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The global market for organic cocoa beans continues to show sturdy growth. A low-cost handheld NIR spectrometer (900-
1700 nm) combined with multivariate classification algorithms was used for rapid differentiation analysis of organic cocoa
beans’ integrity. In this research, organic and conventionally cultivated cocoa beans were collected from different locations in
Ghana and scanned nondestructively with a handheld spectrometer. Different preprocessing treatments were employed.
Principal component analysis (PCA) and classification analysis, RF (random forest), KNN (K-nearest neighbours), LDA (linear
discriminant analysis), and PLS-DA (partial least squares-discriminant analysis) were performed comparatively to build
classification models. The performance of the models was evaluated by accuracy, specificity, sensitivity, and efficiency. Second
derivative preprocessing together with PLS-DA algorithm was superior to the rest of the algorithms with a classification
accuracy of 100.00% in both the calibration set and prediction set. Second derivative algorithm was found to be the best
preprocessing tool. The identification rates for the calibration set and prediction set were 96.15% and 98.08%, respectively, for
RF, 91.35% and 92.31% for KNN, and 90.38% and 98.08% for LDA. Generally, the results showed that a handheld NIR
spectrometer coupled with an appropriate multivariate algorithm could be used in situ for the differentiation of organic cocoa
beans from conventional ones to ensure food integrity along the cocoa bean value chain.

1. Introduction

Several modern-day environmental challenges are rooted in
agri-food schemes. These schemes are held partly account-
able for the decrease in ecosystem destruction, water pollu-
tion, global warming, and biodiversity. Hence, the greening
of agri-food production, processing, and marketing can be
an important contribution to quality, safety, and sustainabil-
ity. The advent of post-Fordism has put environmental
issues and quality matters at the heart of agri-food provi-
sioning schemes [1, 2].

The enhancement of sustainability performance in the
cocoa industry is developing as a strategy within universal
product value chains. In making the global cocoa chain
and network sustainable, both private and public players
have introduced many initiatives at different levels. The
main driver of this trend is the emerging consumer demand
for socially fair and eco-friendly products. For instance, sales
of organic chocolate reached USA $304 million in 2005, rep-
resenting an increase of 75% in comparison to 2002 sales [3].
Much attention has to be shifted to West Africa because it
produces more than 70% of all cocoa and is the location of
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many organic initiatives. Ghana the second largest exporter
of cocoa started the exportation of organic cocoa in 2005
to the global market. More than 20,000 smallholder farmers
are currently involved in the organic cocoa network, as well
as other stakeholders at national levels, such as nongovern-
mental organizations, farmers’ organizations, several public
institutions, licensed buying companies, and importers [4].
Inferentially, the most important bean category which influ-
ences and drives consumers’ preference, nutritional compo-
sition, quality, and safety is the organic cocoa bean category
[5]. Organic cocoa beans unlike conventional ones are cocoa
beans produced following the farming practices and princi-
ples that do not allow the use of growth-stimulating ele-
ments, herbicides, synthetic pesticides, and fertilizers [5, 6].
Concerns about growth-stimulating elements, herbicides,
synthetic pesticides, and fertilizers have given additional
motivation to organic cocoa bean demand, as consumers
progressively query the quality and safety of conventional
cocoa beans [7]. Relative to the aforementioned factors, the
demand for organic cocoa beans by chocolate producers
and consumers has increased, and the production of organic
cocoa beans is more lucrative due to the higher price it
receives [8]. The higher price for the organic label as com-
pared to the conventional cocoa beans has led to mislabeling
which is regarded as fraud to gain undeserved economic
advantage. The international market and consumers, thus,
call for trust tags for organically produced cocoa beans [9,
10]. Therefore, screening of organic cocoa beans before
export, marketing, and processing to prevent mislabeling
has become very necessary.

Currently, the techniques for ensuring the integrity and
quality of organic cocoa beans are mostly cumbersome,
time-consuming, expensive, involve destructive means,
and require highly skilled personnel and are often not
applicable in low-resource countries. The use of handheld
NIR spectrometer and chemometric analysis for ensuring
the integrity and authenticity of organic cocoa beans from
conventional ones could provide a big help. This would
offer a rapid, nondestructive, and less expensive technique
for the assessment of organic and conventional cocoa beans
for quality control and assurance purposes.

Near-infrared (NIR) spectroscopy technique has
become increasingly significant among other established
green advance techniques in food technology. It provides
a nondestructive analytical tool, more especially for the
assessment of chemical composition and physical quality
characteristics of cocoa bean and cocoa products [11]. This
is due to its sensitivity to OH, CH, and NH absorptions
associated with cocoa bean components. It is fast, requires
little or no sample preparation, has low operating cost,
and is environmentally friendly [12]. In other studies, the
NIR spectroscopy has been used for the quantification of
moisture content, nitrogen, and fat of cocoa powder [13],
prediction of procyanidins in cocoa [14], differentiation of
Ghana cocoa beans and cocoa bean varieties [15, 16], veri-
fication of cocoa powder authenticity [17], classification and
determination of chemical quality parameters [18–20], and
estimation of cocoa bean parameters [21]. A critical study
of recent applications of the use of NIR spectroscopic tech-

nique in the cocoa bean industry showed that it has also
been applied in the rapid detection of cocoa bean adultera-
tions and fraud [22, 23] and quality control of commercial
cocoa beans [24]. Therefore, NIR spectroscopy offers a reli-
able alternative for the assessment of organic cocoa bean
integrity and quality.

Additionally, advancement in NIR instrumentation has
led to the miniaturization of stationary laboratory-based
NIR spectrometers into lightweight handheld spectroscopic
instruments that are simple, relatively less expensive, reli-
able, and provide extra speed. Their portability makes them
ideal instruments for in situ assessments of agricultural
products. In this regard, the cocoa bean industry is expected
to benefit from the current interest in miniaturizing NIR
spectroscopic technology. However, no studies have investi-
gated the application of handheld NIR spectrometer for
screening and ensuring the integrity of organic cocoa beans
nondestructively. Also, no information is available on the
application of different multivariate classification algo-
rithms for effective and accurate discrimination of organic
cocoa beans.

Therefore, the objective of this work was to use a hand-
held NIR spectrometer and multivariate classification tech-
niques to nondestructively identify organic cocoa beans
from conventional cocoa beans. Specifically, the study is
aimed at determining the ideal multivariate classification
algorithm for the accurate differentiation of organic and
conventional cocoa beans.

2. Materials and Methods

2.1. Cocoa Bean Samples. A total of 120 organic cocoa bean
samples ready for exportation were obtained from the Cocoa
Research Institute of Ghana and Yayra Glover Limited, a
licensed organic cocoa producing and marketing company
in Ghana. Whilst 140 conventional cocoa bean samples were
collected from the seven cocoa-producing regions of Ghana
under the guide of the Quality Control Company and Cocoa
Marketing Company of COCOBOD. The two categories of
cocoa beans (organic and conventional) according to the
producers were fermented for 6 days using heap protocols
similar to those described by other authors [25]. The cocoa
bean samples were well labelled and transported in marked
jute bags to the Department of Agricultural Engineering
Research Laboratory, University of Cape Coast, for further
examination. Spectral measurements were taken on the
whole cocoa beans, whilst chemical examinations were con-
ducted on the ground samples.

2.2. Sample Spectral Measurement. The handheld NIR spec-
trometer (Tellspec®) was used to take the spectrum of each
cocoa bean sample in an absorbance unit (log 1/R); R =
reflectance. The NIR spectroscopic dataset was developed
in a wavelength range of 900-1700nm. The instrument was
operated using a smartphone application, and spectroscopic
data stored in the cloud remotely was downloaded onto the
laptop. All the cocoa bean samples were scanned three times
in a transparent polythene bag at different sides, and the
spectrum for each sample was the mean of the three scans.
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Scanning of the samples was carried out at an ambient tem-
perature of 25 ± 1°C with a humidity of 60%. The spectra
were downloaded with permission from Tellspec Ltd.

2.3. Software Tool. All preprocessing and analysis of the
spectra data were performed using multivariate analysis soft-
ware in MATLAB version 9.6.0 (The MathWorks Inc., USA)
with windows 10 Pro software package for data treatment.

2.4. Dataset Partitioning. The spectroscopic datasets
obtained from 260 samples of organic and conventional
cocoa beans were preprocessed with appropriate techniques.
The spectral data obtained from the samples were randomly
divided into two different datasets called: calibration set
(spectroscopic data from 182 samples) and prediction set
(spectroscopic data from 78 samples). The calibration set
which represented 70% of the data was used to construct
the models, whereas the remaining 30% of the data were
used for the prediction set which was used to evaluate the
predictive capability of the built models.

2.5. Spectral Preprocessing Approaches. The raw NIR spectra
as shown in Figure 1(a) contain unwanted, beneficial, and
nonuseful information of the cocoa bean samples. This
could be as a result of interferences from the scattering of
light from the samples, spectra poor reproducibility, tem-
perature variations, and or background noises [26]. There-
fore, chemometric pretreatment of the dataset has to
acquire only the useful properties of samples, whilst keeping
the similarities and variations among the primary observa-
tions was adopted. To accomplish this, three spectral pre-
processing approaches such as MC (mean centering), FD
(first derivative), and SD (second derivative) were compara-
tively employed in MATLAB version 9.6.0 as shown in
Figures 1(b)–1(d). MC is a spectral preprocessing approach
carried out by computing the mean spectrum of the dataset
and deducting the mean from each spectrum [27]. FD pre-
processing approach which is assessed as the difference
between two consequent spectra measurement points
eliminates baseline effects. SD transformation algorithm is
employed in the separation of overlapped peaks, resolution
enhancement, removal of additive, and multiplicative base-
line in the spectra. Before the application of the SD prepro-
cessing technique, the NIR spectra were smoothed using the
Savitzky-Golay algorithm [28]. Generally, the Savitzky-
Golay smoothing SD algorithm best improved the linearity
and corrected offset in NIR data.

2.6. Principal Component Analysis (PCA). Furthermore, the
principal component analysis (PCA) was deployed on all
the preprocessed NIR datasets to identify any cluster trend
(to detect probable groupings). The PCA has been an unsu-
pervised pattern recognition algorithm that extracted infor-
mation from correlated matrices to see probable data
leanings in a dimensional scatter plot. In the PCA analysis,
the datasets coupled with spectra were converted into a
small number of uncorrelated but explainable variables
referred to as principal components (PCs). Similar samples
congregated closer to each other and vice versa. The graphic
profile of PCA results yielded initial output for the determi-

nation of possible variations and resemblances in a dataset.
Usually, PC1, PC2, PC3, PC4, PC5, etc. explain and give rel-
evant information in descending order [29].

2.7. Multivariate Classification Algorithms

2.7.1. RF. RF (random forest) is an ensemble procedure
which is based on tree classifiers. It grows many classifica-
tion trees in order to produce accurate discrimination. In
RF, each tree grows on an independent bootstrap sample
obtained from the calibration sample/data [30]. Classifica-
tion of the new feature vector is achieved by classifying the
input vector with each of the trees in the forest. A classifica-
tion is given by each tree, often considered as that tree’s vote
for that class. The forest selects the classification with the
maximum votes over all the trees in the forest [31]. RF com-
putations comprise two measures of variable importance
(based on rough-and-ready measure and permutations)
and measures of the resemblance of data points that could
be applied for graphical representation, multidimensional
scaling, imputing missing values, and clustering [32].

2.7.2. KNN. KNN (K-nearest neighbours) is a nonparamet-
ric and linear learning algorithm where the distance between
each of the samples of the calibration set and unknown sam-
ple is assessed; for more information, refer to Reference [33].
For KNN approach, the parameter K has a huge influence
on the classification rate of the KNN model. The selection
of K was optimised by computing the calibration ability with
a preferably an old number of small K values. In this study,
PCs were applied as an input data in KNN model. KNN
model efficiency was examined by the number of parameter
K and PCs [34].

2.7.3. LDA. LDA (linear discriminant analysis) is a linear
and parametric supervised pattern recognition approach
mostly applied to discover a linear combination of features,
and the resultant combination may be employed as a linear
classifier. LDA concept is founded on the determination of
linear discrimination functions that produce the ratio
between-class variance and decrease the ratio of within-
class variance. In the LDA approach, the classes are linearly
separated and keep to a normal distribution [35]. Also, the
LDA is viewed as PCA in which the number of PC (principal
component) is key to the performance of the LDA classifica-
tion model.

2.7.4. PLS-DA. PLS-DA (partial least squares-discriminant
analysis) is a linear differentiation technique that combines
properties of partial least squares regression with the
discrimination presentation of a differentiation technique
[36]. The PLS-DA with a k-fold cross-validation was
deployed to screen out and differentiate organic cocoa beans
from conventional ones and to prevent overfitting of the
calibration models. This qualitative transformational tech-
nique was performed to extract principal components from
the spectral information, decrease the number of variables
employed in the model, and find which variables carry the
class separating information by rotating principal compo-
nent analysis (PCA). This combines the variables in the
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Figure 1: Continued.
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dataset to calculate factors that maximize the correlation
value with the different classes [37]. PLS-DA concurrently
decomposes spectral and class matrices and extracts the
spectral data most associated with the classes that can lead
to the development of a reliable and accurate identification
model [38].

2.8. Performance Assessment of Multivariate Data Analysis
Algorithms. Qualitatively, the performance of the PLS-DA
classification model was assessed according to identification
rate or accuracy, sensitivity, specificity, and efficiency. Accu-
racy is the proportion of samples, either organic cocoa beans
or conventional cocoa beans correctly identified in a popula-
tion, either in the calibration set or prediction set. It com-
putes the degree of closeness or veracity of the measured
result to the true value or analytical sample. Sensitivity eval-
uates the capability of the model to correctly identify and
classify samples belonging to the targeted class (i.e., organic
cocoa bean class). It measures how good the model is at
detecting and classifying an organic cocoa bean from a con-
ventional cocoa bean. Specificity evaluates the capability of
the model to correctly detect and reject samples that belong
to both classes (i.e., organic cocoa bean class and conven-
tional cocoa bean class). It assesses how likely conventional
cocoa beans could be ruled out correctly from organic cocoa
beans. Efficiency is defined as the geometric mean of sensi-
tivity and specificity in both calibration and prediction sets.
Sensitivity and specificity depend on the values of true pos-
itive (TP), true negative (TN), false positive (FP), and false
negative (FN) ([39]; Wang et al. [40]). The assessment of
the model’s performance was done according to the
methods described by Chen et al. [41] and Zhang et al.
[42]. Computation of these parameters was done using
Equations (1)–(4).

Accuracy = TN + TP
TN + TP + FN + FP

, ð1Þ

Sensitivity =
TP

TP + FN
, ð2Þ

Specificity = TN
TN + FP

, ð3Þ

Efficiency =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Sensitivity ∗ Specificity
p

: ð4Þ

3. Results

3.1. Cocoa Compositional Quality Characteristics. The com-
positional quality characteristics varied according to the
cocoa category as presented in Table 1. For both categories
of cocoa beans, crude fat was the major constituent. These
findings are consistent with results obtained by [18]. Crude
fat, total carbohydrate, total polyphenols, total flavonoid,
and antioxidant contents showed statistical differences
between organic cocoa and conventional cocoa samples
(p > 0:05). There were no significant statistical differences
at p > 0:05 between the two cocoa bean categories for crude
fibre and protein, although their obtained values numeri-
cally differed.

3.2. NIR Spectra Examination. The raw spectra of the 260
cocoa bean samples obtained in the wavelength range of
900 to 1700 nm are presented in Figure 1(a). This spectral
wavelength range can offer useful features for the differenti-
ation of organic and conventional cocoa bean samples,
though the raw spectra profile seemed to be similar. There
was a wide variation of baseline shift in the spectra due to
background information, particle size effect, temperature
variation, and noise [26]. This made it difficult to determine
exact bands in the original spectra due to the high degree of
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Figure 1: Spectra: (a) raw spectra, (b) mean centering, (c) first derivative, and (d) second derivative of cocoa bean samples.
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overlapping of bands. Hence, chemometric preprocessing
analysis of the dataset was applied to acquire only the useful
properties of samples and build a reliable model whereas
keeping the similarities and variations among the primary
observations. Among the chemometric analyses applied,
the SD preprocessing approach best smoothens the original
spectra and eventually leads to satisfactory classification,
and its spectra are presented in Figure 1(d). This contributed
to clear and noticeable groupings as shown in the mean
spectra profile in Figure 2. It depicts specific absorption
bands observed from main valleys and peaks that are related
to vibrations of chemical bonds such as N-H, S-H, C=O,
-CH3, and CH2 ([43–45]; Zhang et al. [46]). These chemical
bond vibrations are associated with major biochemical
constituents such as polyphenols, flavonoids, alkaloids, anti-
oxidants, volatile and nonvolatile acid, fats, proteins, car-
bonyl group, C-H deformation and C-H stretch as seen in
Table 2, and other composites present in the cocoa beans
no matter the production method or origin. Specifically,
the absorption band attributable to C-H bond of cocoa that
is mainly connected to proteins and fats was found around
910nm [13]. Absorption bands of 1000-1100nm are attrib-
utable to C-H stretch 1st overtone, carbonyl groups (-CH2,
CH3-, and -CH=CH-) [13, 28, 47]. An observable absorption
band around 1440nm might be associated with 1st overtone
of starch, moisture, and sugars [13]. These spectral wave-
length bands might have significantly contributed to the
classification of organic and conventional cocoa beans.

3.3. Spectral Presentation and Principal Component Analysis
(PCA). To observe a visible trend of the samples and evalu-
ate the relations among samples, PCA was performed using
the raw spectral data and the outcomes presented in
Figures 3(a)–3(d). The PCA after second derivative prepro-
cessing yielded a good cluster trend. The three topmost
PCs extracted from the 260 samples were PC1 (68.03%),
PC2 (16.71%), and PC3 (8.18%). It shows that the three top-
most PCs can explain 92.92% of the variance information
from the spectra dataset that covers the relevant biochemical
information in the samples. PCA technique brings out useful
relevant information and removes irrelevant ones so that
bean samples with the same characteristics are clustered
nearer to each other. Thus, the graphic output could be used
to discover the variances between the categories of cocoa
bean samples used. Figure 3(d) depicts that two main groups
of cocoa bean samples were used in the study. The groups
cover a broader array of cocoa beans. The graphic plot offers
relevant information that could be used for the determina-
tion of differences between organic and conventional cocoa

bean samples. PCA is not a classification tool but it showed
the data trend in visualizing dimension space [48].

PCA loadings as shown in Figure 4 were performed to
give an explanation as to how much each wavelength con-
tributed to the significant variation in the data. It was
observed that wavelengths corresponding to the biggest
eigenvector loading values for PC1 (68.03%) were situated
around the range of 986 nm associated with pH 1st overtone
absorption peak O-H stretching (Wang et al. [49]) and O-H
stretch 2nd overtone of carbohydrate; 1280 nm and 1417nm
are 2nd overtone bands C-H bond stretching and C-H com-
bination (aromatic), respectively. The peak around 1200nm
could be attributed to the 1st overtone of C-H stretch [50].
These absorption bands are characteristics of proteins, fats,
and aromatic compounds found in cocoa beans [45, 51,
52]. Observable absorption band around 1608nm might be
ascribed to 1st overtone of C-H stretching (Zhang et al.
[53]). PC2 explains 16.71% of the variance, and the biggest
vibration placed around 958nm, 973, and 1395 nm corre-
lated with 2nd overtone of OH stretch of carbohydrate, 2nd

overtone of N-H stretching of fat, and 2x C-H stretch+C-
H deformation of protein, respectively (Zhang et al. [53]).
PC 3 explains 8.18% of the variation, and it appeared to be
the mirror image of the cocoa bean spectra of the cocoa
bean, and this accounted for the slight differences in particle

Table 1: Proximate compositions (g/100 g) and phytonutrient contents for organic and conventional cocoa samples (mean ± SD).

Samples
Crude
fat (%)

Crude
fibre (%)

Crude
protein (%)

Total
carbohydrate (%)

Total polyphenol
content

(mgGAE/g)

Total flavonoid
content

(mgQE/g)

Total antioxidant
capacity

(mgAEAC/g)

Organic 41:75 ± 0:20b 7:83 ± 0:08a 15:77 ± 0:31a 25:63 ± 0:46a 61:66 ± 0:16a 81:44 ± 0:56a 108:78 ± 0:45b

Conventional 43:66 ± 0:15a 7:56 ± 0:07a 15:45 ± 0:24a 22:41 ± 0:45b 59:73 ± 0:22b 72:66 ± 0:39b 130:03 ± 0:56a

NB: same letters show that there is no statistical difference (p > 0:05) among samples. GAE: gallic acid equivalent; QE: quercetin equivalent; AEAC: ascorbic
acid equivalent antioxidant content.
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6 International Journal of Food Science



size. The differences correlated to compositional variations
among the cocoa bean categories. It implied a particular
chemical constituent alone or in combination with others
contributed the largest influence that explained the basis
for the detected variations between the cocoa bean samples.

3.4. Performance of Classification Models. A qualitative
analysis such as RF, KNN, LDA, and PLS-DA was per-
formed as the PCA was not able to accurately classify the
samples according to organic and conventional cocoa beans.
The results from different classification models for the

Table 2: NIR wavelength band assignments.

Wavelength (nm) Functional group Band assignments

958 OH O-H 2nd overtone stretch of carbohydrate [54]

973, 1005 NH3 N-H 2nd overtone stretch associated with fat (Chu [53])

986 O-H O-H 1st and 2nd overtones stretch of absorption peak of starch [54]

1200 C-H C-H 1st overtones stretch related to proteins and starch [50]

1280 C-H C-H 1st overtone bond stretching corresponding to fats and aromatic compounds [52]

1483 O-H O-H 2nd overtone stretch corresponding moisture (Zhang et al. [53])

1417 O-H H2O band groups corresponding to weakly bounded water and aromatic compounds [43]

1440, 1460 O-H O-H stretch 1st overtone of starch, water band, and sugars ([13]; Zhang et al. [46])

1608 C=O C-O from COOH typical of amines and acidity [55]
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Figure 3: PCA score plot of the first three PCs of organic and conventional cocoa beans: (a) raw, (b) MC, (c) FD, and (d) SD.
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discrimination of organic and conventional cocoa beans are
reported in Table 3. Every multivariate classification algo-
rithm has its potentials and limitations. As shown in
Table 3, the SD processing (17-point window, 2nd-order
polynomial) highly enhanced the performance of all the
multivariate classification algorithms in both the calibration
set and prediction set than MC and FD.

3.4.1. RF. The k-fold cross-validation results showed that the
RF algorithm with 9 PCs on normalized data provided cor-
rect identification rates with 96.09% and 98.37% efficiency
in the calibration set and prediction set, respectively
(Table 3). The optimum number of PCs was based on the
best classification rate performed by k-fold cross-
validation. In Table 3, the best classification rate by RF
model for calibration set was 96.15% and 98.08% for the pre-
diction set at an optimum number of 9 PCs.

3.4.2. KNN. In Table 3, the k-fold cross-validation outcomes
disclosed that the KNN algorithm with PCs equals 5 on nor-
malized data provided a correct classification rate with
91.49% efficiency for the calibration set and 92.79% for the
prediction set. Table 3 demonstrates that the best classifica-
tion rate for the calibration set was 91.35% and 92.31% for
the prediction set.

3.4.3. LDA. In Table 3, the k-fold cross-validation results
showed that the LDA algorithm with PCs equals 5 on nor-
malized data provided a correct classification rate with
90.38% calibration set efficiency and 98.06% prediction set
efficiency. Table 3 demonstrates that the best classification
rate for the calibration set was 90.38% and 98.08% for the
prediction set.

3.4.4. PLS-DA Model. Table 3 shows the performance of the
PLS-DA classification algorithm used in identifying organic

and conventional cocoa beans. k-fold cross-validation out-
comes demonstrated that the PLS-DA technique with 5
principal components (PCs) on normalized data provided
correct identification rates with 100% efficiency in the pre-
diction set. Figure 5 displays the performance of the PLS-
DA model for solving the discrimination problems after k
-fold cross-validation. The optimum number of PCs was
based on the best classification accuracy achieved by k-fold
cross-validation. In Table 3, the best classification rate for
both calibration set and prediction set was 100.00% at an
optimum number of 5 PCs.

3.5. Overall Performance of Classification Algorithms. The
identification rates of multivariate classification algorithms
are presented in Table 4. In this table, we compare the
classification accuracy of the RF, KNN, LDA, and PLS-
DA models. Comparatively, the results show that the per-
formance of the PLS-DA established model was superior
to others, viz., RF, KNN, and LDA (Table 4). The result
is in agreement with that of [56] where the PLS-DA tech-
nique performed better in the identification of sorghum
cultivars. The discrimination stability for all the cocoa
bean samples investigated increased in the order of
KNN<LDA<RF<PLS-DA denoted by identification rate.

3.6. Discussion. There were observed differences in chemical
compositions of organic cocoa beans and conventional ones
(as seen in Table 1). These could largely be attributed to the
influence of production methods and partly to the reaction
of inherent compositions of the organic and conventional
cocoa beans to the fermentation process (which was carried
out using the same protocols for both categories of cocoa
beans). Chocolate flavour compounds do not only originate
by character precursor formation during fermentation but
could also be generated during production management
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Figure 4: PCA loadings of the top three latent variables of cocoa bean samples.
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Table 3: Classification models with preprocessing algorithms for cocoa bean samples.

Models Preprocessing PCs Evaluation
Performance (%)

Calibration set Prediction set

RF

Raw 3

Accuracy 67.79 67.31

Sensitivity 69.23 69.23

Specificity 66.35 65.38

Efficiency 67.77 67.28

MC 7

Accuracy 85.58 88.46

Sensitivity 82.69 84.62

Specificity 88.46 92.31

Efficiency 85.53 88.38

FD 7

Accuracy 89.90 88.46

Sensitivity 90.65 91.30

Specificity 89.11 86.21

Efficiency 89.88 88.72

SD 9

Accuracy 96.15 98.08

Sensitivity 94.95 96.77

Specificity 97.25 100.00

Efficiency 96.09 98.37

KNN

Raw 3

Accuracy 65.38% 69.23

Sensitivity 71.29% 62.07

Specificity 59.81% 78.26

Efficiency 65.30% 69.70

MC 5

Accuracy 79.81 82.69

Sensitivity 82.86 76.00

Specificity 76.70 88.89

Efficiency 79.72 82.19

FD 5

Accuracy 80.77 80.77

Sensitivity 75.76 83.87

Specificity 85.32 76.19

Efficiency 80.40 79.94

SD 5

Accuracy 91.35 92.31

Sensitivity 87.27 95.00

Specificity 95.92 90.63

Efficiency 91.49 92.79

LDA

Raw 3

Accuracy 69.71 69.23

Sensitivity 72.38 64.00

Specificity 66.99 74.07

Efficiency 69.63 68.85

MC 5

Accuracy 84.13 78.85

Sensitivity 86.14 86.21

Specificity 82.24 69.57

Efficiency 84.17 77.44

FD 5

Accuracy 78.85 80.77

Sensitivity 83.65 88.46

Specificity 74.04 73.08

Efficiency 78.70 80.40

SD 5

Accuracy 90.38 98.08

Sensitivity 89.42 100.00

Specificity 91.35 96.15

Efficiency 90.38 98.06
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systems [57]. Thus, the composition of organic and con-
ventional cocoa beans interacted with the fermentation
process in the formation of cocoa flavour quality constitu-
ents. The use of synthetic fertilizers and chemicals in con-
ventional method contributed to variations in the cocoa
bean biochemical composition that could lead to a distinct
cluster trend.

The spectra obtained from scanning of the organic and
conventional cocoa bean samples with the handheld NIR
spectrometer produced a spectral profile that displayed mul-
tiple wavelength bands and peaks as shown in Figure 1(d).
The bands consisted of overtones and combinations of fun-
damental vibrations that matched the chemical composi-
tions which provided exclusive fingerprint of the cocoa
bean categories employed in this study. The preprocessing
of the spectra profile into mean was performed, and there
were two groupings representing the two distinct cocoa bean
samples used as seen in Figure 2. This is due to the unique
biochemical and physical properties of each bean group to
give a well-defined separation trend.

The comparative analysis of the PCA cluster using differ-
ent preprocessing techniques revealed that the second deriv-
ative treatment performed better by showing a clear cluster
trend as shown in Figure 3. The clustering can be explained
by the biochemical compositions in each of the cocoa bean
samples as a result of differences in the categories of the
cocoa bean either been organic or conventionally produced
cocoa bean. The contributions of the three topmost PCs
were 92.92% for the total variance in the original data. Nev-
ertheless, PCA does not give definite identification because it
is not a classification tool; however, it preserves much
variance in a high-dimensional space by reducing dimen-
sionality. PCA loading plot in Figure 4 shows the most
important wavelength bands which contributed to the clus-
ter trend of the cocoa bean samples and were located at

around 986, 1200, 1280, 1417, and 1068 nm for PC1; 958,
973, 1395, and 1460 nm for PC2; and 1005, 1440, and
1483 nm for PC3. The wavelengths at 958, 973, 986, 1440,
and 1460 nm are due to 1st overtone and 2nd overtone of
O-H/O-H stretch; 1005 and 1483 nm are attributable to 2nd

overtones of N-H stretch; 1200 and 1608 nm are related to
C-O from COOH typical and 1st overtone of C-H stretch;
1280 nm band might be characterised by 2nd overtone bands
C-H bond stretching; 1375 and 1417 nm could be associated
with C-H vibration modes; 1395 nm and 1417nm absorp-
tion band might correspond to 2x C-H stretch+C-H defor-
mation and combination. These observable wavelengths
are principally characterised by the asymmetric stretching,
overtones, and combinations of vibrations of C-H, N-H,
O-H, and C=O which are triggered by constituents such as
fats, water, polyphenols, fibre, organic acids, alkaloids, poly-
saccharides, amines, and aromatic compounds found in
cocoa beans ([43–45]; Zhang et al. [53]). Table 2 gives addi-
tional information on the observable absorption bands and
their associated chemical constituents. These spectra obser-
vations echoed the outcome of the chemical compositions
of the two categories of cocoa beans studied. These spectral
wavelength bands might have significantly contributed to
the classification of organic and conventional cocoa beans
as seen in Table 3.

Four other pattern recognition algorithms which are
known to have potentials in solving identification problems
were applied. The pattern recognition algorithms such as
RF, KNN, LDA, and PLS-DA were applied to build a classi-
fication model and to ensure their stability cross-validation
was done. PLS-DA model produced classification accuracy
of 100.00% in both the calibration set and prediction set,
whereas the classification accuracies for the calibration set
and prediction set were 96.15% and 98.08% for RF, 91.35%
and 92.31% for KNN, and 90.38% and 98.08% for LDA

Table 3: Continued.

Models Preprocessing PCs Evaluation
Performance (%)

Calibration set Prediction set

PLS-DA

Raw 3

Accuracy 77.88 78.85

Sensitivity 80.81 83.87

Specificity 75.23 71.43

Efficiency 77.97 77.40

MC 5

Accuracy 92.79 94.23

Sensitivity 96.97 90.32

Specificity 88.99 100.00

Efficiency 92.89 95.04

FD 5

Accuracy 98.56 100.00

Sensitivity 99.04 100.00

Specificity 98.08 100.00

Efficiency 98.56 100.00

SD 5

Accuracy 100.00 100.00

Sensitivity 100.00 100.00

Specificity 100.00 100.00

Efficiency 100.00 100.00
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(Table 4). The experimental outcomes showed that the PLS-
DA algorithm was superior to RF, KNN, and LDA algo-
rithms. This can be due to the fact that the PLS-DA algo-
rithm possesses stronger and added potential of self-
adjusting and self-learning properties. For cocoa bean cate-
gories used in this work, the biochemical compositions and
complex organoleptic properties can explain why RF,
KNN, and LDA could not deliver the optimum solution.
The PLS-DA delivered its best performance at 5 PCs. High
number of PCs as seen in the RF model may result in low
generalization in the performance lowering the efficiency of
its model.

Generally, the optimum classification accuracy (100%)
received could largely be attributed to the influence of pro-
duction methods and partly to the reaction of inherent com-
positions of the organic and conventional cocoa beans to the
fermentation. Cocoa bean flavour compounds do not only
originate by character precursor formation during fermenta-
tion but could also be generated during production manage-
ment systems [57]. Thus, the composition of organic and
conventional cocoa beans interacted with the fermentation
process in the formation of cocoa flavour quality constitu-
ents. The use of synthetic fertilizers and chemicals in the
conventional method contributed to variations in the cocoa
bean biochemical composition leading to the distinct cluster

trends and differentiation of the cocoa samples used in this
experiment. Also, according to other authors, organically
produced foods show high polyphenols and ascorbic acid
contents as a response to stress stimuli [58]. More so,
organic crops often grow more slowly compared to synthetic
fertilized crops with readily available mineral nutrients and
this might reduce their water content leading to a higher
concentration of some plant compounds [59]. It is therefore
expected that organically produced cocoa will have higher
concentrations of some compounds (polyphenols, protein,
carbohydrate, fibre, and total flavonoids) as recorded in this
study. This phenomenon might have contributed to the
accurate classification of the different categories of cocoa
beans used in this study by the handheld NIR spectroscopy.

4. Conclusions

This work represents the first study to successfully evaluate
the application of a low-cost handheld NIR spectrometer
and chemometric classification techniques for rapid nonde-
structive screening and authentication of organic and con-
ventional cocoa beans produced in Ghana. The PCA score
plot exhibited the feasibility of identifying cocoa bean cate-
gories. Four different chemometric classification algorithms,
viz., RF, KNN, LDA, and PLS-DA, were comparatively per-
formed for the construction of classification models. PLS-
DA exhibited superior performance over the others (RF,
KNN, and LDA) after second derivative (SD) preprocessing
for the differentiation of organic cocoa beans from conven-
tional ones. PLS-DA model yielded classification accuracy of
100% in both calibration set and prediction set. The applica-
tion of handheld NIR spectrometer and PLS-DA algorithms
could be employed as a simple, on-site, cost-effective, rapid,
and ecofriendly technique for accurate identification of
organic cocoa beans and conventional ones to prevent fraud
and ensure the integrity of organic cocoa beans.
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Table 4: Overall performance of classification algorithms.

Models

Total cocoa
bean samples

PCs

Identification
rate (%)

Calibration
set

Prediction
set

Calibration
set

Prediction
set

RF 182 78 9 96.15 98.08

KNN 182 78 5 91.35 92.31

LDA 182 78 5 90.38 98.08

PLS-
DA

182 78 5 100.00 100.00
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Figure 5: The k-fold cross-validation discrimination rates of
second derivative preprocessed PLS-DA models at 5 PCs.
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