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The adjustment of γ-aminobutyric acidA tonic 
subunits in Huntington’s disease: from transcription 
to translation to synaptic levels into the neostriatum

The γ-Aminobutyric Acid
Described for the first time in the brain halfway through the 
20th century as a free amino acid by Roberts and Frankel, it is 
found in plants, invertebrates and vertebrates where it has mul-
tiple functions: γ-aminobutyric acid (also known as GABA) is 
a non-protein amino acid which plays a key role in all stages of 
life, both in health and disease, as a molecule for guidance (Zhu 
et al., 1999), cell differentiation (Procacci et al., 2012; Ramírez 
et al., 2012), neurogenesis as well as synaptic plasticity (Duveau 
et al., 2011; Dieni et al., 2012; Kim et al., 2012). It is also consid-
ered the main inhibitory transmitter for neural transmission, 
certainly (Krnjevic and Phillis, 1963).

The enzyme glutamate decarboxylase (GAD) catalyses the 
decarboxylation of the amino acid glutamate to sinthesize 
GABA and CO2 formation, it exists in two isoforms of different 
molecular weight, 65 and 67 kDa (GAD65 and GAD67). Both 
isoforms are expressed in the brain. GAD67 is constitutively 
active and has the function of basal GABA production. On the 
other hand, GAD65, is transiently activated in response to the 
demand for extra GABA in neurotransmition (Kaufman et al., 
1991; Fenalti et al., 2007).

The GABA Receptors  
The systemic release of GABA and its subsequent binding acti-
vates two membrane receptors with distinctive pharmacologi-
cal profiles (Bowery et al., 1979); one of them is a heterodimer 
G-protein-coupled receptor, known as GABAB (Hill and Bowery, 
1981), composed by two subunits (GABABR1 and GABABR2) 
(Jones et al., 1998). The interaction between the GABA neu-
rotransmitter and the GABAB receptor induces cationic conduc-
tance towards the extracellular regions, presynaptically as auto-
receptor suppress transmitter release by two ways: activation of 
potassium channels and inhibition of voltage dependent calcium 
channels, N-type or P/Q-type. Postsynaptically the activation of 
GABAB receptors produces hyperpolarization increasing potas-
sium conductance given by GIRK or Kir3 potassium channels 
(Bettler et al., 2004).

The other receptor is the widely distributed and member of the 
Cys-loop family of neurotransmitter-gated ion channels (Bar-
nard, 1992). These hetero-pentameric channels are composed 
from a possible choice of nineteen subunits (α1–6, β1–3, γ1–3, δ, 
ε, θ, π and ρ1–3), generating a plethora of receptor combinations 
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to coordinate differential neural inhibition depending on the 
stoichiometry of each channel (Olsen and Sieghart, 2008). This 
kind of receptor has been named GABAA, their activation opens 
an inward membrane chloride conductance, and therefore, also 
generates hyperpolarization and it is responsible for ionotropic 
phasic and tonic currents (Glykys and Mody, 2007).

GABAA Phasic and Tonic Subunits  
The broad family of GABAA phasic heteropentameric recep-
tors, composed by α1–3, β1 and 2, γ1–3, ε, π and θ, are located 
into the synaptic cleft, whereas the limited family of GABAA 
subunits that render tonic inhibition are strategically located 
outside the synaptic cleft, specifically at perisynaptic and/or in 
extrasynaptic regions, tonic inhibition is given by α4–6, β3, δ, 
or ρ1–3 subunits. Phasic inhibition consists of fast inhibitory 
postsynaptic potentials, pentameric receptors faces to presyn-
aptic release sites, and are activated by a brief time of exposure 
to high GABA concentrations released from presynaptic termi-
nals and producing high amplitude currents (Carver and Red-
dy, 2013); whereas the hallmark of the GABAA tonic resource 
involves high neurotransmitter sensitivity, long-lasting events 
where the electrical membrane potential slowly rises and falls, 
it is the cell response given by the spillover of neurotransmitter 
release outside of the synaptic cleft per se, pentameric receptors 
are not commonly faced to the presynaptic active sites (Po-
lenzani et al., 1991; Ade et al., 2008). This provides a strategic 
function for efficiently sensing low local GABA levels, and then 
restore the balance between excitation and inhibition from 
extrasynaptic and or perisynaptic locations (Ade et al., 2008; 
Santhakumar et al., 2010; Janssen et al., 2011).

All GABAA receptors reach the plasma membrane by means of 
different scaffold proteins, the phasic receptors anchors to syn-
aptic sites by gephyrin, a 93-kDa protein that forms a hexagonal 
network below the plasma membrane (González et al., 2013). 
Some other scaffolding proteins, common for phasic and tonic 
GABAA receptors include the GABA receptor associated protein 
(GABARAP) (Wang et al., 1999), and the Phox homology-Rho 
GTPase-activating protein (PX-RICS) (Nakamura et al., 2016). 
These complex form a sophisticated assembling interacting di-
rectly with the cytoskeleton. Although tonic receptors have lower 
distribution compared to the phasic subunits, their multiple 
assembly alternatives makes a wide stoichiometry range of these 
chloride channels possible at the cell membrane level. 

The biophysical properties of long-lasting GABAA tonic medi-
ated-currents have been related with cellular protection resource 
against excitotoxic injury and cell death through persistent in-
hibition in presence of an excessive excitation (Ade et al., 2008; 
Santhakumar et al., 2010; Janssen et al., 2011). Therefore, GABAA 
tonic activity is an essential cellular resource when unequilibrated 
predominance of excitation over inhibition exists. Examples of 
excitatory/inhibitory disequilibrium are some neural disorders as 
Epilepsy, affective disorders, schizophrenia, autism, and Hunting-
ton’s disease, in which GABAA tonic inhibition has been proposed 
as an important target for therapeutic intervention (Santhakumar 
et al., 2010; Rudolph and Möhler, 2014; Schipper et al., 2016; Du 
et al., 2017; Kumar et al., 2017; Rosas-Arellano et al., 2018).

Huntington’s Disease (HD) and Some 
Transgenic Mice Models 
HD (also known as Huntington’s chorea) is a progressive, au-
tosomal dominant and neurodegenerative disorder with cog-
nitive, physchiatric and motor dysfunctions (Bates et al., 2015; 
Colpo et al., 2017). As was described 25 years ago, this is caused 
by a genetic mutation that results in a polyglutamine expansion 

of the huntingtin (Htt) protein, producing a dominant toxic 
property that results in major cell damage or cell death due to 
the accumulation of this mutant Htt (mHtt) (No authors listed, 
1993). At the motor system level, disequilibrium of excitato-
ry-inhibitory pathways is characterized by clonic spasms of the 
voluntary muscles as was first reported by George Huntington 
(Huntington, 1872).

For experimental studies of HD mouse models provided us 
reliable information to understand in different ways this neural 
disorder and to develop new therapeutic strategies. Some avail-
able transgenic mouse models include R6/1 and R6/2 (both are 
the first transgenic mouse models designed for HD), HdhQ92 
and HdhQ150 (are knock-in lines), as well as YAC128 (that 
carries the full-length human mHtt gene with 128 CAG repeats) 
(Mangiarini et al., 1996; Wheeler et al., 1999; Lin et al., 2001; 
Slow et al., 2003; Van Raamsdonk et al., 2005).

The transgenic mice R6/1 and R6/2, these mice have 116 to 
150 repeats of CAG at the 5’ end of the HD gene; R6/2 model 
has been the most studied because it shows a neuropathological 
and behavioral phenotype very similar to HD (Mangiarini et 
al., 1996). Behavioral analysis reveal alterations related to age 
in dystonic movements, motor performance and grip strength 
which progressively get worse until death. Their life span is 3–7 
months, with no sex differences in the pathological phenotype 
(Hannan, 2004).

The R6/1 model shows a slower progression of the disease 
than the R6/2 model (Mangiarini et al., 1996). In these mice, 
motor performance problems occur after 4 or 5 months of age 
as abnormalities in gait and grip of the hind limbs in a similar 
way to that described in R6/2 mice. A poor performance in 
motor tests is clear at 3 months of age. Their life span is greater 
than 12 months (Naver et al., 2003).

In test of YAC128 for activity parameters, for example at 
the 3-month-old YAC128 have significant elevation in dis-
tance traveled, resting time, and time spent in ambulatory 
movements when it is compare with the littermates controls; 
however, both parameters remains without differences between 
3- and 9-month-age between YAC128 animals. Interestingly, 
the YAC128 begin to manifest a hypokinetic phenotype at 6 
months, age also known as early stage of progressive motor im-
pairment (Jackson Laboratory, DATASHEET-004938; Brooks 
et al., 2012), hypokinetic compared with wild-type littermates, 
and this hypokinetic phenotype is progressive with age, becom-
ing significant only until 12 months of age (Slow et al., 2003).

HdhQ150 mice models start to exhibit weight loss at week 
70th, it is significant at week 100, when exhibit significantly 
motor impairment and reduced motor activity, this reduction 
is also observed at 70 weeks, although is not robust, compared 
with wild type. Limb coordination and balance was measured 
with the balance beam task, at 70 weeks, trend toward greater 
time to traverse and become significant at 100 weeks. Signifi-
cant differences were found in stride lengths and base lengths, 
was a sensitive indicator of gait abnormalities at week 100, 
and at 40 weeks, mice exhibited a “hindlimb drag” behavior 
(Heng et al., 2007). The HdhQ-111 transgenic model displayed 
decreased levels of locomotor activity as they aged, significant 
differences are in the automated locomotor activity, at any age 
tested. There was a trend to have a decreased latency to fall 
from the rotarod at 12 months. HdhQ-111 were significantly 
impaired in all measures of balance beam. Latency to turn on 
the balance beam was progressively slower as animals aged, 
from 9 months of age (Yhnell et al., 2016). N171-82Q model 
displayed significantly higher clasping scores and general lo-
comotor activity than wild type mice during the early (8–11 
weeks) and late stages (15–18 weeks) (Chen et al., 2013).
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Neostriatum, GABAergic Transmission and 
HD  
The neostriatum is formed by caudate and putamen and is 
considered as the most important connection between cerebral 
cortex (glutamatergic input) and the rest of basal ganglia struc-
tures (receiving dopaminergic input from the substantia nigra 
pars compacta), functionally two pathways have been described 
known as direct and indirect, these two parallel basal ganglia 
circuits that are critical for motor function and procedural 
learning express dopamine receptors D1 and D2 preferentially 
and respectively (Gerfen et al., 1990; Ehrlich, 2012). The cytolo-
gy of the neostriatum display two kinds of neurons: a) interneu-
rons or aspiny neostriatal neurons and b) projection neurons 
or medium sized spiny neurons (MSSNs) (Kawaguchi, 1997). 
The direct pathway involves activation of inhibitory GABA 
and substance P MSSNs, whereas the indirect pathway involves 
activation of inhibitory GABA and encephalin MSSNs, these 
two pathways have opposite effects on the output of the basal 
ganglia: the direct pathway has a net positive effect on the basal 
ganglia output, while the indirect pathway has a negative effect 
(Alexander and Crutcher, 1990).

In GABAergic neurotransmition in neostriatum the cortex 
sends projections to the neostriatum through pyramidal gluta-
matergic neurons (Kreitzer and Malenka, 2007), they connect 
with MSSNs, which make up 95% of the total neuronal pop-
ulation in the striatum (Kemp and Powell, 1971; Parent and 
Hazrati, 1995). The glutamate released by the pyramidal gluta-
matergic neurons produces the activation of the α-amino-3-hy-
droxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA) 
and N-Methyl-D-aspartate receptor (NMDA), activating the 
MSSNs and producing GABA neurotransmitter release, MSSNs 
also receive domamigergic afferents from the mid brain (Kreit-
zer and Malenka, 2007). MSSNs have two projection patterns 
on the nuclei of the basal ganglia, responsible for the planning 
of motor control: 1) those that project towards the internal 
globus pallidus (GPi) and towards the substance nigra pars re-
ticulata (SNr), and 2) those that send afferences to the external 
globus pallidus (GPe). Both pathways converge on the thala-
mus, which in turn send glutamatergic inputs to the neostria-
tum (Kreitzer and Malenka, 2007), and have opposite functions 
on it. The first (D1 or direct pathway) produces its activation, 
while the second (D2 or indirect pathway) its inhibition. The 
control of motor behavior depends on the inhibition/excitation 
balance in these pathways (Yager et al., 2015).

The importance of the neostriatum for basal ganglia function 
is highlighted by neurological disorders where its function is 
compromised, as it occurs in HD. In early HD in neostriatum as 
fast as the mHtt accumulates in the MSSNs of the neostriatum, 
some other mHtt affected cells, as the fast spiking (FS) inter-
neurons, accumulate cyclic AMP (cAMP) by a dysregulation of 
the protein kinase A (PKA) pathway (Ariano et al., 2002, 2005). 
PKA activity increases significantly, and PKA substrates as the 
NMDA receptor subunit GluN1 gets hyper-phosphorylated 
(Tingley et al., 1997; Torres-Peraza et al., 2008). GluN1S897 
residue, which is specifically phosphorylated by cAMP/PKA 
pathway modifies the biophysical properties of NMDA recep-
tor (Tingley et al., 1997), increasing the Ca2+ conductivity, and 
leading to a cytosolic Ca2+ rise, synergizing the cAMP/PKA 
signals to activate the transcription factor Ca2+/cAMP response 
element binding protein (CREB) to accelerate gene expression 
(Dudman et al., 2003; Aman et al., 2014). CREB binds to cAMP 
response elements (CRE) in the nucleus, decreasing the tran-
scription of the downstream genes like parvalbumin (PV) and 
glutamate decarboxylase (GAD67), a couple of crucial proteins 

related to the inhibitory neurotransmission in interneurons 
(Hashimoto et al., 2003; Belforte et al., 2010; Nakazawa et al., 
2012). The decrease in the levels of these two proteins reduces 
the GABA synthesis and release (Belforte et al., 2010) (Figure 
1). At the date it remains unclear if in first instance D1- or 
D2-pathway degenerates initially, increasing vulnerability and 
cell death of MSSNs. However, some studies conclude that 
D2 MSSNs (indirect pathway) are relatively more vulnerable 
than D1 (direct pathway), leading to an imbalance favoring the 
over-functionality of D1 over the D2, since early to late stages 
of HD in postmortem human brains and murine models (Au-
good et al., 1997; Glass et al., 2000; Deng et al., 2004; Crook 
and Housman, 2012). Despite of that other data indicates that 
the D1 pathway becomes to be dysfunctional earlier than D2 
(Ehrlich, 2012), controversy will remains as long as it continues 
extremely difficult to isolate D1 of D2 pathway.

In general, in early stage of HD an imbalance of the neostri-
atal circuit occurs. This may be due to three different mech-
anisms related to the loss of dopaminergic neurons in the 
substance nigra pars compacta (SNc): 1) Loss of inhibitory 
afferences mediated by GABA release from the dopaminergic 
neurons of the SNc (Tritsch et al., 2012); 2) Loss of MSSNs in 
the neostriatum, responsible for maintaining the inhibitory 
pathway (D2 neurons), producing the over-activation of the 
excitatory pathway (D1 neurons); 3) Loss of dopaminergic 
modulation on the GPe, which would cause an imbalance of the 
GABA regulation in the afferents of this nucleus towards the 
neostriatum and the subthalamic nucleus (STN) (Mallet et al., 
2012). In summary, loss of the enkephalin containing MSSNs of 
the indirect pathway especially early in the disease lead to less 
inhibition of the GPe and subsequent increased inhibition of 
the STN, decreased excitation of GPi, and subsequent decreased 
inhibition of the thalamus resulting in thalamic over excitation 
of the cerebral cortex leading to choreic movements (Waldvogel 
and Faull, 2015).

GABAA Tonic Subunits and HD  
The simple fact that the inhibitory system fails to stop involun-
tary and sudden jerking movements in HD increased our curi-
osity about of the fate of neostriatal GABAA tonic subunits and 
their inherent functional characteristics in this motor disorder. 
The neostriatum shows strong expression of many types of ion-
otropic GABAA receptors including tonic subunits as: α4−5, β3, 
δ and ρ1−3 (Fritschy and Mohler, 1995; Albrecht et al., 1997; 
López-Chávez et al., 2005; Rosas-Arellano et al., 2007, 2012, 
2018; Bhandage et al., 2014; Waldvogel and Faull, 2015; Du et 
al., 2017; Kumar et al., 2017; Reyes-Haro et al., 2017).

In a study of Cepeda and colleagues in 2013 that include 
GABAA tonic subunits by the using R6/2 mice crossed with 
D1-EGFP or D2-EGFP, there were compared potential dif-
ferences in tonic GABAA current by application of lower con-
centrations of bicuculline (20 μM), an antagonist of GABAA 
receptor (that no exert effect on GABAA ρ subunits). Tonic 
GABAA current amplitudes were significantly reduced only 
in D2 receptor expressing MSSNs from R6/2 mice. There was 
showed that tonic currents were reduced in HD mice but only 
in MSSNs of the indirect pathway (Cepeda et al., 2013). On 
the other hand, Hsu and colleagues in 2017 by means of qRT-
PCR described down regulation of GABAA δ subunits at 12, 
16 and 15-months-old in neostriatum of R6/2, N171-82Q and 
Hdh150Q respectively. A similar down regulation was also 
found and validated in postmortem caudate nucleus of 5 HD 
human brains. Likewise, lower expression was found for GAB-
AA α4 subunit, this down regulation of both tonic subunits 
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occur at the premanifest stage. Additionally, HD mice models 
displayed impaired responses to gaboxadol, a behavior related 
with tonic inhibition, all together suggesting that the number of 
α4βδ pentameric receptors required for tonic inhibition might 
be significantly reduced in HD (Hsu et al., 2017).

Another study showed an over alteration in HD of GAB-
Aergic neurotransmission in the neostriatum, performed in 
R6/1 and HdhQ111 HD transgenic mice models of HD. There 
R6/1 was used at 3-month-age, that means tracking starting 
with slow disease progression in the cognitive deficits, where 
symptoms are not evident and in late stages (6-month-age) 
and motor deficits are fully evident. Using Western blot, quan-
titative real time polymerase chain reaction (qRT-PCR), and 
immunohistochemistry, they reported variations in the expres-
sion of GABAA receptor subunits even at a young age when 
motor alterations are not yet observed. The main alterations in 
R6/1 mouse model for phasic and tonic GABAA subunits were 
evidenced, and were including α5 and δ, both of them respon-
sible for generating tonic currents; α5 display significant over 
expression at 6-month-old at RNA and proteins levels, whereas 
δ subunit decreases significantly at the age of 6 months, also in 
RNA and protein levels of this HD model. It is suggested that 
the δ decrease has greater contribution determining whether 
specific antagonist of δ subunit could improve HD disease 
progression (Du et al., 2017). The GABAA β3 and α4 subunits 
have been recognized to render tonic inhibition (Chandra et 
al., 2006; Janssen et al., 2011), Du and cols do not found major 
changes for β3 in the expression at 3- and 6-month-old-age 
compared with wild type animals; whereas α4 display RNA 
differences at 6-month-old with wild type. On the other hand, 
no significant variations were observed in the expression of 
GAD67, GAD65, NL2 or gephyrin proteins, which are involved 
in the synthesis of GABA or postsynaptic scaffolding, except 
GAD67, which only is modified before the onset of motor defi-
cits, so they would not be contributing to the development of 
the pathology.

To date, several studies of HD suggest changes in the expres-
sion of: α4−5, β3, δ subunits, commonly. However, Kumar and 
colleagues in 2017 conducted a pioneer work about of neostri-
atal distribution of GABAA ρ3 subunit in HD in R6/2 mice at 
the age of 11 weeks. GABAA ρ3 subunit exhibited a significant 
loss of immunoreactivity and was observed to be expressed 
in neuronal cells with displayed distorted morphology. This 
downexpression suggest that GABAA ρ3 subunit may possibly 
perturb normal GABAergic transmission and proposes the use 
of agonist along with blockade of NMDA receptors as potential 
therapeutic resource for the treatment of HD.

Recently, together with our colleagues (Rosas-Arellano et 
al., 2018), we made an effort to describe changes in the expres-
sion and distribution of five GABAA tonic subunits reported 
previously in the neostriatum. In YAC128 transgenic mouse 
model we observed mRNA up- and down-regulation of tonic 
subunits, up-regulation of GABAA α5 in late HD. Nonetheless, 
up regulation of GABAA δ and β3 subunits were observed in 6- 
to 12-month-old YAC128. Moreover, we followed the relation 
between GABAA tonic subunits and the neostriatal inhibitory 
pathway (D2). As expected, D2 immunolabeling showed re-
duced expression as well labeling of GABAA tonic subunits 
associated to this pathway. Probably D2 pathway become 
dysfunctional and degenerate as previously reported, leading 
to a disconnection of the neostriatum from upstream cortical 
inputs and downstream basal ganglia nuclei and producing 
severe motor deficits associated to the cell damage and/or cell 
death. Curiously, there is an overexpression of GABAA tonic 
subunits in an unknown cellular entity within the YAC128 

neostriatum; possibly in D1 neurons, since we assume that it 
is an attempt to stop overexcitation of the excitatory pathway 
by establishing the tonic inhibition; as an additional hypothe-
sis, this change could be related to overexpression in interneu-
rons, specifically those that exert inhibitory control over the 
function of the D2 neurons, allowing disinhibition of the re-
maining or survivor inhibitory pathway with the aim of rees-
tablishing the equilibrium between excitation and inhibition. 
Perhaps both hypotheses are correct. For our previous GABAA 
receptor localization studies (Mejía et al., 2008; Rosas-Arella-
no et al., 2011, 2012), synaptic regions (pre and postsynaptic) 
have been subdivided into three main areas on the plasma 
membrane: 1) Extrasynaptic, are receptor locations unrelated 
with the synaptic density but close to one 2) Perisynaptic is a 
receptor flanking a defined synaptic density, on one or both 
sites of the synaptic cleft, and 3) Synaptic, it is when a receptor 
is clearly inside of the proper synaptic density. Under these 
parameters an unexpected adaptation was observed when we 
detected the distribution at electron microscopy level. A mes-
sage was given by a “new” localization within the active zone 
(into synaptic density) of GABAA tonic subunits at the age of 
6 through 12 months old in YAC128 compared with wild type 
animals, this localization was not exclusively nor replaceable 
between extra- and perisynaptic to synaptic regions. Further-
more, the synaptic relocalization of GABAA tonic receptors 
had good correlation with the augmented sensitivity to GAB-
AA receptor antagonists during extracellular electrophysiolog-
ical recordings in YAC128 neostriatal slices, suggesting that 
these subunits are positioned within the synaptic cleft, inten-
tionally or not, to be functional.

GABA Neurotransmitter Release and HD
Early studies suggest low concentration of GABA neurotrans-
mitter in human putamen with HD, suggesting correlation with 
the hypothesis that neostriatal GABA-containing neurons de-
generate in HD (Spokes et al., 1979). In agreement low GABA 
environment in HD in the neostriatum significant reductions 
of this neurotransmitter were found, it was greater in late stages 
in human neostriatum with HD, and in a mouse model based 
on quinolinic acid treatment (Ellison et al., 1987).

Perspectives
HD produces selective damage on MSSNs of the neostriatum, 
and GABAA tonic inhibition protects the cell from a phar-
macological insult, as it has been clearly demonstrated by 
Santhakumar and colleagues in 2010. Based on this assump-
tion, motor studies can be performed with the aim to identify 
some improvement in the early damage caused by HD in mice 
transgenic models by early administration of a pharmacologic 
treatment  using specific agonist/antagonist drugs, or by the use 
of knockout or knock-in mice for GABA alpha5, beta3, delta 
and rho subunits since early stages of HD. This measure will 
show if there is any protective effect due to the participation 
of these mentioned subunits. In non-pathological states the 
specific question about how GABAA tonic subunits are trans-
ported to the cell-surface into specific synaptic areas as mem-
brane-anchored proteins, remains principally unanswered; now 
we must answer more questions in the cellular neurobiology 
field: whether the synaptic relocation of GABA-tonic subunits 
is a cellular strategy to reestablish the balance between exci-
tation-inhibition as adaptations to the low GABA levels and the 
cellular and molecular mechanisms that underlie it, as well as 
its pentameric stoichiometry in early and late ages of YAC128 
stoichiometry in early and late ages of YAC128.
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Figure 1 Early stages of Huntington’s 
disease (HD) in the neostriatum.
Along HD, mutant huntingtin (mHtt) 
affects medium sized spiny neurons 
(MSSNs) and fast spiking (FS) interneu-
rons. Cyclic AMP (cAMP) accumulates 
in interneurons because of a disequi-
librium of the protein kinase A (PKA) 
pathway, this activates the PKA activity 
followed by their substrates, such as the 
N-methyl-D-aspartate receptor (NMDA) 
receptor. The GluN1S897-NMDA hyper 
phosphorylated increases the Ca2+ con-
ductivity, synergizing cAMP/PKA activ-
ity to stimulate cAMP response element 
binding protein (CREB) at the nuclear 
level, decreasing the transcription of 
parvalbumin (PV) and glutamate decar-
boxylase (GAD67), and hence reducing 
γ-aminobutyric acid (GABA) synthesis 
and release. CRE: cAMP response ele-
ments.

Conclusions
By way of conclusion in the Figure 2 are represented a sum-
mary of HD changes and consequences mentioned throughout 
the text. mHtt protein aggregates accumulate and interfere with 
nerve cell function by disrupting key cell regulatory factors in 
the MSSNs (Noakes et al., 2015; Xu and Wu, 2015). Factors as 
the protein gephyrin, and the kinesin family motor protein 5 
(KIF5) self-assembles into a scaffold interacting with the cyto-
skeleton (Twelvetrees et al., 2010), such factors are fundamental 
to phasic GABAA receptors being trafficked to synapses, and 
promotes the formation of gephyrin nanodomains, which po-
tentiate the phasic GABAA amplitude of postsynaptic currents 
(van Rijnsoever et al., 2005; Pennacchietti et al., 2017). These 
proteins form a complex by an adaptor linking the receptors 
to KIF5, the adaptor is the Huntingtin-associated protein 1 
(HAP1) (Kittler et al., 2004; Twelvetrees et al., 2010). When the 

aggregates of the mHtt protein increase because of the prog-
ress of HD, phasic GABAA receptor transport, and inhibitory 
synaptic currents are disrupted (Twelvetrees et al., 2010). This 
significant reduction of phasic GABAA receptors in the post-
synaptic density, in addition to the decreased GABA release by 
FS Interneurons turns the glutamatergic input, from pyramidal 
tract neurons, to excitotoxic because of the over-exciting effect 
of calcium ion permeated by active NMDA receptors in the 
MSSNs (Zeron et al., 2002; Shehadeh et al., 2006; Santhakumar 
et al., 2010; Schipper et al., 2016; Rosas-Arellano et al., 2018). In 
order to stabilize this imbalance by attenuating the excitotoxic 
effects, the MSSNs increase the expression of GABAA tonic re-
ceptors, some of them which migrate into the postsynaptic den-
sity, in this way they counteract the harmful excitatory NMDA 
currents, generating larger inhibitory tonic GABAA currents, 
avoiding temporarily in this way the cell death (Du et al., 2017; 
Rosas-Arellano et al., 2018).

Figure 2 Advanced stages of 
Huntington’s disease in the 
neostriatum.
When mutant huntingtin (mHtt) aggre-
gates in medium sized spiny neurons 
(MSSNs), key protein factors, as the scaf-
folding proteins of phasic γ-aminobutyric 
acid (GABA)A receptors in the synaptic 
level, such as gephyrin and kinesin family 
motor protein 5 (KIF5) in complex with 
the cytoskeleton are disrupted since the 
adaptor-protein keeping this complex, 
Huntingtin-associated protein 1 (HAP1), 
is directly affected by mHtt. The reduc-
tion of phasic GABAA receptors in the 
postsynaptic density turns the N-meth-
yl-D-aspartate receptor (NMDA)-perme-
ated calcium ion to excitotoxic. MSSNs 
increase and decrease the expression of 
tonic GABAA subunits (for example α5, 
β3 and δ) some of them migrate into 
the postsynaptic density, as a temporary 
strategy to stop cell damage and avoid 
cell death. The doted line in collateral 
axon means that the fate of neighbor 
neurons is uncertain. FS: Fast spiking.
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