturbation expansion shows that the state corresponding to the red-
green particle pair at N-th spatial site of the chain has the lowest energy, which
motivates the choice of our initial state.

The variational circuit consists of layers of pairwise, excitation-preserving gates
between neighboring qubits, i.e., the unitary of the k-th layer reads

Ûk ¼ ∑
2N�1

j¼1
Û j;jþ1ðθj;kÞ: ð13Þ

Here, the unitaries Û j;jþ1ðθÞ are given by parameterized SWAP gates. Note that

each Ûk preserves the total spin hσ̂ztot i and hence ensures that the final state also
lies in the chosen subspace characterized by B. In fact, it can be easily shown

that the baryon number in qubit formulation is given by B̂ ¼ σ̂ztot
4 , and therefore

subspaces with fixed baryon number correspond to subspaces with fixed total
magnetisation. Employing 10 (15) layers in the B= 0 (B= 1) sector, we obtain
the baryon mass shown in Fig. 6 for different values of ~m. Importantly, this
procedure grants access to the whole parameter space illustrated in Fig. 5 of the
main text.
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In general, for N sites, we have 2N− 1 variational parameter per layer of gates.
Therefore, for larger lattices, the use of Bayesian optimizer will be limited by the
increase in the number of variational parameters. However other optimization
methods are being developed to overcome this issue58. The high depth of the
circuit required by this method can also be subject to scaling issues, but the
development of more efficient circuits, that can be designed employing expressivity
analysis59, error mitigation techniques60, and experimental advancements will
bring new possibilities into view.

In order to further lower the computational effort of the previous brute force
approach, we propose another solution that reduces the depth of the circuit and
number of variational parameters. We consider a circuit that generates the ansatz
state for the lightest baryon on a lattice with N= 4 sites and arbitrary Hamiltonian
parameters.

In Table 1, we have listed all the basis states whose total magnetisation is equal to 4
(corresponding to a baryon quantum number B= 1), and are annihilated by Q̂

z
tot. There

are 16 such states and 12 of them must be combined pairwise in order to form color
singlet combinations, i.e. such that an application of the three non-Abelian charges Q̂

a
tot

with a= x, y, z is equal to zero. Basis states which have to be combined are written with
the same numeric index and located in the same row of Table 1. For instance, the two
states appearing in the fifth row must be combined in the following way

~s5
		 
 ¼ 1ffiffiffi

2
p s5

		 
� s05
		 
� �

ð14Þ

to be a common eigenstate of the three non-Abelian charges with eigenvalue zero (for
more details, see Supplementary Note 4). For larger lattice sizes N, the construction of
the singlet states becomes more involved and will not be addressed here.

Once we have constructed a basis for the B= 1 symmetry sector composed of
color singlet states, we can parametrize an ansatz for the lightest baryon
considering a superposition of such basis elements with real coefficients. For
example we can use hyperspherical coordinates and consider

ΨðθÞ
		 
 ¼ ∑

10

n¼1
anðθÞ ~sn

		 

; ð15Þ

where ~sn
		 
 ¼ ð sn

		 
� s0n
		 
Þ= ffiffiffi

2
p

are the color singlet combinations of basis states

appearing in Table 1, anðθÞ ¼
Qn�1

i¼1 sinðθiÞ cosðθnÞ for n= 1, 2,…, 9,
a10ðθÞ ¼

Q9
i¼1 sinðθiÞ, and θ= (θ1, θ2…θ9) is a vector of nine variational

parameters. Note that only nine parameters are required to describe the ansatz state
since the tenth is automatically fixed by the normalisation. The circuit generating
the ansatz state is represented in Fig. 7 and has been separated into two parts. The
first parametric part contains the nine variational parameters and creates the
following superposition

ψðθÞ
		 
 ¼ Û

0ðθÞ """"""""
		 
 ¼ ∑

10

n¼1
anðθÞ sn

		 
 ð16Þ

where Û
0ðθÞ is the unitary representing the parametric part of the circuit,

""""""""
		 


is the input state and sn
		 


are the basis states in Table 1. The
purpose of the second part of the circuit is to impose the color symmetry and
hence to produce the color symmetric superpositions as in Eq. (15), i.e.,
ΨðθÞ
		 
 ¼ Ûs ψðθÞ

		 
 ¼ ÛsÛ
0ðθÞ """"""""

		 

with Ûs the unitary representing

the static part of the circuit in Fig. 7. Let us note that the static part of the circuit
possesses a block structure with an elementary block made of a double
controlled π/2Y-rotation followed by three Toffoli gates. There are six
elementary blocks corresponding to the six states which need to be combined in
Table 1. As an example, let us consider the first block and see its action on the
state ψðθÞ

		 

. The controlled rotation acts only on the basis state s5

		 

, which is

the only one having both spins pointing down at positions two and three, and
hence generates the state "###""""

		 

with weight−a5(θ). The three

ɵ2

ɵ3

ɵ4

ɵ5

ɵ6

ɵ7

ɵ8

ɵ9

ɵ1

X

X

parametric part static part

Fig. 7 General baryon circuit for N= 4. The parametric part of the circuit involves nine variational parameters (θ1, θ2,…, θ9), while the static part can be
incorporated into the Hamiltonian to reduce the computational effort as discussed in the main text. The colored gates mark (controlled) rotations around
the y-axis with the angle of rotation indicated. White control marks denote the active application of the gate when the control is in #

		 

. The circuit, when

applied to the initial state """"""""
		 


, generates the 16 basis states satisfying the B= 1 symmetry (reported in Table 1) and combines them to form
color singlet thus reducing the total number of necessary variational parameters. Classical simulations of noiseless VQE using this circuit have
demonstrated a high fidelity with the exact ground state in the B= 1 sector.

1 2 3 4 50
0

10

20

30

x

Mb

Classical VQE simulation

m~

0.25
0.10

0.50
1.00
1.75

Fig. 6 Classical simulation of a VQE to estimate the baryon mass for
N= 6. For different values of ~m we calculate the mass either via an exact
diagonalisation (solid lines) or with the magnetisation preserving VQE
ansatz in equation (13) (boxes). The case N= 4 and ~m ¼ 1 calculated on
real quantum hardware is shown in Fig. 3 of the main text.

Table 1 All basis states with baryon number B= 1 for a
lattice with N= 4 spatial sites.

N= 4, B= 1 basis states

s1
		 
 ¼ """"""##

		 

s2
		 
 ¼ """"##""

		 

s3
		 
 ¼ ""##""""

		 

s4
		 
 ¼ ##""""""

		 

s5
		 
 ¼ "##"""""

		 

s05
		 
 ¼ #""#""""

		 

s6
		 
 ¼ "#""#"""

		 

s06
		 
 ¼ #""""#""

		 

s7
		 
 ¼ "#""""#"

		 

s07
		 
 ¼ #""""""#

		 

s8
		 
 ¼ """""##"

		 

s08
		 
 ¼ """"#""#

		 

s9
		 
 ¼ """#""#"

		 

s09
		 
 ¼ ""#""""#

		 

s10
		 
 ¼ """##"""

		 

s010
		 
 ¼ ""#""#""

		 

States in the same row must be combined together to form a color singlet as exemplified in Eq.
(14).
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subsequent Toffoli gates transform this state into s05
		 


, resulting in the color
singlet state given in Eq. (14). The other blocks act similarly, and after the
application of the static part, we obtain the ansatz state given in Eq. (15). Also
note that the overall structure of the circuit would in principle allow the use of
the splitting technique to further reduce the computational effort as described
in the previous sections. Classical simulations of noise-free VQE with this
circuit have demonstrated high fidelity with the exact ground state in the
B= 1 sector and for any value of the Hamiltonian parameters.

Data availability
Source data are provided with the manuscript. Source data are provided with this paper.
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